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Halbwachs Lagrangean formalism for the theory of charged point, parti-
cles with spin (g = 2) is generalized and formulated in General Rela-
tivity for particles of arbitrary charge and magnetic moment. Equations
are obtained, both corresponding to Frenkel's condition SHVSV =0 and to
Nakano's condition SWPV = 0. With the later condition the exact equa-
tions are highly coupled and non linear. When linearized in the electro-
magnetic and gravitational fields they coincide with de Groot-Suttorp
equations for vanishing gravitational field and with Dixon-Wald equati-
ons in the absence of electromagnetic field. The equations correspon-
ding to Frenkel's condition,when linearized in S coincide with Pa-

v
papetrou's and Frenkel's equations in the corresponding limits.

0 formalismo Lagrangeano de Halbwachs para particulas puntiformes car-
regadas e com spin (g = 2) é generalizado e estendido para Relatividade
Geral, para particulas com carga e momento magnético arbitrarios. Obtém
-se equagbes de movimento correspondentes &s condi¢cBes de Frenkel Suv';/:
0 e de Nakano S”vpV = 0. G a ultima condigcdo, as equagBes de movimen-
to exatas sao fortemente acopladas e ndo lineares. Quando estas sao li-
nearizadas nos campos eletromagnético e gravitacional coincidem com as
equagbes de Suttorp e de Groot para campos gravitacionais nulos, e com

as equagBes de Dixon-Wald na auséncia de interagcdo eletromagnética. As

* Most of the results of this paper are contained in: R. Amorim, Parti-
culas Classicas com Spin en Campos Eletromagnéticos e Gravitacionais,
Tese de Mestrado, Pontificia Universidade Catélica - RJ, (1977).

** Work partially supported by Conselho Nacional de Pesquisas = CNPg.
fae Postal Address: Departamento de Fisica, Pontificia Universidade Ca-
télica, Cx.P.38071, Rio de Janeiro, RJ, Brasil.
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equacbes correspondentes a condi¢cdo de Frenkel coincidem com as equa-

¢Oes de Papapetrou e Frenkel nos limites correspondentes.

1. INTRODUCTION

In 1926 Thomas'® successfully made a kinematic analysis of the precession
of the electron spin using approximate relativistic equations, to ex-
plain the gyromagnetic factor g = 2 of the electron as evidenced bythe
Hidrogen atom spectroscopy. Since then many consistent equations for
classical particles with spin were produced, using several procedures,
such as:

a) Use a variational methods for point partidesz-s.

b) Obtention of consistent equations for a fluid of particles with spin
and passage to point particles by analogy with the usual correspondence

between fluid equations and those for point particless’7.

c) Use of the conservation equations for obtainment of the equations of

motion for a small spinning body:

o= m

for electromagnetic (EM) or (and) gravitational interaction.®~'?3

d) Use of quantum relativistic equations, such as Dirac's one, to obtain,

by correspondence, the classical theory. 12,14

Thomas! and Frenkel? realized already that a supplementary condition

such as

) v
s“vu" =gV gl v g (2)
AYJ dr AY)

should be satisfied by the spin tensor (Sm) == S\)u). Frenkel's condi-
tion (2) has been widely used. However M&1ler!® showed that it leads

to unsatisfactory helicoidal motions.
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This is the case of Frenkel's equations:

f; - aPhy v g 1‘le S (32)
as®” _ pplip] +Zgusﬁbfg° (3b)
dt 0
M= mz? 4 Suv(éév - ou F\)ps.cp ) (3c)
Yy, = TZ'— (3d)

that leads to helicoidal motions even in the absence of E.M.fields. This
is due to the fact that they are second order equations in /AT egs.

(3) a comma means partial derivative and: ZPEJ.;:\) = P“a'cv - Pvaéu .
p

The same problem appears in some group-c theories, like Weyssenhoff'se

13

and Papapetrou-Schitd's*?® which lead to egs. (3) for the free field case.

16

Nakano"® proposed a different supplementary condition:

st PY =0 (4)

where P! is the gauge-invariant moment. It can be shown that with con-

dition (4) the equations of motion do not allow the helicoidal solutions.

Another kind of problem which appears in group-c theories is related

with the passage to the limit of point particles. Indeed Mdller pro-
ved that if the energy-density is definite positive, there is a minimum

size of a spinning particle (r0 = S$/M, S being the spin and M the mass).

We might argue, however, that even for a spinless electron consideredas
the limit of a distribution of charge and matter, a minimum size occurs.
To take the limit of point particle, we have to introduce negative ener-
gies. Thus we should also permit this procedure for obtainment of spin-
ning point particles. This problem does not appear, however, in varia-

tional formalism which assumes from the beginning point particles.
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Using method (c) Suttorp and de Groot!'?

obtained, with condition (4 ),
equations of motion of spinning particles which they linearized in .
They also assumed, as usual, the magnetic moment to be proportional to

the spin:

where u is arbitrary, being
H o= gy, = gq/2m (5b)

for charged particles. Actualy u can be different from zero even for neu-
tral particles, i.e.,, when uo = 0.

They obtain
are¥ v, LU VA, u
Z"-[‘_- . qF U\)+ 2 SV)\F (63)
Moo —ueMVe P B VAo H
M= mM o+ (Z“o s Fool 2ms\))\z? S, (6b)
ny :
s _ b, 2usl_ll A , (6¢)
dr A
where
o
m =~ PU (6d)

They also showed that these equations coincide with those obtained, in
the same approximation and as a classical limit, from Dirac's equation
with anomalous magnetic moment (g # 2), after they were submitted to a

generalized Foldy-Wouthuysen transformation.
in General Relativity (G.R.) Papapetrod® was the first to obtain the

equations of point spinning particles, by rnethod (c), for pure gravita-
tional interaction:
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u  pstV

D _ __1 u V.0
ET—(mU 5 u,) = ZRWUS ; (7a)

ps™ _ UE‘ o5V AU
7R

(7b)

S

These equations are not complete in the sense that he did not assume a
supplementary condition tike (2) or (4). 1In a latter paper”, he uses
the condition $% =0 in a priviledged coordinate system, although this
is not necessary. Indeed Schild'3 obtained Papapetrou's equations (7 )

using condition (2).

In the present paper weobtainthe equations of motion of a charged par-

ticle with arbitrary magnetic moment in General Relativity.

In section 2 we reformulate Halbwachs Lagrangean formalisn using it to

extend his equation to arbitrary g-factor.

In section 3 this Lagrangean formalism is extended to GR. first using
local variation in Riemannian coordinates and then extending it to co-
variant form. This is used to derive the equations of motion inpresen-
ce of EM. and gravitational field with condition (4), which generali-

zes de Groot-Suttorp equations when linearized in the fields.

For the case of homogeneous E.M. fields, equations with condition (2) or
(4) coincide and lead to Bargmann, Michel and Teledgi!® (BMT) equation

for the spin precession.

2. VARIATIONAL METHODS IN SPECIAL RELATIVITY (S.R.)

Soon after discovery of the electron spin, Frenkel? obtained classical
equations of motion of a particle and its spin by a variational Lorentz
invariant formalism. However, it was not defined in holonomic form,
what is unsatisfactory for many reasons; not only consistency of this
equations is not obvious, but even a Hamiltonian formalism is not obta-
ined from it.
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Lattes, Schonberg and schiitzer® reformulated Frenkel's treatment in an
holonomic form but, although the results are Lorentz invariant (L. 1.),
the spin variables are defined in not an obvious L.l. way. W have not
found useful to try an extension of this method to curved spaces.

Halbwachs" formulated an obviously L. 1. holonomic variational method to
obtain the equations of motion for a charged particle in the case when
the gyromagnetic factor is 2. In all these papers the Frenkel supplemen-

tary condition (2) was used.

In this section we shall extend Halbwachs formalism to arbitrary q and
1. Condition (4) can also be used, as will be done in next section in
GR.

The point particle is characterized by its position = xu('t), where T

is a parameter, its four-velocity I = dx"/dt = 2" and its spin sHV (1)

which is determined by two Einstein-Kramers (E.K.)} variables"
b(l)u,b(z)u ; b(i)ub(a')u=57«j (£,5=1,2) (8a)

the spin tensor being defined by

SUV = h(b(l)ub(z)v _ b(l)\)b(Z)U) . (9)

If condition (2) is imposed we complete the EK. tetradic set that in-

cludes, b(l)u and b(Z)u, with:
b(°) L I (8b)
(sdu _ _wpo ) () L (2)
pr*H = PO R0T bt b (8¢c)

with (for a,8 = 0,1,2,3):

(@) , @B _ _(a)(B) , ,(a) -
baub e PP @) T M (8d)

Einstein summation convention is used both for tensor as for tetradic
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(@) (8) .

indices. nuv is the Minkowski metric (-+++) andn is formaly the

same quantity in the indices (a), (B) of enumeration of the vectors

u_ LB
ey =M (o) (6)
The passage to the case Su\)P\) = 0 corresponds to take
b(o)u - PU(_P\’P\’)'I/Z . (10)
Thus generalizing and modifying Halbwachs formulation, we take for the

Lagrangean

o A an, ‘v, h (Duz ()
L m02(1+mxu)+q/lux +—2-8in b u*

(')u (o) ] . ) . ’ e
+hey b YR gy (% iy ¥ A2 + xij(b("”u b(J)u—aW) ) ()

Here € (Z,§ = 1,2) is defined by:

= =~ E M [ = € = .
€12 a1 s oey e, =0

and y is arbitrary (equal 2u for Halbwachs) .

in (11) ?\u, X.,L.(7 and A are Lagrangean multipliers used to impose condi-
tions (2), (8a) and (12):

o'z = -1 (12)
The term
A (2)u; ()
Eij b b

7 (13)

u

represents the energy of proper rotation* not explicitly defined by

Frenkel. The remaining are obvious terms of interaction.
The equations of motion are obtained by a variation

4 , .
5I=o‘f L(x“,a'c“,b(““,é(”“)dr =0 , (1ha)
B
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when the arbitrary extreme points A, B are fixed. The actual trajectory

is the one for which| is extreme in relation to other parametrized
paths B4(1), (2, B, 5%, with

st = B0 - ) 5 sp M S5Oy C BN ()

, (14e)

U _ TR (Du _ 4 (£)u
Sx ——T6ac ; &b I §b

sx" and Sb(lb)u vanishing at points A B.

Here all quantities are functions of T alone and are independent:

ast ap(P)U ) a5 (E)H Y. (1ha)
5’ dxY 3z
(Z)u : :
" . 3”(”. - ?”(C.) =0 (1he)
ax\) 3 )V NACN
> (£)u
% " - (14f)
va

The well known details given after eq. (14a) are not superfluous since

they must be extended to G.R..

Thus we obtain the supplementary conditions {(2), (8a) and (12) plus the

equations
at v y VAU,
T T aF x5 S\uF ’ (152)
with
e (15b)
v
Bxu
m=mX = - Pz (15¢)-
0 H
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and, for the E.K. variables:

he.. .E(i)u = - )\..b(i)u + E e..b(i)u + ha..b(i) WM + )\E)éu]) . (16)
zd zd 2 td TJ Vv

In (15¢) we used (15b), (2) and (12) .

Notice that for our Lagrangean, the canonical angular momen tum*

O 8L _ . (%) 3L
Su\) b UW b \)W an

coincides with expression (8).

From (8a, (9), (i5b) and (16) we get h = 0 and

1
s . ZPEla':v] + 2|.t.S'ElAF'\Z]A H (15d)
dt

and from (2), (15b) and (15d),

HY, o GHY M 1
5T, =8 (uFup:z: :cv) . {15¢)
Equations (15) are the same as Frenkel's egs. (3), now obtained by an

holonomic procedure.

Also, using (12) and (15) we obtain

@&y, (18a)
dt

= = L =

m—mOAfZS Fu\) m, (18b)

where we took m = m as this occurs, asymptotically, for vanishing .

Ve notice* that (13) is not the most general expression for the energy

of proper rotation but we use it for simplicity. Regge and Hanson® have
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indeed formulated a very general relativistic theory for spherical top
in interaction with EM. field, wusing also a variational principle.
After this work was accomplished it came to our attention a preprint of

19 which extends that formulation to GR, for

R. Hojman and S. Hojman
charged particles without magnetic moment, with some unsatisfactory re=
sults such as the h-velocity becoming a space vectorin regionsof strong
fields. The possible relation of these papers to our treatmentisbeing

examined.

3. LAGRANGEAN FORMALISM IN A RIEMANNIAN SPACE

A central point in the Lagrangean formalism for spinning particles in
S.R. was that the EK. varlables dependend only on the proper time and
not explicitly in the coordinates ¥ of the particles. If this is cor-
rect in a particular coordinate system, it would, however, not be so

after a general coordinate transformation is performed.

Thus we postulate that in GR. the previledged coordinate system where
the EK. variables are independent of the coordinates is precisely the
largest locally inertial coordinate system associated to an arbitrary
point 0 in particles's trajectory: a normal Riemann coordinate system

B with origin in 0.
In a small region containing 0 we have
goq =N + 02 (D) (192)
RO 1\
i a
"5 = o) (19b)
However the existence of a curvature implies that
ﬁ .
{G X},b#o (in 0) . (19¢)
In that region we use a local variational principle with constraints:

B
61=5f Ldt =0 , (20a)
4
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with fixed points A and B infinitesimaly near, and assume that the path

which makes | extreme (trajectory) contains 0 (Fig.1).

Thus we have:

- — = = olz") (20b)
3 8z° Az’
and, to first order,
soh = %’fﬁxu . ab(i)u - %sb(i)u ) (20¢)

Thus, besides the supplementary conditions which take the same formasin
S.R. {egs.(2), (8d) and (12)) we obtain, at the point 0, the Euler-La-

grangean equations:

4L 3% __y (21a)
dr M M
d 3L 9L
DAY e A TR (21b)
drv ab "t gp M
In special we take
o] A A Db(j)
_ A Al A ()0 i
Bem g 1+ am) +ahpt v g0 —
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(2 4 (Y ¢ U
+ heij b b (xﬁkﬁ + 5 Ehv)

s, B sty (223)

ZJ i

i.e., the covariant generalization of (11), with

@i )

= Z3(7:);‘1 . {Rﬁa }b(i)f’ 20 (22b)

Dt

(Notice that {6ﬁ6} vanishes only at 0) . W obtain

dP~ -~ - - -
- v} gy o + 3 (5,91, - {15,9),D&'5° , (23a)
T . ’
where
P = a - ) 5,936 = ma - 50" (23b)
U4 0 b7 TR T\

is.the gauge-invariant moment, relative both to EM and to gravitatio-

nal transformations.

The equation for 5($)u are formally identical to (16) in B,so we obtain

in 0:

. : = 515
fzf = ZPE‘x‘ﬂ + 2u SEJX 97 (23¢)

and the expression (15¢) for s“vxa (in R). As in the Riemann frame we

have in 0

oP* g ps™V g™ ot oM
rZ.Z£ B &5 WL 4 (24a)
Dt dt Dt dt - Dt dt
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eqs. (23) can be written in'a covariant form in the arbitrary point0 in

B and thus take the same form in any coordinate system (R) at any point:

oM

- Vs 4] S _ 1 U sy po '
Voo F x‘\)+7 (UFQO‘ ZR\)pC!x }s H (25a)
M= mat - s“"xv ; (25b)
! .
2 ZPEUx\ZJ + 2M SE" F\ZJA ; (25¢)
DT A

v W, U v o _ D2y

s )\V=-P +mx” = S (qupx - -DT—) . (25d)

For vanishing gravitational fields these equations reduce to Frenkel's
equations (3), and for vanishing EM. fields they reduce to Papapetrou's

equations (7) with condition (2).

W are now prepared to formulate the variational principle in a covari-

ant form.

Thus if in B an arbitrary 4-vector B" catisfies 38M /3" = 0, inR where
" = BY ax“/ax\’, we have DBU/Dac\) = 0.

In particular we find that

Y (D)v
e Db =0, (26a)
pe® P
but we still have:
(2)u
D Db "~ £ 0 (26b)
Dxp Dt
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Thus for a Lagrangean [ = L(xu,:;:u,b(l)u,Db(i)u/DT) s

. . (Z)u
8L =6x“-D£u-+ 23ac-u§€-—+5b('b)u L+ s 8L (27a)
: e M ap LW Dt N(Db(l)u)

since az/3z" = & /hP.

in the same way as we obtained (26), we can prove from eq. (20) that, at

any point,
‘W _D ..u N p (o)
b2 =ppoa; 8 = b (275)

Now we can eliminate the condition that the fixed points A B are very

near each other.

So the condition of extreme action and relations (27) permit us toobtain

the generalized Euler-Lagrange equations

p——?—]f"—— WDy ; (28a)
Dt dx D™
L% 9% _g, (28b)

o @Du g, ()
Db ob
o

valid on particle's trajectory. W notice that (lhe) are still valid,but
not {14f), as:

(Du .
f,——-——”bm EAREI2L (14g)
X

With the Lagrangean {22a) in an arbitrary coordinate system, we thus ob-

tain directly equations (25) (besides the supplementary conditions).

Now we will obtain the equations consistent with condition (4). Thus we
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take again (22a) in R, with the substi tution a}vku - P\))«u, as now b (o) u

is given by (10),

W assume that " = pM(z",z¥,5"V)is an unknown functional latter to
be identified with the gauge-invariant nonent.

Proceeding sirnilarly to the previous case we obtain, besides the supple-
mentary condi tions (4), (8a) and (12), the equations

B MR | QYo - i *\V,pC vp .
Fr = qFWx +55 F\)p;u 5 prax S7 o+ AvS Pp;u ; (29a)
oL v () 3L . OF, vp
P =22 g4 ~-{ }pHP = mz, - —— 5 A (29b)
MoogpM p U (£)v H S o
322
gy
where (14g) was used, and
Y
bs . ZSEI fﬁ\):]T + SEJ X V]T sYPy (29¢)
ot T Ty o
where
=L V4 1Y (29d)
BPY ( )
K, 4 =—1. 23e
YVA BS\»‘
Condi tion (4) and eq. (29c) imply that
13y
Y I R &) - {
SN TwEG P T NP R - A SR P 0 (29f)

which is an implicite equation for Sp\))\\).
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In (29a) we used the relation

LI PO N
p® D Apo.

Equations (29) constitute a coupled system much more complex than the
system (25) for condition (2), being highly non linear. However in weak
electromagnetic and gravitational fields, egs. (29) can be much simpli-

fied (linear field approximation):

DP (o) .
—H - qF x +E5g )\F A -1 R x5 (30a)
DT 2 s 2 THVPC
_ . _ VAe _ u v, 1 YV o
P o=m, - Su\)[(u Zuo)F EN TO—S)‘ F Fom R e TS J (30b)
1V )
b ZPEuac\)j + 2u S[u F\)])\ ; (30¢)
Dt A
Conditions (4) and (12) imply with {30):
me-pat = (- (304)

where we identified the constant of motion -PUPU (in the linear approxi-

mation) with it's asymptotical value nt. In (30),

(0)
Fyvp = 9alp,v]u ~ ulp,v]a

is the linearized Riemann tensor.

For vanishing gravitational field eqgs. (30) coincide with Suttorp and de
Groot equations (6) . For pure gravitational field they lead to Dixon-Wald

equations®® , which can be written in the same form as egs. (21}.

If we define the spin b4-vector
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P9V | (31a)

we find from (30):

H . .
D5 sk (p - 2w ) (e Vs )t 4
D A 0 X v

*u

x . oBVA oY

+ x 5, € (urF - R _.x")8 (31b)
I, g aB VA,Y YTUA

which generalizes the BMT. precession equation52° , valid for constant

EM. fields and no gravitational interaction.

Contrary to eqs. (28) which were linearized in the external fields with
Py of the form (30b), this cannot be done to egs. (25) due to the term

sHY bz . However, iT we linearize it in the spin SU we obtain equations

-\)’
which coincide with egs. (30) when they are also linearized in the spin.
For homogeneous fields they become identical and lead to B.M.T. preces-
sion equations (as the terms quadratic in SUV also disappear inegs. (30)

and (31)).
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