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A calculating of the electrical conductivity for Hubbard mate-
rials is presented which is valid when U/t >> 1 (U being the Coulomb re-
pulsion and t the nearest neighbor hopping energy)for arbitrary electron
concentration and temperature. The derivation employ the single particle
real and imaginary times Green's functions instead of the usual two-par-
ticle real time Green's function. The result is compared with the expe-

rimental data available for some organic charge transfer salts.

Apresentamos un calculo da condutividade elétrica para "mate-
riais de Hubbard" val ido quando U/t >> 1 (U sendo a repulsdo Coulombiana,
t a energia de transferéncia para vizinhos préximos) para concentragédo
eletrédnica e temperatura arbitrarias. A deducdo emprega as funcbes de
Green com tempos real e imaginario, an vez do método usual que emprega a
funcdo de Green de duas particulas. O resultado € comparado comdados ex-
perimentais disponiveis para alguns sais organicos com transferéncia de

carga.

1. INTRODUCTION

There are some material s characterized by narrow energy bands
where strong electron correlation plays the major role. The importance

of these correlations in narrow energy bands was deamatically illustrat-

* On leave from Instituto de Fisica-UNICAMP, 13100 Campinas, Brazil.
8 Supported in part by FAPESP, S&o Paulo, Brazil, Contract 76/0549.

109



ed by Adler! in his analysis of the electronic structure of transition
metal oxides. For example, Mn0 is predicted to be metallic according to

band theory and it is experimentally an insulator.

A model for electronic correlations has been developed by Hub-
bard2. There, an electron in a narrow energy band is supposed to hop from
site to site in the lattice with a hopping frequency of the order of the
bandwidth. When it happens to come onto an atomic site already occupied
by an electron of opposite spin it experiences a strong repulsion force.
U being the intra-atomic Coulomb energy, a narrow band is then defined
as one in which U is large compared with the bandwidth. Hubbard showed?
using Green's functions technigyes that the excitation spectra of thecor-
related electron system (in the non-magnetic case) corresponds to the
splitting of each of the original bands into two sub-bands. It is impor-
tant to emphasize here that these new bands are in fact many particle ex-
citation spectra of a nature different from the original bands which as
is well known are a consequence of the solution of an electron Schridin-

ger equation in a periodic lattice. W will turn to this point again.

The Hubbard Hamiltonian has been a subject of intense rese-
arch.® Very interesting results exist for the model in one dimension. The
excitation spectra has been studied by several authors*’526*7 andthe re-
sults applied to the study of the magnetic susceptibility, spin waves,

etc. in organic metals like TTF-TCNQ to mention an example.8’9

Using a one electron picture, where the one electron statesare
taken to be occupation number dependent in a simpler manner Yoffa and
Adlerl0>11 derived the Fermi energy, specific heat and thermal conducti-
vity of the so-called Mott insulators. Also, the electronic conductivity
and thermopower has been studied within this one electron picture,!2:%!*

More general results fir the electric conductivity and inter-
band transitions has been obtained by Kubol53 using a decoupling scheme

for the two particle, real time, temperature dependent Green's functions.

The use of perturbation methods using imaginary time Green's
functions and the associated feynman graphs are difficult to applytothe
Hubbard Hamiltonian with strong intrasite repulsion due to the lack of a

suitable perturbation parameter. When the concentration is small, however,
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we can use something like the ladder approximation of the imperfect Fermi
gas. Lyol6 studied tha transport properties in this case and found for

the conductivity results which are identical to the one obtained by Kubo.

In the present paper we use the single particle real and ima-
ginary time, temperature dependent Green's functions formalism to cal-
culate the electrical conductivity up to order t2 (t, being the nearest-
-neighbor hopping energy-supposed small relative to y) at arbitrary con-
centration and temperature.

As a first step in the calculation we derive in sections 2 and
3, with the aid of the Green's functions formalism, the Fermi energy and
the internal energy in the atomic Ilimit of the Hubbard model.We also dis-
cusss briefly the question of the band splitting which has been a source
of sane misconception.

In section 4 the results obtained are inserted in the Kubo fér-
mula and in this way the conductivity is easily obtained. Finally, in sec-
tion 5 we that the formula we get predicts under the relaxation time ap-
proximation (with a single temperature dependence for re) the conducti=-
vity of NMP-TCNQ, but is at variance with the data for TTF-TCNQ.

2. REAL TIME GREEN'S FUNCTIONAND THE CHEMICAL POTENTIAL

We consider in the following a system of Ne interacting elec-

trons described by the Hubbard Hamiltonian

N + N |
H= ¢ t..c. c. +U T n.n. (1
i,d=1 7 10 Jgo i=1 A2
o}
—c i i fsitei (i 1,2,...8) d *
nio = Ci acio is the occupation number of site i (i = 1,2,... and ¢,

and e, are respectively the creation and annihilation operators of an
electron with 0 spin at the th atomic site, tij is the transfer matrix
element between the Zth and jth site. U is the repulsive potential which
acts only then two electrons with opposite spin are at the same site. The

band energy is related to tij through
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in the atomic limit, where tij = 6.1‘7.1’0, the Fourier transform of the cau-
sal, retarded and advanced, real time, temperature dependent Green's
functions (see appendix for the definitions) which give the spectra of
pseudo-particles of the system, can be obtained exactly using the equa-
tion of motion method described by Zubarev.l7 W obtain for the analityc
continuation of both the advanced and the retarded Green's function in

the complex energy plane, the equation

s |"I -<n, > . <n. > 'I )
g lE+u-Ty E+u-Ty -0

p is the chemical potential which fixes the number of parti-

cles and s> is the thermal average of the expectation of n.; overa

grand canonical ensemble at temperature T. In what follows we assume
<ni0> = nc = -% N, where N is the number of electrons per atom. This res-
tricts our discussion to nonmagnetic states. The mean number of electrons

per atom can be obtained through the expression:

n=81!ZX<eto. >
Jo  “do “ga

i . . . . dw
== 1lim ZJtr T,..(w + Zn) - .. (w - 2n)] —m—m
L EJJ Jd v ] oBY
=2—I'v£lim EJ[I‘..(w-u+in)—F..(w-u—in)_s(‘i%.)__
0+ 7 dd Jd e 11_”

(&)

In Eq.(4) as usual B = 1/kT. From this equation we immediate-

ly inder that the pseudoparticles density of states per atom is given by

o(E)

27
S lim I T.(E-yusdn) -T..(E-u-g
¥ poos 5 37 o= Ty E - - )]

(2-n) G(E-To) + nS(E - 7. - V) (5)

0
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The Fermi energy eF(n,T) = u can be immediately calculated from Eqg. (&)

by solving the equation

nw j Eo(®) — (6)
eB(E"“)n

We find:

[-(]—n) + 1/(l-n)2 - n{n-2) e-BU-'
=T, - KT%n I J (n
n

With some algebraic manipulations Eq. {7) can be put in the

alternative form

lr(l-n) - /(l -n)2 - n(n-2) & &Y

w="T + U+ KT2n (8)
o I_ (n-2)

which is the result obtained by Yoffa and Adler!®,

3. THEINTERNAL ENERGY

In order to obtain the internal energy we need to know the
Fourier treinsform of the imaginary time Green's function. This can be ob-
tained as followsl8. W first transform Pﬂ,‘j‘<E) from the Wannier to the

basis introducing I‘(%,E‘) through

r 8 = vz r(@®,E) expl ik. (B, - ﬁj)} (9)
z
Then,
1 -4
r(%,E) = 3 [ A n/2 J (10)
E+u-T, E+n-T, -0

Next introducing the operator function p(z,m) defined through

o(Z,w) = 2r(%, w - in) (11)
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we obtain G(i,wl), where w, = (22 + 1)7B ir the fermion frequency through

the equation

¢(%,w,) = i dw! p(z,w')'
o b 2T gy -
2
- H‘ 1 -n/2 n/2 ] (12)
-iwgll-u-To iwlq-u-To—U

The energy per atom is then

w.1n
%=—‘- lim 2 Ze L 5 (im£+ St ultr G(z,ml)
0, k2
=27, (1 -- — 1 (2T +7) S 74— (13)
B(T,—u) B(T, + U=u)
e +1 e +1

Eq. (13) can be put in a compact form using the value of p given by Eq.

(8).

ny v (14)
B(Ty +U - 1)
2[] +e

=ty
]
3
3
4

which agrees with the value obtained in Ref.9, using anappropriategrand

partition function for N independent atornic sites.

For the calculation of the conductivity we shall need the
value of the thermal average <. SR It is obvious from the form of
the Hubbard Hamiltonian that this number is given by Itl_lll"l <V>, where

<V> is the thermal average of the interaction energy. W then have

<n.m.>= <> =L in Zzeiwzn—]—(im -e, +u)tr G(Z,w )
4 N NU UB % 2 % ko 27
n—>0+ 2
n
e (15)
20 +e 1
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In Ref. 9 the above results have been obtained through the
introduction of a grand partition fiunction Z for N independent sites
which can be completely unoccupied (E = 0 nondegenerate) , single occup-
ied (E =T, twofold degenerate) our doubly occupied (E = 2Tn + U, nonde-

generate) .

Using the single electron picture it seems that the states of
the upper band appear as consequence of sites which are doubly occupied.
Then it seems natural to answer the question — how many electrons per
atom are there in the upper band at a given temperature? —simply by say-
ing that these are the number of doubly occupied sites. This number n;(T)

is according to the single electron picture

(16)

n
nL'L(T) = B(T0 + U - u)

2[l+e

According to the Green's function formalism the same question isanswered

through Eq. (6) and we get

n (7) = = (17)
BT + U - w)

1 +¢ 0

As this result doesn't agree with Eq. (16) I:although we remind that both

methods give the same results for the Fermi and internal energies] we must

find an explanation for the situation.

What happens is that the Green's functions formalism (as op-
posed to the single particle picture under which the grand partition
function of Ref. 10 was constructed) implies that the upper band exists
once and for all when the interaction between electrons is switched on.
So there is a nonzero probability for an electron which is in a single
occupied site to be excited in the upper band (when T # Q. This is why
we got different results from the two methods. W may infer from the abo-
ve discussion that the question about which point of view is the correct
one can be answered from a calculation of the conductivity, since atfirst
sight this quantity seems to depend on the relative population of the
bands. As we shall see in section & the calculation of the conductivity

(to order t?)} reduces to the knowledge of the thermal average of doubly
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occupied sites and for this reason both methods give the same answer
again. To end this section we would like to emphasize that the subbands
are many particle pseudo-particle excitation spectra which arise due to
the electron correlation and are there as a whole once and for ever. Ob~-
viously the shapes of the subbands depend on the particular material,

being determined by I, # and n

4. CALCULATIONOF THE CONDUCTIVITY

W now use the results of sections 2 and 3 to calculate the
conductivity to order £2(U/t>>1). W suppose that the t,b.J's in Eq. (1)
are different from zero and equal to t for nearest neighbors only. The
dissipative part of the electric conductivity tensor is given by Kubo!?

formula

» © .
o W =% i f <3, (8) xJJoe g (18)
uv 14 U .
™0, ‘o
where V is the volume of the system, ju is the p componentofthe current
operator and Xy, is the v component of the electric polarization operator.,

In Wannier basis we have,

> >
x=e I B.n. (19)
'L.O' 1 10
Loa 4
Ju_ dt X.u
--ie t t. @B -Blue, o (20)
|JO g 1 J 10 Jo

1HE . CHE

and ju(t) = e ']ue% is the Heisenberg representation of j . Eq. (18)

can be written in the alternative form

0 ) R
I Jo, < 3,04,z +30)>d (21)

It what follows we assume O diagonal. In this case ﬁq/ are the components

of the lattice-site position vectors parallel to the external field.
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Using Eg. (20) we obtain

U(w) = -e—z- z (R'I: - RS-) (Rk s RZ) t.. v](_f

212 ijo v
kia!
0 B , . s .
ZWT + ZH(T +22) + —ZH{7+£2)
x I-m dte f ax <e’iocjo S 1Ceg e >
(22)
In general the calculation of
+ ZH(T+IA) + ~2H (1+ZA)
<ciccjo Cko! Coor © > (23)

requires knowledge of the two-particle real time, temperature dependent
Green's function, but if we are interested in an approximation for the
conductivity to order t2, then thesingle particle imaginary time Green's
function is enough. This is due to the fact that all contributions of
order greater (and equal to) than t2 to the conductivity comes from the
calculation of Eg. (23). This means that to obtain the contribution of
order t2 we must calculate Eq. (23) in zero order in t. This can be done
by the substitution

BE>UZmngyn,, (24)

Then

® . (B tU0(t+id) (n,__-n, )
o(w) = e2a?t?gn f dte™" f dr <e k-0 Ti-o
- 0

oo

nlc(] _nkc)>

(25)

where a is the lattice spacing, g is the number of nearest neighbors and
n is the number density {n = N/V). The thermal average in Eq. {25) de-

couples in our approximation in

L0+ ny ~2U(t+A)n

<e o (I-nko)> <e &-o n, > (26)

W have
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<emk'—c(l g )s = (=) + 2% v <n, n, >(1-)
ko 2 k-¢""ko

Mg

n
<e > = 2=
n 2

. > (1 -e %) (27)

<
nJL-o nJLo

Using Eg. (15) we can obtain the explicit form of Eq.{(27). Inserting

these results in Eq. (25) we get for the dc conductivity

Tye = :’:3 o(w)
_ n BE _.y,,2BE
= woosé(w) —-—-——-——(] Ty E + (1=n)e“™> ] (28)

with g = (T0 + U -y and o, = ge?a?nt?, Using the value of u given by

Eg. (8) we can write the dc conductivity as

94c(8:m) = mo 8 n(n=2) 8(u) [(1-n)2 +/(I-n)2-n(n-2)e-BUJ
0 +v/(l-n)z-n(rz-Z)e-BUJ2

(29)

Ve note some interesting aspects of Eq.(29). First, for n=| the equation
agrees with a result first obtained by Bari and Kaplanll, Also, the equa-
tion predicts correctly zero conductivity for n=O and n=2, as it must be.
It is invariant under the substitution n -+ (2-n) reflecting the particle
-hole synmetry"‘. Finally we observe that for a given temperature the
shape of the conductivity curve {in our approximation) depends on n and

U only. t simply fixes the scale.

5. APPLICATIONTO THE CHARGETRANSFER SALTS

The conductivity of NMP-TCNQ (for which n=1) has been measu-
red by Epstein20, For temperatures in the range 50°K < T < 400°K he found

-A/T

o(T) = OO'T-ae (30)
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with 00', a and A constants. Recalling that under the relaxation time ap-

proximation &(w) + re/n where T, is temperature dependent we see thatour

e
Eq.(29) predicts the result in Eq.(30) if we take

o () = (1" (31)

e

and A = U/2. o has been found to be between 3 and 4. Now, therecent dis-
covery of spin waves in TTF-TCNQ has been interpreted as evidence forthe
precence of strong Coulomb interactions in this charge transfer salt.As-
suming conductivity in one stack only, Torrance et aZ.% have shown that
the experimental data are compatible with the single Hubbard model i f the
charge transfer is n = 0.59, corresponding® to U/t >> 1. W may then ex-
pect Eq. (29) to be applicable to this material also. Unfortunately in
this case ]:assuming a simple temperature dependence for T, as inEq.(3l)]
we have the prediction of a conductivity which approaches infinity atlow
temperatures. This it at variance with the experimental data 21 \which
show that the conductivity starts to diminish below 55°. This is also
the case for the TSeF-TCNQ. In fact TTF-TCNQ exhibit the most unusual
properties presenting phase transitions at 380, 49° and 54°K. The expla-

nations of these properties are not known at present time?2,

6. CONCLUSIONS

It was our aim in this paper to obtain a simple formula for
the conductivity of strong correlated systems, asa function of the elec-
tron concentration and temperature. 1t was expected that with the aid of
the conductivity measurements we could distinguish between different va-
lues of the charge transfer in the quasi unidimensional materials like
TTF-TCNQ. This expectation has not been realized. Eqg. (29) cannot distin-
guish very much values of n in the range 0.40 < n< 0.60. Even worse is
the fact that with the exception of MMP-TCNQ (for which n = 1), the sin-
gle Hubbard model predicts infinity growing conductivity for TTF-TCNQ at
low temperatures which is at variance with the experimental data. This is
an interesting point since the single Hubbard model seems topredict qui-
te well the spin waves and the susceptibility in this material. As a fi-

nal comment we must say that the 6-function peak obtained in Eq. (29) is
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due to the fact that no dissipation mechanism was included in the model
studied.

A finite conductivity can be obtained taking into account the

electron-phonon interaction?3’2%_ Starting with the Hamiltonian

+ +
H = Z t..c. e. +UIn.n. +% wr by b
1,450 d 16 Jo i 2 A2 4 ZZ» q q Ef
.
Sy ) (32)
+ I Ay e n. (by + b -pIn, 32
Griyo o] Lov°g T U-F ;i

where the symbols have the usual meaning a finite conductivity can be ob-
tained. The structure is the same as Eq.(29) with a temperature dependent
relaxation time, which for n=1 is of the form suggested in Eq. (31). W

will investigate this problem in a future publication.

APPENDIX

Precise definitions are given for the real and imaginary ti-

mes Green's functions used in this paper.

The caﬁsal retarded and advanced Green's functions aredefined

by.
G, (t,t1) =+ 6t t-¢t")] <{ec. (¢) o ("}
r,a " - B L AR T
- - F -
= <<c’ic(t)’ cjc(t')»r,a (A-1)
where { | is the anticommutator and < > indicates the averageover

a grand canonical ensemble at temperature T. We define for real E the

Fourier transforms
M LEt +
R N2 z . .
«Ojc’ cjc»E' 1/27 ‘]— dte <<c7,'o'(t)’ cjo(o) »z’,a (A-2)

The analytic continuation of these functions into the complex energypla-
]
ne will be denoted by I‘zg E) .
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The imaginary time Green's functions is defined as

3
ezg(t,t') = - <1, |2 () é’JT;(t')h (A-3)

. . R v + . . .
where T is the time-ordering operator &._ and 3i‘o are imaginary time an-

10
nihilation and creation operators defined by

gic(t) =Kt o P
(A-4)
31 (2) =T o K
where
K=H-w (A-5)

is the grand canonical Hamiltonian, u the chemical potential, and N the
particle number operator. The Fourier transform of (A-3) is defined by
Tw, t

z e L 6lu,) (A-6)

G(t) = 1/k t
B -0

where w, = (28 * 1)/kBT is the fermion frequency.
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