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Using techniques developed by Greenspoon and Pathria and by
Chaba and Pathria, a rigorous asymptotic analysis of the onset of Bose-
-Einstein condensation in a finite one-dimtnsional system at constant
pressure, under Dirichlet boundary conditions and mixed boundary condi-
tions, is cerried out. The role of the finite site corrections arising
from a modification of the density of states of the system, as well as
from the di,jcreteness of the single-particle energy levels is discussed.
The heat capacity % passes through a srnooth maximum and the volume be-
comes subextensive at the critical temperature Tc. Somewhat below Tn(oo),
the volumef the system, together with Cp, becomesO(Nl/g). W also
discuss the behaviour of the system when it is cooled at constant volu-
me below TC and compare the results of the present study with those of

the two-dimensional and the three-dimensional systems.

Usandotécnicas desenvolvidas por Greenspoon e Pathria e por
Chaba e Pathria, € levada a efeito uma rigorosa anél ise assintética da
ocorréncia da condensagdo de Bose-Einstein an un sistema finito uni-di-
mensional A pressdo constante, sob condigées de contorno de Dirichlet e
condicBes de contorno mistas. E discutido o papel das correcées de di-
mensdes finitas que surgem por causa da modificagdo da densidade de es-
tados do sistema e por serem discretos os niveis de energia da particu-
la livre. A capacidade calorifica CP passa através de um maximo suave e
o volume torna-se subextensivo & temperatura critica Tc. Um pouco abai-
xo de Te(w), o volume do sistema, junto com Cp’ torna-se O(WY/3).  NOS

também discutimos o comportamento do sistema quando o mesmo € esfriado

* Work supported in part by the Conselho Nacional de Pesquisas of Brasil.
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a volume constante abaixo de Tc e comparamos o0s resultados do presente

estudo com os dos sistemas bi-dimensional e tri-dimensional.

1. INTRODUCTION

In a recent paper, Imry, Bergman and Gunther1*2  considered
the problem of Bose-Einstein condensation (B.E.C.)} in a two-dimensional
system at constant pressure and being subjected to Dirichlet boundary
conditions (\(:S = 0) . They also gave some results for the one-dimensio-

nal system?, for temperatures greater than the critical temperatureT (=)

T (=) = (2nA2P2/me2(3/2) 3k . tR)

Using techniques develop by Greenspoon and Pathria3 and by Chaba and
Pathria®, the latter carried out a rigorous, asymptotic analysis of the
onset of BEC. in a finite two-dimensional® system at constant pressu-
re and later extended it to a three-dimensional® system, as well. Al-
though ideal Bose systems of one and two dimensions’ do not undergo B.
E.C. at finite temperatures if the system is cooled at constant parti-
cle density which is finite® throughout the system, Imry et aZ!*2  and
Chaba and Pathria5 showed that if the two-dimensional system is cooled
at constant pressure instead, a phase transition characterized by a ma-
croscopic condensation of particles in the lowest single-particle state

e, does take place at a finite temperature. This is understandable be-

0
cause in this case, the volume of the system becomes subextensive, so
that, in the thermodynamic limit, the particle density nolonger remains

finite.

W have taken up a rigorous study of the BEC. in a one-
-dimensional system at constant pressure, using the techniques3'+ re-
ferred to above, so as to be able to compare the results with those of
the two-dimensional and three-dimensional systems and study the effects
of dimensionality. The study has been carried out in the cases when the
system is subjected to two different sets of boundary conditions: (i)
Dirichlet boundary conditions (D.B.C.), at both ends (¢S=0); (i1} Mixed
boundary cenditions (M.8.C.), that is Dirichlet boundary condition at

130



one end and Neumann boundary condition (aws/an=0) at theother: in both

these cases, the condensate can also make a contribution
P, = 2Nyeo/V ~ Hoh?/ (V) (v =1) (1.2)

towards the total pressure of the system and thus help in keeping it
fixed at a given value of P even when the temperature of the system is
less thanthecritical temperature Tc. It follows from Egs. (1.1) and
(1.2) that for Ny to be a significant fraction of N and Py to be a sig~
nificant fi-action of P, the volume of the system must be subextensive:

v~ (h2/mke (=))Y/2 g1/3 (1.3)

In this paper, we wish to report the results of a rigorous,
asymptotic analysis of the aforementioned problem. Finite size correc-
tions, appearing in the expression for the total number of particles N
can be regerded as arising partly from (i) a modification of the densi-
ty of states of the system (which, if it exists, is more significant in
the case of higher momentum states9) and partly from (ii) the discrete-
ness of the single.particle energy levels (which is more significant in
the' case of lower momentum states). These corrections crucially depend
on the bouridary conditions to which the system is subjected. W discuss
the probleni using DB.C. in section 2 and MB.C. in section 3. In both
cases Cp passes through a smooth maximum and the volume becomes subex-
tensive at T:TC (which is different in the two cases). Also the con-
densate pressure Py does not play an important role at Tc. Somewhat be-
low Tc(w), the volume of the system further reduces and becomes 0(N1/3) .
At this stage Cp too becornes 0(1V1/3) and the role of Py becomes dominant.

As mentioned before, as T-»Te from above, the volume of the
system V, becomes subextensive; cf. Egs. (2.23) and (3.1L4a). If the sys-
tem is now cooled below Tc at constant volume V=Vc' the condensate frac-
tion becomes macroscopic only when 720, in the thermodynamic limit. This
result differs from that in the two-dimensional® case, where it becomes

so at a finite temperature.
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2. DIRICHLET BOUNDARY CONDITIONS

2. 1. Formulation

W consider a one-dimensional system of non-interacting bo-
sons subject to Dirichlet boundary conditions with mean occupation num-
bers <n.> for the single-particle states €s- The total number of parti-
cles N (throughout this paper, we shall assume N to be large but finite)

and the total pressure P of the system are then given by

u+8&:7/.
N=E<ni>=): (e - -l (2.1)
A 7
and
857:
P = - ZE<7’Z7’-> [W) (2.2)
where

a == (u/kT) s

u being the chemical potential of the system; the derivatives (aei/av)
appearing in Eq. (2.2) are determined by the energy spectrumofthe sin-
gle-particle states. For a one-dirnensional system of length L (and vo-

lume V=L also), the energy spectrum under D.B.C. is given by

n2e — ., (n=1,2,3,...) (2.3)

It follows that (3e,/dV} = - (2¢./V) and hence

) (2.4)

<8

[>N
i—
P=2i<n> =
7

U being the total energy of the system.

Using the techniques developed in references, 3, 4, and 5,
Eg. (2.1) becomes

g

>

Lo (@) = 3y dola) ¥ 26/2 a2 ()] (2.5)
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where A (= h/(ZmnkT)I/Z) is the mean thermal wavelength of the parti-
cles (which is assumed to be much smaller than L), gn(d) are the fami-,
liar Bose-Einstein functions!?, while the thermogeometric parameter Yy

is given by
y = 2x1/2 41/2(1N) . (2.6)

In (2.5), the first term represents the bulk behaviour of the system,
the second term arises from the modification of the density ofstates of
the system owing to its finite size (and depends crucially on the choi-
ce of the boundary conditions) while the last termarises explicitly

from the discreteness of the single-particle states.
In the region of interest (a << 1), we may write
 1/2 =1/2 . SR T |

91/,(0) = T2 a7V2, g (@) = (&7 - 1) a (2.7)
Such an approximation is not permissible for a function of the parame-
ter y because the latter varies drastic¢ally over the transition region.
We therefore, retain the relation

2 -
g,(2y) = (¥ - )7 (2.8)

and write

gl/z(a) + 2111/2 a_l/z gO(Zy) = "1/2 a-1/2 coth y . (2.9)

Substituting (2.7) and (2.9) in (2.5), we finally obtain

N = 2mx? EEE"—-L/-—‘} 2.10
e 7 yz' ( )
where

X = L/A . (z.11)

Note that x is ameasureof the volume of the system. For y2 < 0, the
Eq. (2.10) takes the form
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N = 2ma? [————y—wt '+—‘—-} (2.10a)
y! yrz

where y'2 = - y2 and is positive. In the expressions for N in Egs. (2.
10) and (2.10a), the second term is due to the modification of the den-
sity of states (and depends crucially on the choice of the boundarycon-
ditions®’11) whereas the firs't term includes the effect of discreteness
of states in addition to the bulk term; see Eq. (2.9). At this point we
wish to emphasize that our final expression for N passes smoothly from
the region with y2 » 0 to the region with y2 < 0. This is important be-
cause, under DB.C., one must ultimately deal with the region of nega-
tive y2 — in particular, with the limiting situation y2 = = n2. In this
connection, we observe that the zero-temperature limit of the: chemical
potential u of the system is given by e;, which isequal toe(1)=A2/8mL2;
accordingly, the limiting value of a is -h2/(8mL2kT) = = w(Ax/ L)2/4 and,
by £q. (2.6), the corresponding value of ¥2 is =12, The relevance of
this timit is highlighted by the fact that the ground -state occupation
number No is given by

N = ] s ! - A= (2.12)

0 a+Be
e 0 -

U+B€0 y2+1r2

Ve notice from Egs. (2.5) = (2.10a), that for y2 >> 1, the bulk term is
the most important, the next in importance is the term due to the modi-
fication of the density of states and the term due to the discreteness
of states is negligible. For y2 > 0 and of 0(1), all the three termsare
comparable. For y2 < 0 but not close to - 72, the term due to the modi-
fication of the density of states is comparable with thesumofthe other
two but, for y2 = -n2, this term becomes negligible as compared to
others.

Following a similar procedure, Eq. (2.2) becomes

p=X [5(3/2) -MM]. (2.13)

Using Eq. (2.10), this takes the form
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1/2
p= |2 / (kT)3/2 [£(3/2) N (2.14)
h2 z 2mx3

The pressure P0 exerted by the condensatecan be extracted from the last
term by letting y2 +-72; we obtain, as expected,

2N, €
0°0
7 (2.15)

]

1/2
2mm N %2
P = 52 3/2 7 29 -
0 [h ) (k2) 2.3 ¥y U3

2.2. Heat Capacity, Critical Behaviour and Discussion

For studying the heat capacity and the critical behaviour of
the system, we must first of all determine the manner in which the pa-
rameters z and y2 vary as the system is cooled at constant N and P From
Eq. (2.10), we obtain

a2 _ by
[ex} = ) ~ (2.16)
¥V z(u?y? + 3u - 1)
where
u = N =C°th Y __l__ . (2.]7)
2mx2 y y? ‘

Eq. (2.14) now gives

P\ _3 P _KT ¥ { gﬁ} A, 1 {ax)
—_— = b e o e - — — o o=
{BT)” 2roa [ 2mz3 oz JN * 2zt ' x? sty - (21%)

The constancy of P, therefore, implies that

R = 3 B
3T4N,P ~ Lm kT2

il u2y2 4 3y -~ |
u

s (2.19)
V- 3u+3uy? -6uPy? - 3udyt

where use has been made of Eq. (2.16). Now the heat capacity atconstant

pressure C fis given by
13
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Using Egs. (2.14), (2.17) and (2.19), Eq. (2.20) can be written as

SRR

2
-2 lez/2) - (2nu)1/2(1+uy2) . l— w2y? + 3u - 1
8m w2 u-3u+3uly2-6udy2-3uty"

- (2m) 1/2 1" (2.21)
3 £(3/2) 820172 (20) V 20 (14uy?)

We find that Cp considered as a function of temperature passes througha
smooth maximum. W call the temperature (depending on ¥) *corresponding
to this maximum as the critical temperature Tc' Putting the derivative
of Cp with respect to y equal to zero, we obtain the followingvalue of

y(= yc) corresponding to the critical temperature:

L6 e |23 s
Y, = [7 (2“)1/2:] N , (2.22)

and the corresponding z(= xc) is obtained from (2.17) and (2.22) as

N
z, =cm—]1/2 - %— £(3/2) }1/3 . [E”;]z’s X (2.23)

For the amount of condensate at T =T, we have, from Egs. (2.12), (2.
22) and (2.23),

Limge? -2/3
W) =—=C 2 _, 16 _(3/2) < w23 2 om?’3y,  (2.24)
¢ yg Y, l:7 (2m) 1/2

and for Cp atT = T,, we have, from Egs. (2.17), (2.21) and (2.22)
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C 2 -2/3
r.9. 2 6 £(372) -
- 5 E‘B/z‘)} [1 3 [7 ————(2")1/2 n-1/3%, (2.25)

In the thermodynamic limit, CP + 9/8n .|§(3/2):|2 and Tc > Tc(oo) . This
is not in agreement with the results'? of Imry et al. (see Eq. (25) of
reference il, where CP/IV diverges as T » Tc(°°)+) . Now Eq. (2.14) can be

written as

3
TC/Z(N) = 73/2 .

R i } (2.26)
x£(3/2)  2mx3 £(3/2)

and from this, we get the following expression for Tc’

Tc = Tc(oo)- | +-§- . (% . : 231/1'2 }1/3. N1/3] (2.29)
where
T (w) = 4. T w3
¢ : ‘_5(3/2)(21”")1/2}

is the value of Tc in the thermodynamic limit. W notice from (2.23) that
the volume of the system has become subextensive and the particle densi-
ty n diverges, in the thermodynamic limit, in agreement with Imry et az2

and from Eq. (2.24), it follows that the condensate is not macroscopicat
T=T
c

It may be interesting to study the values of y2, Ny and X at
certain special temperatures, in addition to the temperature Tc at which
the values of these quantities have already been given. W shall consi-
der the temperatures (i) T,(¥) corresponding to y2 = 0 and (ii) Tn(w).

(i) T= 7.

Putting y2 = 0 in Eq.(2.10) , we get x, = (3 12 )1/2 and then
it readily follows from Eq. (2.26) that
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T =1 - [1s @ L am ] 2
£(3/2) | _

Putting y? = 0 and the value of x, in Eq. (2.12), we obtain (N) (=6N/x2,
that is, at temperature Tn(IV) which is less than TC and greater than

Tc(m) , the condensate is macroscopic.

(ii) 7 = Tc(w).

Putting T = T (=) in Eq. (2.26), we get y2N = = 2rx? and then
solving this with Eq. (2.10a), we get y2 = = (n2/4) andx = (nN/8)1/2,
Using these values in Eq. (2.12), we get ¥ (T=Tc(°°)) = {(20/3).

For temperatures below Tc(w) (but not very close to it),
y2 < = (n2/4) and from Eq. (2.26), it follows that x = O(Nl/s). Further,
as in this range Ny = O(N), it follows from Eq. (2.12) thaty2 = = ¢2 +
+ 0(N'1/3) . Then, in Eq. (2.26) , the second term which is due to the mo-
dification of the density of states becomes negligible and one readity
obtains the dependence of X on T,

/
x:" m 1/3 7172 — /3 (2.29)
2£(3/2) (,3/2(=) - 13/2)1/3 _

and
= / / © 73/ w] —
v = (h20/4mP) V3 11/2(e) 4 [73/2(=) 73/2]1/3 (2.30)

and as T+ 0 V= Vg = (hzlwhmP)I/3 which is precisely the volume requi-
red, in this limit, to maintain the system at constant pressure; see Eg.
(2.15). To calculate y2 in this region of temperature, we put y2== r2 +
+e(n) , (e(D) = o(lv"/s)) in Eq. (2.10) and obtain

2 4
e{7) =i1_ric_+l2L, {2.31)
N w2

and from (2.12)

Wy = bnx?/e(T) = N - 3 2
oo

which can be written as
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Nog=N-¥_, (2.32)

Ne being the number of particles in the excited states and is given by

e

3 ,_3[_n Jess T 2/3
vo-3 2.3 . 7273 (2.33)
7 2(3/2) (232 () - 7377273

so that in the thermodynamic limit Ne/N + 0 and NO/N -+ | at temperatures
below Tc(«') but not very close to it. Further, putting y2 = - %2 and
using Eg. (2.29) for x in Eq. (2.21), Cp is, then, given by

¢
£ =3 (e2G72)/2) /3 g1 /2 13/2(e). [T;/Z(w) - T3/21-"+/3 /3

(2.34)

so that in this region, Cp has also become subextensive. For comparison,

we tabulate below the values of y2, & and N, at the special temperatures:

Temp. y? ] X Ny

r | ow/?) ow2/3) ow?’3)
T, - 0 (38/2m) /2 67/n?
T_(=) -n2/h (nv/8) 172 W/3
T+0 y? =-n2 z + 0 No + N

From the comments after Eq. (2.12) and the discussion of the
last paragraphs, it follows that in the critical region, the effects due
to the modification of the density of states and the discretenessof sta-
tes are of comparable importance and they together determine the precise
nature of the physical behaviour of the system in this region. Further,
for T<‘£PC(°°) (but not very close to it), the effect due to the modifi-
cation of the density of states becomes negligible and the Egs. (2.29) =~
(2.34) are valid in this range, Also in this range, the condensate pres-
sure Py plays a dominant role. t{t can be casily shown that the tempera-
ture Tc" where the macroscopic condensation starts, is slightly greater

than Tg and is given by

139



7= ()« [T+ 01/2)] (2.35)

It is possible to study, numerically, the dependence ofyz,IVo/IV
and C_/Nk on the temperature for given values of N. From Egs.(2.10) and
(2.26), we can find the dependence of r and y2 on T/Ta(oo) for a given
value of N and then using Egs. (2.12) and (2.21) ," the values of No/N and

Cp/ka for different temperatures can be found out.

In Fig.l, we have plotted the thermogeometric parameter y2 VS.
(T/Tp(oo)) for three different values of N. W find that as the tempera~

2§
y
15+
10
5
P2 iz
_2f L
4 TC o)
-5
2
-
Fig.l = Thermogeometric parameter y2 as a function of scaled temperatu-

re T/Tc(oo), under Dirichlet boundary conditions (D.B.C.). Curves, 1, 2
and 3 correspond to ¥ = 103 10% and 106 respectively. Dotted line de-

picts the corresponding bulk behaviour.
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ture Tc(eo) is approached from above, y2 falls from large values to the
value - m2/4. As the temperature further falls from Tﬂ(w) to very low
temperaturss tending to zero, y2 falls from = w2/ to - n2. For finite
N, the curves are smooth. As N increases, the fall in the value ofy?2 be-
comes more rapid. In the case of thermogeometric limit, the fall would

be abrupt. This shows the effect of the size being finite.

Fig. 2 shows graphs between condensate fraction NO/IV and
T/TC(W) for three different values of N. again we notice that the con-
densate grows smoothly for finite N, the growth being large in the neigh-
bourhood of Tc(w) . As N increases, the growth. becomes more rapid and fi-
nally, in the thermodynamic limit, the condensate will build up abruptly

at Tc(w) . Further, for any N at T = Tc(w), NO/IV = 2/3 and as T+0,1V0 >,

In Fig.3, we have shown the variation of Cp/[Vk withT/Tc(w) for

three different values of N. The curves pass through smooth maxima. The

NoL

40 S e e

04f

Q

[2F4

-
>

T .
Tc(ro)
Fig.2 = Temperature dependence of the condensate fraction #,/n,  under
D.B.C.. Curves 1, 2 and 3 correspond to § = 103, 10%* and 106 respecti-

vely. The bulk behaviour is shown by the dotted curve.
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temperature corresponding to these maxima, Tc, decreases as ¥ increases
and approaches Tn(w) for N + =, The value of C_/¥k at Tc increases with
increasing N and approaches % £2(3/2) = 244 for N+ », For high tem-
peratures T >> Tc(w), it should tend to the classical value 1.5 but our
expressions are not valid at these temperatures. As the temperature falls
below Tc(co), Cp quickly falls to subextensive values 0(”1/3). The fal}
becomes more rapid as ¥ increases and would be abrupt in, the case of ther-
modynamic limit. Further, for any N, as T + 0, Cp + 0.

At this point, it may be worthwhile to compare these results
with those for the corresponding two-dimensional and three- dimensionatl
problems. Though most of the features in the present case are similar to
the ones in the previous cases, the results are different in the region
close to the critical temperature. The problem in two dimensions was sol-

ved in such a way that there were to regions having different solutions
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for X, y2, IVO/IV and CP/IVk and the awkward feature of the resultswas that
these regioiis somewhat overlapped. in the case of the problem in three
dimensions also, this awkward feature existed but assuming thecontinuity
of C_, this feature was removed (a similar procedure could for adopted
for the two~dimensional case as well) but then x, y2, Ny/N and the slope
of C_ became discontinuous at Tc. in the present case, we find that x,
y2 and IVO/IV all vary smoothly, even at the critical temperature and Cp
passes through a smooth maximum and no discontinuities such as those in

the other cases appear.

2. 3. Cooling the System at Constant Volume LC

In the problem of two dimensions, we noticed thatwhenthe sys~-
tem is cooled at constant pressure P to temperature TC from above, the
volume becomes somewhat subextensive and the amount of condensate in the
single-particle ground state eO does not become macroscopic at Tc. If now
we cool the system at constant volume, the macroscopic occupation of the
ground state does take place at finite temperatures. Let us now see what
happens in the case of the one-dimensional system, when treated in the

same way.

V¢ have seen that when this system is cooled at constant pres-
sure P to the temperature ’l’c from above, the-value of L becomes subext-

ensive,

= = 2/3
L+L,=2, X, )\c.O(N )

At this stage, the amount of condensate in the single~particle ground sta-
te g, is 0(1V2/3) which is not macroscopic. Now let us cool the system at

constant volume Lc‘ Under this constraint, we would have
= = 1/2 .
@ =L,/\ mc(T/Tc) . (2.36)

With the help of Eq. (2.36), Eq. (2.10) can be written as

N = 2 g2{T/T ) [E‘%i - yLZ] (2.37)
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and Eq. (2.12) can be written as

by
Ny = —S— (Tl) .
y2 + n? e

V¢ rewrite this equation'with the help of Eq. (2.23) as

wym = ) - —— . o3 . (2.38)
o y2 + 72
For (NO/IV) to be of 0(1) and for very large N, y must be of 0(”1/6) and

then Eq. (2.37) gives the corresponding temperature

/T, = (N/Zﬂxcz) y = 0(N~1/6)

which goes to zero for ¥ +«, Thus macroscopic condensation in the ground
state EO will take place only at T > 0 in the thermodynamic limitand not

at finite temperatures unlike the case of the two-dimensionalsystem.

3. MIXED BOUNDARY CONDITIONS
3.1. Formwlation

V¢ again consider a onerdimensional system of non-interacting
bosons but subject to mixed boundary conditions (M.B.C.) i.e. b, =0 at

one end and awg/an = 0 at the other. Let <n_. > be the mean occupation num-

7
ber for the single-particle states ;- The Egs. (2.1) and (2.2) for the
total number of particles and the total pressure P of the system are va-

lid in this case also. The energy spectrum in this case is given by
2
e =L e P2 L L m=0,0,2,3,..) (3.D)

(instead of Eq. (2.3)). VW& further notice that Eq. (2.4) is also valid

4

in the present case. Using techniques” referred to earlier, we get from

Eq. (2.1)
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L, ont/2 .12 L 5 (o4 -2(q+l)yj
b= [{1/2(0‘) 2m ot/ qio (=1)"-e , (3.2)

and noting that

3 (_])Q_e'Z(Q'H)y
q=0

L
—Z-o(l tanh. y) ,

this can be written as

" =§, qu/z(a) -wl/2 V2 (4 - ranh y)] (3.3)

where A, v, gn(G) occuring here were defined in section 2. In Eq. (3.2),
the first term represents the bulk behaviour of the system while the se-
cond term arises explicitly from the discreteness of the single-particle
states. As there is no modification in the density of states, no term

arising from this effect occurs in Eq. (3.2) ..

in the region of interest (a << 1), the above equation with the

help of Eq. (2.7) becomes
N = 27 X2 . (tanh y/y) (3.4)

where again & = (L/A) is the measure of the volume of the system. For

y%2 < 0, the Eq. (3.4) takes the form
N = 2n x2. (tan y'/y") (3.4a)

where y'2 = -~ y2 and is positive. W see from Egs. (3.4) and {(3.4a) that
our final expression for N, in this case also, passes smoothly from the
region with y2 > 0 the region with 42 < 0. This is quite satisfying be-
cause, one must ultimately deal with the region of negative y2, in par-
ticular, with the limiting situation y2 = = w2/4_ Here the zerb-tempera-
ture limit of chemical potential u of the system is given by g4, which,
in this case, is equal to £(0) = A2/(32mL2); accordingly, the limiting
value of a is -42/(32mL2kT) = - w(x/L)2/16 and, by Eq. (2.6), the corres-
ponding value of y2 = = 712/h, The relevance of this Iimit is again high-

lighted by the fact that the ground-state occupation number ¥, is given

by
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2
No = B] I 4‘" z (3-5)
ST atpey oyt (nP/H)

We notice from Eq. (3.3), that for y2 >> 1, the term due to the discre-
teness of states is negligible whereas for smaller values of y? (inclu-

ding negative ones), it is quite important.

Following a similar procedure, Eq.(2.2) now becomes
KT y
P==. £(3/2) - Z. tanh . (3.6)

Using Eq. (3.4), this takes the form

27 x

P= (i—’zﬂ)”2 .- (k)32 . [5(3/2) - ”yz] ) (3.7)

In this case, the pressure P exerted by the condensate can also be ex-
tracted from the last term by letting y2 » = 72/hk, we obtain, as expec-
ted,

1/2 3 N 2
p=(.2_"ﬂ) .(kT)/z‘.“_._.Q-:N. h =2N._TS/)._ (3.8)
0 2 28 23 0 3 0

3. 2. Heat capacity, Critical Behaviour and Discussion

For studying the heat capacity and the critical behaviour, we

again calculate (Byzlax)m and (Bx/aT)N p+ From Eq. (3.4), we obtain,

3y? by ?

¥y = , (3.9)
x "N 2(u2y2 + u - 1)
where
w=—H_ o tamhy (3.10)
2mx2 y

Using Egs. {3.7) and (3.9), we get

146 -



242 -
2 e A F wyru-l (3.11)
by kKT? - u2y? 3+ u - 3uZy?
Eg. (2.20) for the heat capacity C_is valid in this case also. Using

Egs. (3.7), (3.10) and (3.11), we obtain

c

/2 12 2,2 - /
9 .2 oo 2m1/2 y2dd .ru}i + 1 1 (2m V2
T £2(3/2) {E (T) :l (Nu)

P .
k £(3/2) | lu2y2(3su-3u2y2) 3

R B I ) (3.12)

£(3/2) L 1/2 y2u3/?
OV w32

W find thet Cp passes through a smooth maximum at an N-dependent tempe-
rature T, the critical temperature. Putting the derivative of C_ with
respect to y equal to zero, we find that the value of ¥(= yC) correspon-

ding to TC satisfies the following equation approximately,

"7 @V

1 1 1
yc - -E In Eje(’!yc - 3)2] x 'I" ]I’\ N - —2— In W W . (3-]3)

W note thet Y, is of O(In N). for a given value of N, we can find y

numerically from Eq. (3.13). In the thermdynamic limit, Y, is given py
1
y,=g In¥. (3.133)
From Egs. (3.4) and (3.13), we obtain for x,
R YA
[ y#® 1}~ /
z, = = O(N In M1/2 (3.14)
’ 12 tanh y
{ e
which, in the thermodynamic limit, is
_ 1 [ 1n §)1/2
acc = -2- (——2-“—] (3.“‘3)
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Using Egs. (3.5) and (3.14), we obtain for the amount of condensate at T
e 7

2y N :
w.) = g = O(N/1n W) (3.15)

0'e ) 112
(yc + T) tanh Y,

which, in the thermodynamic limit, is

(No)e = 8N/1n ¥, ‘ (3.15a)

For Cp at T =T , we have, from Egs. (3.12) and 3.4,
Ie]

- 9 .2 -
Cp/Nk = B £2(3/2) |1

7 [2% ]1/2
3e(3/2) N

_Zyc
+ (4 - 16yc) .e

(3.16)

which, in the thermodynamic limit, is

(Cp/Nk) =g9— £2(3/2) - ll -0

{“1]/N)i} . };91?52(3/2) . (3.16a)
'/

Now Eg. (3.7) can be written as
3 2
Tg/z(m) =73/2 . ‘1 - } - (3a7)
' 2ng(3/2) 23

and from this, we get the following expression for Tc'

ny? In N\ 1/2
Tc = Tc(oo) . [E] + _.__c—_jl = Te(w) . [7] + 0f nN ) ] (3.18)
3nE(3/2) 23 -

From Eq. (3.14), it follows that the volume of the system has become sub-
extensive and from Eq. (3.15), we find that the condensate is not yetma-
croscopic at T = TC. Further, comparing Egs. (2.27) and (3.18), we no-
tice that the critical temperature in the case of M.B.C. is lower than
that for D.B.C. and comparing Egs. (2.25) and (3.16), we observe thatthe

maximum o f Cp/Nk for M.B.C. is higher than that for D.B.C., for the same
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value of N. Further, it may be worthwhile to compare Egs. (3.13), (3.14)
and (3.15) for the M.B.C. with Egs. (2.22) , (2.23) and (2.24) for D.B.C.

respectively.

Ve may now study the values of 2, x and N0 at another special
temperature Tc(w) (= TO). From Eq. (3.17), it follows that at this tem-
perature, ¥2 = 0 and then from Eq. (3.4), we get z, = (IV/21T)1/2. Using
these values in Eq. (3.5)., we get (1\70)0 = (16x§/n) = 8y/n2.

For temperatures below Tc(oo) but not very close to it,
-n2/h < y?2 < 0 and then from Eq.(3.17), it follows that z=0(/3) . Fur-
ther, as in this range ¥y = O(W), we find from Eq. (3.5) that y2=-(a2/4)
+ o(w"1/3), and then from Eq. (3.17), we get the following (z,7) rela-

tionship,

T1/2 N1/3 (3.]9)

x = (n/86(3/2)1/3
(13/2(=) - 73/2)1/3
(4

and
/24
722 (=)

V= (hzﬁ/lémP)1/3 (3.20)

(7372 (=) - 73/2)1/3
c

and as T+ 0, V=V, = (hzltl/l6m£"-’)l/3 which is the volume required,inthis
l1imit, to maintain the system at constant pressure; see Eq. (3.8). To
calculate y'2 in this range of temperature, we put y2 = - 72 /4 + e (T) ,
(e(m) = 0w %) in Eq. (3.4) and obtain

2 4
e(r) = Ame” 167 (3.21)
N w?
and from Eq. {3.5)
¥y = bne?/e(T) = N - bo2/7 = N - N, (3.22)

where IVe , the number of particles in the excited states, is given by

W, = (b/m) (1/86(3/2)%/3 Lo w2t (3.23)
(Tg/z(m) - p3/2y2/3
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Further, putting y2 = - (72/L4) and using Eq. (3.19) (3.12),

CP is then given by

for x in Eq.

c 71/2 73/2 0
£ =3 (ne2(3/2) /812 . c ()

1/3 .24
(Tg/z(,,,) ~ P3/2)8/3 y s (3.28)

so that in this region CP has also becorne subextensive. For comparison,

we tabulate below the values of y2, x and N, at the special temperatures:

Temperature y? Ng
T oltnm2 | ow 1nm /% | o 1nm)

T (=) =T, 0 (w/2n)1/2 8N /2

7 + 0 y2==_-1r2/14 z >0 Ng + N

combining the comments after Eq. (3.5) and the discussion above, we ob-
serve that for temperatures around and above Tc, the effect due to the
discreteness of states is negligible whereas for temperatures around and
below Tc(m), it is quite important and further, for temperatures below

Tc(w), Py plays a dominant role.

From Egs. (3.4) and (3.17), we can find numerically the va-
riations ofs and yzwith T/Tc(w), for given values of ¥, Then from Egs.
(3.5) and (3.12) , we can determine I\b/IV and Cp/Nkas functions of tempe-

rature.

In figs. 4, 5 and 6, we have shown graphs, y2 vs. T /Tc(co),
Nog/N vs. T/Tc(m) and Cp/Nk Vs. T/Tc(m) respectively. From Fig.4, it is
clear that as the temperature Te(oo) is approached from above, y2 falls
from large values to zero. As the temperature further falls from Tc (=)
to very low temperatures tending to zero, y2 falls from zero to - w2/h,
Further, in Fig. 5 for any N, IVO/IV =8/72 at T = Tc(w) . The other com=~
ments concerning Figs. 1, 2, and 3 apply to Figs. 4, 5 and 6 respective-
ly. In Figs. 7, 8 and 9, 10 and 11, we compare variations of y?2 vs.
T/Tc(w), Ny/F vs. T/Tc(w) and Cp/Nk VS. T/Tc(w) in the case of D.B.C.

with those in the case of MB.C. V¢ observe that at highertemperatures,
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Fig.4 - Thermogemetric parameter 32 as a function of temperature, under
mixed boundary conditions {M.B.C.}. Curves 1 and 2 correspond to ¥=103

and 10% respectively. The dotted curve shows the bulk behaviour.
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Fig.5 - The temperature dependence of the condensate fraction NO/IV, un-
der MB.C.. Curves 1, 2 and 3 correspond to N = 103, 10% and 106respec-

tively. The bulk behaviour is shown by the dotted curve.
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der DB.C. with that under MB.C. Solid curve is for DBC. and dotted

curve for MBC. Here ¥ = 103,

152



od

[

075}

.

Figs. 8 and 9 - Comparison of variation of Ny/N as a function
with those under M.B.C..
and dotted curves for M.B.C..

ture under D.B.C.

1o _T
Tta

tempera-

Solid curves are for D.B.C.
In Fig. 8, ¥ =103 and in Fig. 9, N = 106.



154

Nk

30}

Nk

25|

20

10[

218

Tet oo

= o

or 08 09 10 T
Te (!

Figs. 10 and 11 = Comparison of the variation of C /Nk as functions of

temperature under D.B.C. with those under M.B.C.. Solid curves are for
DB.C. and dotted for M.B.C.. In fig. 10, N= 103 and in Fig. 11, F=10%.



these quantities tend to agree in the two cases whereas for the critical
region, there are significant deviations. This would be expected, becau-
se at high temperatures, the higher single-particle energy states are
more important and comparing Egs. (2.3) and (3.1), we find that the ener-
gy spectra for these states tend to be similar, whereas for lower tempe-
ratures, the lower single-particle energy states are more important and

these are clearly different in the two cases.

3. 3. Cooling the System at Constant Volume L

when the system is cooled at constant pressure P to the tem-
perature TC. from above, the value of L, as we have seen, becomes subext-

ensive,
L-+L =2 =XOWN tn M1/2
e Cc C s

At this temperature, the amount of condensate in the singla-particle

ground state € is O(N/In N) which is not yet macroscopic. Now let us
cool the system at constant volume Lc' Under this constraint, we would

have
x = L/ =z (/7 )1/2 (3.25)

Using Eq. (3.25), Eq. (3.4) can be written as
N = 2mx 2(7/T,) (tanh y/y) (3.26)

and Eq. (3.5) can be written as

2

bnz,
Ny = ———— «(T/T,) . (3.27)

42+ (n2/h)

V¢ rewrite this equation with the help of Eq. (3.14), as

Wym) = (/7)) — -oinm) . (3.28)

¢ Y2 + (n2/k)
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For (Ng/N to be of the 0{1) and for very large N, y must be of 0(In N)1/2

and then Eq. (3.26) gives the corresponding temperature
(T/Tc) = (N/ang)y = 0(1In lv)"l/?.

which goes to zero for N » «. Thus macroscopic condensation inthe ground
state ey will take place only at T + 0, in the thermodynamic limit, in

this case, as well.

4. FURTHER DISCUSSION

W have discussed the onset of Bose-Einstein condensation in
a finite one-dimensional system of free bosons, under Dirichlet boundary
conditions and mixed boundary conditions. In both these cases, ¢ # 0
and so the quantum-mechanical zero-point pressure Po is also non-zero and
it is possible to keep the pressure of the system constant even for tem-
peratures below the critical temperature. {f the system is subjected to.
periodic or Neumann boundary conditions, eq is equal to zero the conden-
sate does not contribute to the pressure. In these cases, it is not pos-
sible to keep the pressure constant below the critical temperature and
system collapses to a point. Under these 'conditions, one can, therefore,
study the behaviour of the system under constant pressure for T>Tc only.

Details of this will be reported elsewherel3,

W have earlier pointed out that B.E.C. in a one-dimensional
system, under constant pressure, is possible because the particle densi-
ty » diverges in the thermodynamic limit. !n the presence of interactions
(e.q. short-range repulsive potential which may be replaced by a hard
core), the particle density cannot become infinite and so B.E.C.will not
take place in the case of real bosons.
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