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A closed representation is obtained for the Green's function

of the Dirac equation of a free-electron in a uniform magnetic field.

Deduz-se uma representacdo fechada para a fungdo de Green para
a equacdo de Dirac para un eletron livre na presenca de un campo magné-

tico uniforme.

1. DERIVATION OF THE GREEN'S FUNCTION

The present note contains a simple derivation of the Green's

function for a Dirac particle in a uniform magnetic field.

The Green's function satisfies the followings inhomogeneousDi-

rac equation

(ivuﬂu - Wsle,y) = 8% (c-y) (1)

where 7 = 3% - ¢ 4% is the energy-momentum four vector;

‘A =(0, -1/2 K, ,1/2 Bx,,0)
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is the electromagnetic four vector potential; H is the uniform magnetic

field in the z-direction and p is the slectron mass.

VW can make the following Anzats

Slz,y) = (i\(uﬂu + ) Flz,y) (2)

and as A does not depend on z, and x5, we may write F(z,y) as a Fourier

transform of a transversal Green's function

+ o + oo
_ 1 — Y _ > >,
F(z,y) = 22 L, J_w dpydp, explzp, (wgyy) —ip, (@~ V]K(s,5",p).p,)
which satisfies the following differential equation (3)
2 _.2 _ 12 w202 492 - > 2. - 4 I
|p° P, cha p? ~w?s +V+ ZwL3] K(s,s 3P, ps) S(s s) (%)

with & = (xl,xz) and w = e H/2, Assuming K(g,g'; po,ps) diagonal on o,

we may write 0,k = 8K with & = 1.

As in the non-relativistic case (Bellandi, Zimerman-1975) we
can firstly seek for K(g, 3 Po, Ps) in the series form
o
K(3,3%5p0,0s) =5 T K'(3,3"5p0,ps) explim(o ~4")] (5)
M=—eo
where m are the eigenvalues of L3; s and ¢ are the polar coordinates in
the (xl,:cz) plane.

The partial Green's function I{"(s,s'; P, P) satisfies the
following differential equation

mz

2
lri-—z— +—;— %E- e wZs? + A -me-] K'(s,8";p05ps) =-(s8")~1/2 §(s-s")
s s 4

(6)

with A = P% - P; - 2ws = u* | A solution of this equation is (we put w=1)

’

K'(s,5" pyupg) = TEHIRIA2) (ooiyr y dom Il (g gy 2em I (o)

(n
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Here s< and s> are the lesser and greater of s' and s’ respectively and
M and W are the Whittaker functions. Replacing the product of the Whit-
taker function in EJ.7 by an integral representation in the complex pla-
ne (Buchholz, 1969) we can perform the summation in Eg. 5 and the final
expression for the transversal Green's function is
o, _] ]_A L Ty 1 )\' > 402
K(S,S ,po,ps) _'2—1—‘_ I'(-z- '[") eXPELIst I]—I—'S*T:;_;.WT}-,O(IS S'l ).
(8)
Since this function is an analytical function, Eq. 8 is valid for arbi-
trary values of A. This expression must be interpreted as a 4xh matrix,

and for a defined value of S we must write 1/2(1 +s I3)X; £3 = g12,

REFERENCES

Bellandi Filho, J. and Zimerman AH. 1975 Lett.N.Cimento 14, 521.
Buchholz H 1969 - The confluent Hypergeometric function, in Springer

Tracts in Natural Philosophy Vol .15 (Berlin).

191



