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W study the spectroscopy of potentials of the type V(r) = K" + ¢(n>0)
with special reference to the decay widths and hyperfine splitting of
the narrow resonances in the context of the charmonium model. The bound
state spectra and other observables are not very sensitive to the expo~
nent 7, and one cannot account for the observed values of the above men-
tioned quantities. W have also examined the consequence of changing the
standard assumption of assigning ¥'(3684) to be the first radial exci-
tation. This allows one to obtain better agreement for the hyperfine

splitting but introduces some difficulties elsewhere.

Estudamos a espectroscopia de potenciais do tipo V(») = k¥ + C (n>0)
dando énfase as larguras de decaimento e a separagédo hiperfina das res-
sonéncias estreita., no contexto do modelo do charmonio. O espectro dos
estados ligados e outros observaveis ndo sdo muito sensiveis ao expoen-
te » e ndo conseguimos reproduzir todos os valores observados das guan=
tidades acima mencionadas. Examinamos tambem as consequéncias de mudar
a hipotese usual de ser ' (3684) a primeira excitacdo radial. Isso nos
permite obter melhor concordancia para a separacao hiperfina, o que to-

davia da lugar a outras dificuldades.

1. INTRODUCTION

The color-gauge theory of strong interactions has attracted a lot of at-
tention in recent years!. In this framework, one can have a mechanism of

* Work supported in part by CNPq, Brazil.
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quark-confinement through the fact that the gauge coupling of the quarks
to color gluons increases with separation. On the other hand, this cou-
pling is small at short distances and may account for the observed Bjor-
ken scaling. The "new particles™ have also been analysed using this "asym-
ptotically free gauge theory'. Here, the large masses of the fundamental
constituents involved may reduce the effective coupling constant to such-

an extent that pertubative calculatiops become meaningful?2.

The properties of ¥(3095), y'(3684) and other narrow resonances have en-
couraged people to study the spectroscopy of a high mass fermion pair (ge-
nerically called "charmed quark') bound by a phenomenological confining
potential which becomes small at small distances®. The non relativistic
treatment iis justified by the supposedly weak binding. The case of a li-
near potential and a combination of linear and Coulomb potentialshas al-
ready been studied extensively®. Taking ¥(3095) and {'(3684) respective-
ly as the cc bound states B § , and the first radial excitation 23 31,
permits one to deterrnine the potential strength parameter X and the cons-
tant C, foi- arbitrary values of the charmed quark mass m, which is trea-
ted as a variable parameter, and then one predicts other excited levels
and attempts to identify some of these with the experimentally observed
states. A linear potential leads to a mass difference between |3s1 and
1's, states (AM hyperfine splitting) which is'by a factor of three too

small compered with the possible experimental observation®.

In the presemt work, we study the spectroscopy of a more general poten-
tial, namely V(») = K»" + C(n>0) with special reference to the hyperfine
splitting and leptonic decay width of the narrow resonances. Our results,
given in-Tables 2, 5 6 and 7, show the welcome feature that qualitati-
vely the bound state spectrum is not very sensitive tu the positive ex=-
ponent n of the potential. Next, we abandon the assumption that ' (3864)
is the first radial excitation of ${(3095) and using as input the mass of
v, (rnw), and the Teptonic decay width of g, T(y*22), also as an input,
one is able to increase AM but it still remains smaller than the experi-
mental result. The first radial excitation goes up to about 4 GeV.
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2. MASSES OF HIGHER RESONANCES

The radial part of the Schridinger equation inthe CM system is (e= # =1)

ii? ule) + (n (7 - V(x)) - fi&égll} ue) =0, (D)
where the radial wave function is R(») = u(»)/r, and m. denotes the mass
of the charmed quark. For potentials of the type V(r) = ke’ + Cin>0), C
is a constant which is included to take into account the fact that beca-
use of confinement one cannot compute absolute energies but only energy

differences. The S-wave part of u{») rnust vanish at the origin.

Since we can not in general solve Eq.(1) analytically, we may use the
WKB-approximation or a variational calculation. The WKB method is a good
approximation for energy eigenvalues for stationary states; also, it im-
proves with increasing radial excitation index ¥. For low excitations,
the validity of the method depends on the particular problern under con-
sideration. For example, this approximation gives good energy eigenvalu-
es for the linear potential and reproduces exact results for the harmo-
nic oscillator potential. The validity of this approximation is tested
by comparing the results with numerical solution or variational catcuta-
tions. On rare occasions, one can even check it against analytical solu-

tions.

The Ivth energy eigenvalue for £ = 0 is given by6

r
0
. n 3
j m By =Ky dr o= (W + P, (2)
0
where r is the clasrical turning point such that E' - Krn = 0 and E'[‘V =
EN - C. Making a change of variables Y = (K/E’};])rn, Eq.2 leads to
1
(g1 (240 /20 _ 2% nk ™ (0 + 3/ T((2 4 3m) /20) 3
N - B

mc1/2 r(1/n)
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Ve have used’

1
( (1-) 172 1771 gy o 8(1/n, 3/2) = ,
2 T({(243n) /2n)

0
where B(r,s) and T'(z)-are the usual Beta and Gamma functions.

h

The mass of the IVt bound state is deterrnined by adding the IVth energy

eigenvalue to the rest mass of the constituents:

My=2m_+Ep +C . (5)
The two parameters, K and C, may be fixed by assuming that the observed
¥(3095) and ¢'(3684) are the ground state (¥ = 0) and the first radial
excitation (¥ = 1) of the cc system, respectively. This assumption, to-
gether with Egs. (3) and (5), gives us K and C as a function of the po-
tential exponent n, and m_. Results are displayed for several values of

n and m. in Table 1.

n 1 2 3 L 6
m =1.01C in

c Gey | 0:319 0.653 0.761 0.814 0.865
~1 -2 =2 -5

GeV x |0:193]0.217x10 0.294 x 10 0.042x1072/0.935 %10

Gev? eV’ Gev" GeV® - Gev’

me=131 CI0 10,681 | -0:347 -0.239 -0.186 -0.135
GeV x |0-237 0.325x 107! {0.540%10"2 | 0.095x107%|3.153x10"°

Gev? Gev? GeV" GeV?® Gev’

me=2.0[ Gip (1681 -1.347 -1.239 -1.186 -1.135
" GeV X 0.274 10.434x 107! {0.831x107% | 0.168x10 2{7.549x 1073

Gev? Gev? GeV* GeV® Gev’
Table 1. Constant C and potential parameter X for several values of the

potential exponent n and charmed quark mass m. using the standard as-
sumption that $ and $' are the 2 = 0 ground state and first radial

excitation of the cc system.

663



From Eq.3 and Table 1, we can compute the predicted masses of the higher

S-Wave cc¢c ressonances.

Above the threshold of charmed meson pair production, the phenomenologi-
cal Zweig rule preventing strong decay becomes inoperative, ressonances

are expected to be broad. The computed masses for the state N = 2, 3, 4

are given in Table 2.

n v 2 3 4
} 4.164 GeV 4519 GeV 4.895 GeV
2 4.272 GeV 4.861 GeV 5.155 GeV
4 4.401 GeV 5.214 GeV 6.103 GeV
6 4.470 GeV 5.421 GeV 6.509 GeV

Table 2. Masses of the first few radial excited states above ¥ ' (3684),

for various values of the potential exponent n.

For linear (n = 1, R = 0) and harmonic-oscillator {n = 2) potentials, we
have exact solutions. For all other cases, we need approximate or nume=-
rical solutions. For n even (n = 4 in particular), the variational method
gives good results by using an oscillator wave function as testfunction,
when compared with numerical estimates®. Solutions for the ground state,

¥ (r), are given by

v () =y, m 7 exp- ’Yig“ r?) (6)
with
]'3-5'...(n+l)_n'mc_K 2/(71+2) ( )
y =1 , 7
° 3,22 ,

a parameter which minimizes the energy expectation values. Using the test

function given in Eq.(6), energies of the ground states are given by

L= (172 1/n) (3/m )y, (8)
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The valueri of E‘0 obtained by the WKB and variational methods for n=b4 and

6 are displayed in Table 3.

n==h n==é
. 1/x
WKB Er = 3.752(5)1/3 B o= 4.1suk)
0 m m3
c c
Varriational E!l = 3.8147(1{—2-)1/3 E! = 111.527(-K—3)1/4
0 me 0 Tome

Table 3. Values of E'O, for n = 4 and 6, as a function of the parameters

K and m., cbtained by the WKB and variational methods.

Table 3 shows that the results of the two methods are in good agreement
with each other. For n = 4, g! differs by only 2%, and for #n = 6 the dif-
ference is 8%. Thus, we may use the values of X and C obtained in Table

1. As' expected, the WKB appr'oximation for EI& improves as N increases.

3. HYPERFINE SPLITTING

The mass clifference between the triplet and singlet configurations can be

computed by noting that the hyperfine interaction behaves as*

G .5 V), {9)
6m ! 2

O N

> > - )
where g, and o, are the Paul i spin operators. For our case of a power=-law

1
confinemerit potential V(r) = Krt + C, this reduces to

2lml) o 23003, (10)
ém>
Cc
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>
Using the appropriate eigenvalues of the operator 01.52 for the triplet

and singlet S-wave states, the mass difference reads

AM:MJ\L»: 22 v, ddr (1

3m.
where ¥ s the normalized ground-state wave function.
0

The normalized wo(r) can be approximated by either the WKB method or a

variational calculation. The WKB solution for R = 0 is given by

r
v (r) =% {sinf (WIC(E’—KZ"n))l/2 dr'/r(mc(E'—Krn))l/" }ooo12)

0 P 0

For normalization, we can use the approximate relation

o ¥ . (13)
v (2) ¥ (P)d% =1,

A 0 0

where r, is the classical turning point, i.e.,, the solution of E'-kr" =

0. In this approximation, one ignores the possibility of tunnelling.

The quantity Ixj)o(o)lz is exact by construction for the variational method
(n=2), whereas the W result is within a 2% accuracy. For the quartic
potential (n=1%4), the ground state energy eigenvalues given by the vari-
ational method agrees better with the numerical results than those given
by the WKB approximation®. This gives us confidence in the ¥ (r) given by
the variational method. !n view of this comparison, we shall use a wave
function determined by the variational method which is more convenient

and avoids numerical estimates involved in the WKB method.

The square modulus of ground state function ¥ , at the origin, is given
0
in Table 4.

Using Eq.{11) and Table 1, we write down the splitting AM in Table 5.
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n =72 n=15 n==~6

2 3/4
EXUY (k) (5kn_) (105km_r4)*/®

3/2 3/2 3/2
- T T

Tabl e 4. Val ues of lwo(o) [2 for potential exponents n=2, & and 6.

n =2 n==4 n==6
m. = 1.0 GeV 87 66 63
AM in
m, = 1.5 GeV 58 44 42
MeV
mc =20 Gev 43 33 31

Table 5 Mss differences between R=0 singlet and triplet states as a
function of the potential exponent n (even), for various values of m .
4. DECAY WIDTHS

Know edge of the wave functions at the origin allows us to caiculate, in
the one photon exchange approximation, the leptonic decay widths

2
Py~ a0 = 1% o2 y(0) |2 (1h)
o2 Q
|
ey is the charge of the charmed quark which in the usual Gl M model is 2/3.

The orthocharmonium interpretation of ¥ allows one to conpute the hadro-
nic decay width of ¢ via the conversion into ordinary hadrons of thethree
gluons which a s, cc system decays into®:

I (y) = 2{18 (r2-9) i:-} [w(0) |2 (15)
h 18 9 2

m
[
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n=2 n=4 n=6
m, = 1.0 GeV 1.26 1.02 0.99
r{y~+24)
m_ =15 GeV 2.32 1.89 1.81
in kev e
m_ = 2.0 GeV 3.57 2.90 2.79

Table 6. Leptonic decay wi'dths of § as a function of even n, the poten-

tial exponent, for various values of me -

The factor 5/18 comes from the SU{3) color group: ag denotes the ef-

fective gluon-parton coupling constant. {(0) depends on the confining

potential. Taking 0.2 < a, < 0.3, we compute the upper and lowerlimits
on Fh(lb):
n=2 n=Ah n=6
> 35 > 28 > 27
m, = 1.0 GeV < 118 < 95 <92
r, (9
me = 1.5 Gev > 28 > > 22
in kev < 96 < 78 < 75
m, = 20 GeV > 25 > 20 > 19
< 83 < 68 < 65

Table 7. Limits on the hadronic decay widths of { as a functionof (even)
n, the potential exponent, taking the gauge coupling ag in the range

0.2 <a < 0.3, for various values of m. .

Experimentally®’®, AM = 300 MeV, T(y>Ll) = 4.8 keV, and I‘h(w) = 59 keV.
Tables 5, 6 and 7 show that the computed values of A and r(w»zi) , assu-
ming ¥ and ¥' to be the ground state and the first radial excitation res-

pectively, disagree with observation. I‘h(ll)) is however, compatible.
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5. COQNSEQUENCES OF CHANGING INPUTS

Let us now abandon!® the assumption that the first radial excitation is:
indeed the %', and instead use as input the observed mass of ¥, m(y),
and T(p+28). This predicts the first radial ‘excitation to be around 4
GeV, above the supposed charmed pair pfoduction threshold, and although
it increeses AM considerably, it is still a factor of two too small com-

pared with experiments. Our results are given in Table 8.

n=2 ' n=4 n=6
Cin GeV 0.018 0.287 0.377
K 0.1297 Gev® | 0.00925 Gev® | 0.000634 Gev’
m =1.0 !
C
AM in MeV 515 515 515
GeV
mw, in GeV 4.530 4.716 4,725
Ph("l) in kev > 132 > 132 > 132
< 447 < 447 < 447
C in GeV -0.623 -0.443 -0.384
K 0.0859 Gev® | 0.00617GeV®|0.000423 gev’
m =15
AW in MeV 153 153 153
GeV
m'JJ' in Gev 4.052 4.176 4.182
. > 58 > 58 > 58
Fh(w) in kev < 199 <199 <199
C in GeV -1.443 -1.309 -1.264
K 0.0643 Gev* | 0.00463 Gev® [0.000317 Gev’
m =2.0
| <
| AM in MeV 64 64 64
GeV
m'b' in GeV 3.812 3.906 3.910
. > 33 > 33 > 33
Iy} 0 kev <2 <12 T

Table 8. Values of G AV my, and T‘h(lb) using m = 3.095 GeV and T(y»2l)=
4.8 keV as input, for various values of me - For fixed I‘(u»ki) and Mes

the values of AM are independent of n (Ref.11).
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6. CONCLUSION

Our computations show that the bound state spectra of a heavy quark-an-
tiquark hyperfine splitting between the tripletand singlet S-waves {AM),
and the lepton decay width of the triplet ground state, I’(¢->5U—L), are not
very sensitive to the exponent of the confininig potential. The standard
assurnption that y'(3684) is the first radial excitation results in a se-
rious disagreement between the computed and observed values of AM and
T(y>22). we studied consequences of dropping this assumption and use
T(p+22) as input. This leads to a position of the first radial exci-
tation above 4 GeV, above the supposed charm pair production threshold,
where definite structures are seen in the e e- annihilation cross sec-
tion. However, the discussion preceding the results given in Table 8
show that one does not achieve agreements with all the observables. Also,
there is the problem of reinterpreting ¥'(3684) together with its esta-
blished properties such as the large branching'ratio for the cascade de-

cay Y'>ymmr. On the other hand, taking m,, m , and T(p~+22) as input, we

find for n = 2 case m, = 2.438 GeV, C = L[)2.22% GeV, K = 0.0528 GeV, AM=
35 MeV and 22 keV < I‘h(w) <75 keV; i.e., the hyperfine splitting istoo
small and the large value of me. casts doubt on the validity of the non
relativistic treatment; n = L and 6 give even worse results. In view of
those continuing difficulties, there does not seem to be a net gain is

changing the standard inputs.

Analysing the results of our computation and considering for definiteness
m. = 1.5 GeV, where relativistic effects are expected to be small, we
conclude that potentials with exponents » > 2 do not provide satisfacto-
ry models for the charmonium. A preliminary study indicates that poten-
tials n = 1/2 may describe the charmonium better than the n > 1 cases.
The radial excitation spectrum for this potential, with the standard in=-
puts, using the WKB approximation, given by m ,, = 4.089 GeV, mwn. =
4.415 GeV and m ive 4.687 GeV, are in good agreement with experimental™*
indications; also AM and I‘(w—»!&) are estimated to be larger than those
of the n = 1 case. In view of this, the case 0 <n < 1 which also satis-

fies the Martin!?®

condition is under numerical study. This, togetherwith
the results of spin orbit forces R # 0, and radiative decays, will be pu-

blished elsewhere.
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