Revista Brasileira de Fisica, Vol. 9, N° 1, 1979

Optical Properties of an Electron Gas in the Generalized
Hartree-Fock Approximation

ALMA A. G.de BASSI
Instituto de Fisica Gleb Wataghin, UNICAMP, Campinas

Recebido em 1° de Outubro de 1976

The dielectric constant and absorption coefficient of an elec-
tron gas whose ground statc displays a static charge density wave with
exchange interaction via a §-potential, is studied and applied to an al-
kali metal, sodium. An additional contribution to the absorption coeffi-
cient was found which manifests itself in the form of a band that prece-
des and overlaps with the initial part of the interband contribution.
Furthermore, this contribution is several orders of magnitudes smaller
than the interband contribution so that it can only be detected using

very high resolution instruments.

A constante dielétrica e o coeficiente de absorcdo de um gas
de eletrons cujo estado fundamental apresenta uma densidade estatica de
carga com interacdo de troca via un potencial § sdo estudados e aplica-
dos a un metal alcalino, o s6dio Uma contribuigcdo adicional ao coefici-
ente de absorcdo foi encontrada, manifestando-se na forma de uma banda
que precede e se superpde a parte inicial da contribuicdo interbanda.
Além disso, esta contribuicdo & menor, por varias ordens de grandeza, que
a contribuicdo interbanda, de modo que sé pode ser detetada pelo de ins-

trumentos de al ta resolugéo.

1. INTRODUCTION

Many optical experiments are capable of furnishing information
concerning solid state properties. In general, solids are classified as
metals and insulators with intermediate cases being called semiconduc-

tors!, Although this classification is based primarily onelectrical con=
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ductivity, the charge carriers also influence optical propertiessuch that
insulators tend to be transparent and metals opaque in the visible part
of the spectrum. Semiconductors tend to be opaque in the visible region

and transparent in thc infrared.

Generally optical properties are studied by measurements ofthe
reflectivity at normal incidence, followed by a Kraners - Kronig analysis
relating the real and imaginary parts of e{w). Thus two parts of the di-

electric constant, edch dependent on frequency, sl(w) and ez(w), or the
optical constants, n{w) and x(w), are obtained2.

In the usual experiments, the optical properties of metais are
associated with their high reflectivities and low transmission. Ina more
guantitative way, these optical properties are given in terms of two ma-
terial constants, the index of refraction n and the coefficient of ex-
tinction k, which allow one to relate the complex dielectric constant to
observables such as the reflectivity. In metals, because of their high
optical absorption at low frequencies, the effects caused by free charge
carriers arealmost always studied by application of reflectivity techni-
ques. The conductivity of these free charge carriers appears to be well
explained by Drude's theory. On the other hand the manifestations caused
by free charge carriers in semiconductors are usually more conveniently

studied using absorption techniques.

In solid state studies we must also consider the contributions
of various electronic processes of energy bands on the optical proper-
ties. Among these contributions, the intraband process, which corresponds
to electronic conduction by free charge carriers, is important inconduc-

tors such as metals and degenerate semiconductors.

The interaction between itinerant electrons in the interior of
the metal can be studied by means of the response of the metal toa char-
ge which varies with time and space. The function which describes this
type of interaction is the dielectric constant, which is dependent on
the wave vector, g, and the frequency, w. With the object ofstudying the
dielectric constant and the absorption coefficient of an electron gas, as
well as its applications to atkali metals, we investigate here the die-
lectric constant of an electron gas whose ground state corresponds to the

state of a static charge density wave in the form proposed by Overhau-
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ser3. W will discuss the modifications which the dielectric constantand
absorption coefficient suffer in relation to their respective values in

normal metals (NHF).

2. THE GENERALIZED HARTREE-FOCK APPROXIMATION{GHF): THE STATIC
CHARGE DENSITY WAVE STATE

The normal Hartree-Fock approximation (NHF) describes the wave
function by means of a single Slater determinant formed using electron
functions of the type ¢kc(£). We propose to rnodify the Slater determinant
by using one-particle wave functions of the type

() |o> + v ()|’ ,

Ugdy O + g

where the le(r) are NHF solutions with Uy and Uy normalized such that u]2<

+ vIZ{ = 1. These last two quantities are variational parameters specified
by the minimization of the total energy. The many-particle wavefunctions

will be given by

= det|]u ¢, (») o> + v (r)lot>]] = det]]o(x,8) || (1)

YaHr ¥k xPrag

The second quantization formalism will be used because it permits consi-
derable sirnplification of the mathematical treatrnent and is more adequa-
te for our present work. The basic Hamiltonian of the system consisting
of an electron gas of point particles immersed in a neutralizing, conti-

nuous distribution of positive charge, is

g At 1

H= 31 e3¢ ¢ +5 I <K+q,K'-q|VIK', k>
Ko KKK TT you
G,0!
ot + (2)

Ko CK’-qc 'CKc 'CKor ’

where the first term of the RHS of Eq. (2) is the Bloch-band hamiltonian
and the second represents the interaction between the electrons. The e-

. . T
quation of motion for CKc is
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[Z],C;{U] = e?{C;{o + K§ <K+q,K'-q|V|K', K>

o0 (3)

+ + c
K+qo “K'-gqo! "K'c!

The linearization of the generalized Hartree-Fock approximati-
on, using wave function (1) gives
4

<CK0 CK’0'> = "y SKK' <Socf ’

and

+
<CK0 CK’0'> = ch GKK'—Q 600' ’

where Q is a wave vector to be specified. Taking the interaction term of

Eq.(3) and all the possible cornbinations of the operator pairs we obtain

+ + +
B, 1 =iy, + Kz'p' <K K'|V|K' K> oy fCp

-5 <KLE|V|K'.K>n,, 0 + 1 <k+Q K'-Q|V|K',K >
© K'o Ko x',o!

b, D <K', EeQ|VIK'+0, Koby

+
X'c 'CK+Q0 - % 00K+Qo'

where we can immediately identify one part of this equation as the normal

Hartree-Fock energy given by

: NHF
0y '<K,K’]VIK'_,K>nK’o' — % <K',K1V[K',K>nK,0 = &
K K',o
The other term we call
- | . ? _ H ?
by = K'fo' <K K'QIVIKI Kby Ii: <KLERQIVIKI4Q, Kby
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Then

= A + NHF + +
(B0 = 17 Cyy =0 Cpp=e o = B0 ()

This equation of motion, as compared with Eg. (3) contains one more term

involving the operator CK+Q0’ whose equation of motion is
+ = 0 f . '
[H,chG] 2 gCrrgo * o 5' . <K+Q+q,K'-q|V|K', K+Q>
3 3

+ +
CK+Q+qc CK’+qc ' CK'c'

The generalization of the Hartree-Fock approximation then produces

-+ _ _ ot _ NHF & I
[, Crrgol = P Cragy = Crago = xrg Crrgo = k Cko (5)
Letting eMF _ ¢ Egs. (4) and (5) can be rewritten as
.4 k "9
~ oyt +
(w EK)CKO + AK CK+QG =0
* 4 = + _
Mlho * (07840 Cragy = O
whose secular determinant is
(w-%,) A
X K =0 (6)
Iy (w-€,. )
K g |

Solving this equation we obtain the new energy spectra of the quasi-par-

ticles,

NS AN

kg Bk )2 1a

+ |
S g -5 2
w =3 (e -

7 { Sorg s " 104l
To calculate the total system energy in its ground state we fix the wave
number Q as half a reciprocal lattice vector and set 1c>:lc'> for the

wave functions of the quasi-particles. In this way the self consistent
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potential has a periodicity of twice that of the lattice potential with
the first Brillouin zone reduced to one half. The ground state energy

can then be written as

(1)

E =&
K,o

0 [:5 cos?e  + & sinZe, - A sinzeK]

X K K+@Q K K

(1)
where EKO is a sum over the new reduced Brillouin zone.

The wave function of the ground state has been selected to be

(1) A . +
[¢O> = Kng ‘:cosE)K(JKc + S'naKCK+Q0] |0>

which indicates that the first N states of a quasi-particle of lowest

energy w}—{ are occupied. Minimizing this energy with respect to oy one has

24

X

thGK = ——-———-—E — ,
k9 ~ fx

where

A, = Z(l) V@ - vix-x"] sind, ,cos@

X’ k!

(1) By V@) - v &-K"]]
z

K/

(7)

- €

K,)Z + l}AJZ{,

CK, Q
which is the self consistent equation. Here V{(Q) = <k+@, K'-@|V|k;k> and
V(K-K*) = <K', K+Q|VIK™+Q, K>,

Utilizing the wave function selected by GHF, the charge densi-
ty becomes
(1

o{r) = ¢
X

(r) |2 +5ing cos8

) 2
|cos?e ¥058

(r) 2 + sin?s

xlog k1 xeg

() (@) + by 0(2) 0y(2) ]

Approximating the function ¢ by plane waves this equation becornes
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(1)

o(r) =1+ 2 sinZSKcos(Q.r) =1+ 4 cos(q.r), (8)
K

where

(1) ZAK

z
K/

- 2 2
x40 eK) + QAK

Since sin 26, is proportional to AK it goes to zero as AK goes
to zero and therefore p(»)=1 which is the normal state charge density
with plane waves, as it should be. Eq. (8) clearly shows that the ground
state of the systeni described by the wave function, ]¢0>, develops asta-
tic charge density wave with periodicity x = 2n/]@l. it is easy to veri-
fy that the'magnetic density is zero and therefore magnetic order is not
present. We will denote states described in this way as ""non-normal’ me-

tallic states.

3. DIELECTRIC CONSTANT

We introduce a test charge in the system defined by Eq.(2) and
consider that this charge varies spacially and temporally following the
expression

gtlar - wt) g

er

0

This density of external charge introduced in the gas at a point r isre-
levant vector D(r,t} by means of Poisson's equation?,

- wt)

div D(r,8) = hrer, (£1T°7 +C.C) (9)

The external fieid acts to polarize the system of electrons.
The fluctuations of induced charge can be considered as i-esponsible for
the field E_. According to the laws of electrostatics the electric field

within the system is

E(r,t) = D(r,t) + Ep(r,t) R (10)

where tsp(z’,t) can be i-elated to the polarization charge density by the

equation
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div Ep(r,t) = bre <plr,t)> an

Taking the divergence of (10) and substituting into it the values given
by (9) and (11) we obtain

div E(r,t) = bme(r, + <o(r,t)>) (12)

which is the equation that relates the electric field to the fluctuations
of external and induced charge. Taking the Fourier transforms of (9) and
(12) we have

iq Dlg,w) = ’-nrezr*0 (13a)

and

iq B(q,w) = ‘Hre(lf'0 + <plq,w) >) (13b)

For a macroscopic field these equations express the usual laws
of electrostatics for a dielectric material. Extending them to the mi-
croscopic level and considering them applicable to all the wave vectors
g and frequencies w, they correspond to fields that vary in an arbitrary
(and rapid) way in space and time. Besides this, in analogy with theelec-

trostatic laws?, we write in the linear approximation

Elq0) = 2w (14)

elq,w)
Here e(g,w) Is the dielectric constant dependent on the frequency w and
wave vector (. In other words it is the generalization (to fields that
vary in space and time) of the homogeneous dielectric constant of the

electrostatic.

Taking the value of D{(g,w) in Eq.{14) and substituting it into
(13a), inverting the order of Egs. (13) and dividing them member by mem-

ber we have

1y o <elgw>
e(q,w) ST

= bux(q,w) , (15)

where y(q,w) is the electric susceptibility of the system. At this point
we use the Green's function technique described in the classicarticleby

ZubarevS, We can express
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x(g,w) = -2 <<p(q) [V(0) ;w>> ’ (

)

where <<..... >> is abreviated notation for the corresponding Green func-

tion.

The interaction energy with a test charge is given by

v(t) = 5“‘2—2 &np+(q,t) e"he.d)
q

where

+
plq) = ])io CK+qo CKc

+ ' . . :
and C., are respectively creation operator of a electron spin
and CK+qo Ko P y P P

in plane wave states, |K + g>, and anihilation operator of 0 electron

spin in the state |K>. Applying these values to Eq.{(16) we have

8122 + + .
w) = —=— I <<( c, |C c s w o+ 1e>> 1
X(Q; ) q2 Ko K+qo Kcl K'g! K'+qo' y W ( 7)
K',o!

It remains to resolve the equations of motion for Green's functions for
. + . .

pairs of operators CK+quKo and CK+Q+qo X+Qo" Instead of invoking the NHF

approximation we use the generalized Hartree-Fock form discussed in Sec-

tion 2.

Performing the required analysis weobtain inthe following results:

HF HF ct -

-
[gK+qu CKG’H] = (eK—ek K+qo Kc )7(a)

an_nK-t-qo'

;(: cK'+qo' CK' '+b Z, Woat 2 CK +qa'! K'+Qo -b K+qo

I I Cyy c,,zb,w,c“.c

ol 99 gt K'+@+qo'"K'o Kot K oo " K+qao K+Qo

+ z (18)

bK'+qc oo !¢ K+Q+qo Ko
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|—(’#K+Q+qo Crrgo? A = kg Ckegrq’ CReQrgo Ko

+
"K+qo nK+Q+q0)V(q) Krir CK'+qc'CK’c' *byo E,

=(

* b W,z C

W b C,
K+qo gt 99" s K'+qo?

oo! Ii’ CK'+Q+qo'C7<’o'_

c - ¥ b W__,C c, + T b

K'+Qo! - Kot K's! "oo?' K+g+qo Ko X's' K'+qa!

. +

Wco' CK+qo CK+Q0 ! (19)

where

+

"ke T <CK0 CKc >
+

bys = <Cko Crego”

and £, Wy = g,}ZJéUO,- V(g)] is the interaction energy. This energy is
the difference between the exchange interaction (which we approximated
by a contect-type interaction of strenght ) and the direct coulombiccon-
tribution associated with a component Q of electronic charge density. As
we can see Eqs. (18) and (19) ure coupied to the pairs of operators
Cz+Q+q0CKO and ¢y, C W% have then the calculated equations of mo-

K+qo K+Qo”
tions for Green's functions of these pair of operators

i - (EE;{F_ HE ot

I K+Q+qockc’ Cx+qrg! “Kaqrqgo “%o

o+
+ (nKO - nK+Q+qc)§, Wo‘o' ]Zi,'b]{"*‘Q‘*'qc’CK'O'
- v + o
bKG (Q)Krov CK'+Q+qo’LK’+Q0' bK+qo v(q) (20)
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o+

+ ~ _
KZ':o" CK'+QU'UK'°' K§gr byrgr Wogr “krg+qo
c + % b, W _,Ct ¢
K+Qa K'g' K'+qo! "oo' "K+qo Ko
and
_ EHF )C+

% K+qo CreQo’ i = (€K+Q k+q’ “K+qo K+Qo

—( YT W, =

c* ¢
"Rrqo TK+Qo o1 (00! gy K'qo! TK'+Qo’

+
- 14 £ 21
bKG v{q) K)Eor' CK'+qc'CK'c'+bK+qc () gt (21)

w_ .ok c

b g6 K+qo Ko

]{'0-' K'O'

4
CK'+Q+qc'CK'+Qc'

+

+ b ! Wco' CK+Q+q0 CK-}-QG '

P K'+go

Adding to these four equations their respective independent terms and

summing over Ku we obtain the system of equations

] n - n-rl
z <<Cz+ o CKGIS(CZ);mM,'s» = - 5 ——]{.O'_Q_—éiq'—o’
Ko q L .

I %Gm@f—qﬂlf( q) = <<L,+ ,C o (q) 1w +Le>>

Xo Qp X's K'+qo!'"K'c /!
b, _b
+ 3 _Vﬁ__ﬂ,_lgf_qu W ® «C+ C Jo'(a) ;0 +2s>>
Ko X ot K! K'+@+go’ K'o
+ + ., .
. ; ] «CK+q0' CK+QGI'O (@) ; w + is>>
o1y K'a® Too?
K'c Ko Q.
K
+ + ,
<<( c (q); w + <8>>
+ L b, W, T Krargo Crol0 @5 @
1.4 K'a' oo’
K'o Ko S)K

(22)
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n -n
+ + . X 1 K+Qo K+@+qgo
<CK+Q+q0 C}GQG!p (@) w+io>>= 25 ]zéc 9

<

Ko X+Q

n -n
-z K+go Kratqo Vig) T <

Xo SZK+Q K'o?

q) HM +18>>

+ +
<CK’+(;3+qo 'CK'+Q0 rle™(

,|p+(q); w + 18>>

b, = b
Ko K+qo +
+ 7 .________..g_ M W , To<<( ' 'C ,
+
Ko Sprg g1 09 g1 KI¥qolKRAo

+ + R
o Ckgigo Cyole™ (@ su + do>>
- I b,y W __,E
K'o! Ko 997 kg Q
{ K+Q
+ + R
) <CK+qo CK+Q0[P (q); w+ 1e>>
+ L DKI y W r L
g’ oo
K'g! Ko R
K+Q
<<c+ c. ip"'(q). w + L8>> = — ..L'Z _bKL__bM
Xo K+@+qo Ko 2w %o Q!
K
(23)
Vs o T nK+Q+qo sy 5 <t c ‘ +( ) s +18>>
5 -, “ st T “K'+@+qg ' K'o! PAalw
Ko Q! of K t
K
- b
. Ko Kt+qo + + \
- Vig) & <<( ¢ p {q); w+ is>>
Xo QK q K'o" K'+Q+q0" K'+Q0’l. q 3
+ + .
<<CK+Q+chK+Qpr (@); w + Z8>>
-z b W z
K'o! “oo!
K'c! Ko QI'<
+ + .
<<CK+qc CK0|D (q); w+ i8>
+ b, ¢t W, L (24)
K’ K'+qgo oo %o ar
K

and
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+ + 8 oo ] Ko K+go.
]io <<CK+qa 0K+chp (@) 50 + s>> = 2w ]io or
K+@

n -n
. _K+@o K+qao + +4. .

+ ;LO Y ();' Wt ];;' <<CK'+q0'CK'+QCF'|p (@); w + ie>>
; K+Q

b, = b
-3 M ‘V(q) % <<C+

B + 3
X'g! Kr+qglCKr0,|D (q@); w+ ts>>
g :

i !
K QK+Q
<<C].2+qc CK019+(Q); w + is>>
-K§ ' bK’G' ch’ z -
0 Ko QK+Q
<« CK+Q+chK+Q0‘O+(Q) sw + Te>>
+ T bK,O,WOG,
K,O' Ko o
K+Q
(25)
where
QK e -€K+EK+q
QK+Q = "€K+Q+€K+Q+q (26)
': -
QK w €K+EK+Q+q
and
! = -
QK+Q = w EK+Q+€K+q

Omitting the extensive and tedious intermediary calculational steps, the

final result is given by

e{g,w) = 1 + V(g) F'(q,w) +

)z i (B (w2 - Brlg,u]?) (L7 () 5 7, )
! o

+

71 2 ” 2
(1-L'(q,w) CZI' Wogn? + (2"(q,0) ;2" o)
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where

and
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! ” n
2@ 2 Wy PGP @ (00) 2 s

oI 2 2
(1-L'(q,w) 3' WGO,) + (Z"(q,w) i, ch')

i { V(@) F"(q,0) + (27)

v{q) gr ch:(@'(q,w)lz - @"(q,w)]z )20 (En W‘m,

. 2 ” 2
(1-L'(q,w) (I;' Woon) 2+ (L (q,w) <E:' WUU,)

]
2V{g) = WGG,P’(q,w)P"(q,w) 3-L'(q,0) (z" Woc,]

!
+ 2 }
(1-27(q,0) & W N2 +(LMqu) £ Wy 0*
g o
Ny, —N
F'(q,w) = p.V. 2 M ,
Ko w-€K+€K+ q
F"{g,w) == 20 (nKU—nK+q6)<S(w-eK+sK+q) ,

v 5 nKG_nK+Q+gc
. 3

L'(g,w) = p.
Ko m—€K+EK+Q-iq
" —_ - e
I"(g,w) =7 ]Z{o (an nK+Q+qo>5(‘” €K+€K+Q+q) ,
b, -b,
P'(q,w) =p.v. L M ,
Ko N_EK+EK+Q+C[
P"(q,w) =T ]Zm(ch—bK-Fqc)6(w-EK+€K+Q+q)



Eq. (27) furnishes the dieletric constant of the electron gas in the GHF

approximation. Letting
Im ey(q,0) = - V(@)F"(q,w)

and

a!

vig) = W, ([P'(q,0)]? - [P"(q,0)]2)L"(q,0)E W
0' 0'

Im »;G(q,w) = -
)2

(15" 0s0) T, o2+ 07 (aun) g,

! =T !
2V(q) ZJ, WP (q,0)P"(q,0) (1-L'(q,u) gl Wt

)2

(1-L'(q,w) 5, W) 24 (L"(q,0) (f, Hoar

we can write

im e(g,w) = Im eN(q,w) + im eG(q,w) . (28)

As we can see the imaginary term is separated into two parts, the imagi-
nary part of the normal intraband dielectric constant of the electron
gas, (Im eN(q,w)) 6, and the part due to the presence of the static char-
ge density wave, (Im EG(q,w)), which is represented in Fig.l using nume-
rical data isppropriate to sodium metal. The coefficient of absorption is

given by
alw) = -wlm e(w) = - Im eN(w) -n Im eG(w) = aN(u)) + aG(w) . (29)

Clearly, aG(w) is the contribution due to the presence of the static
charge density wave shown in Fig.2. it can be proved that in the limit
A -0, i.e. when the amplitude of the static wave of charge tends toward
zero, the term aG(w) is zero, as must be the case. Finally, with the aid
of the Butcher's formula’” we estimate the interband contribution to the
absorption coefficient using the appropriate values for sodium metal3.1n
Fig.3 we show this contribution (o,(w)) and in Fig.4 we show it together
with the coritribution associated with the presence of the static wave of
charge. Note: that the contribution of the latter to the total absorption

coefficient is much smaller than the interband contribution,
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Fig,1 - The imaginary part of the dielectric constant due to the presen~

ce of the static charge density wave.
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Fig.2 - Contribution to the absorption coefficient due to the presence

of the static charge density wave.
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Fig.3 - The interband contribution to the absorption coefficient using

the appropriate values for sodium metal3.
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Fig.4 - The interband contribution together with the contribution asso-

ciated with the presence of the static charge density wave to the absor-

ption coefficient.
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Nevertheles, it can be seen that it produces a contributionto
the absorption in the material at frequencies bel owthe intraband absor-
ption edge. Since this contribution is always three orders of magnitude
smal ler than that of the interband contribution, its experimental detec-
tion is extrenely difficult in the case of metals. However charge densi-
ty waves have been evidenced recently by means of some types of measure-
ments, such as electron diffraction8, neutron scattering® and others!?,1!
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