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The critical current of type-l superconductors is determined by the
interaction of quantized magnetic flux lines with inhomogeneities
(*"pinning™) . Measurements of the profiles of the magnetic induction are
equivalent, in many respects,to critical current rneasurements, and fre-
quently are much simpler. After a short introduction about the general
properties of type-l superconductors, this article reviews the main
microscopic pinning mechanisms, their statistic cooperation to the ma-
croscopic volume pinning force, and the generalized critical state mo-
del including surface effects. The basic methods of measurement are
described, together with some important results about bulk, surface, and
near-surface pinning. The final discussion stresses especially two ob-
servations still hardly understood: the different effects of the surfa-

ce and the influence of magnetic field history.

A corrente critica de supercondutores de tipo-lIl € determinada pela
interacdo de Llinhas quantizadas de fluxo magnético com inomogeneidades
("pi nning", aprisionamento) . Medidas de perfis da indugdo magnética sdo
equivalentes, em muitos aspectos, a medidas da corrente critica, e fre-
gquentemente bem mais simples. Ap6s uma introducdo curta sobre as pro-
priedades gerais de supercondutores de tipo-Il, este artigo apresenta
uma resenha dos mecanismos microscopicos de aprisionamento mais impor-
tantes, a cooperacdo estatistica deles a forga macroscépica por volume,

e o0 modelo do estado critico generalizado, incluindo efeitos da super-
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ficie. Descrevem-se os métodos basicos da medida, e alguns resultados
importantes sobre aprisionamento no volume, na superficie e nas proxi-
midades da superficie. A discussdo final acentua especialmente duas ob-
servagdes ainda pou:o entendidas: os diferentes efeitos de superficie e

a influéncia da histéria do campo magnético.

INTRODUCTION

Application of superconductivity began in 1961 when Kunzler et al. dis-
covered"?® that the compound Nb,Sn is able tocarry a high current without
destroying superconductivity. Since then, highly sophisticated conduc-
tors have been developed, mainly for the production of magnet coils for
a wide range of applications, ranging from the laboratory magnets for ba-
sic research purpose to the levitating magnets in high-speed train sys-
tems®?1*, Another field where superconductivity may become of increasing
practical interest is the transmission of electric power in cryogenic
cables, a project which is presently being studied in a number of labo-
ratories all over the world (see, e.g., Ref.15). A survey of the actual
state of application of superconductivity was published recently by

Schwartz and Foner?.

All these devices make use of the ability of type-tl superconductors to
carry a lossless current up to a certain critical current Ic’ This cri-
tical current is a function of temperature and magnetic field, and is
mainly determined by the interaction of magnetic flux vortices with ex-
tended crystal imperfections like precipitates, dislocation walls, or
grain boundaries. A transport current creates a force on the vortices,
and to keep them from moving, which would cause power dissipation, they
must be "pinned'. The stronger the interaction between defects and flux
vortices, the higher the critical current. On the other hand, the cri-
tical current of an "ideal" type-ll superconductor (single crystal wi-
thout any defects) in the mixed state would be zero, even in materials

with high critical temperature and high critical fields.

The sameinteraction prevents, in magnetization experiments, the flux vorti-
ces from reaching their thermodynamic equilibrium distribution, thus al-
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lowing for the presence of flux gradients within a bulk superconductor,

and giving rise to a hysteretic magnetization curve.

This equivalence between a transport currentand a flux density gradient,
in type-Il superconductors, is the basis for the experimental study of
“pinning' forces in model systems by magnetization measurements. Such model
systems, each of which ideally represents only a single interaction me-
chanism, instead of the metallurgically complicated state of the tech~
nical superconductor, are, e.g., single crystals with one defect type:
dislocations, irradiation defects, or precipitates. Because of the high
critical currents (up to 10°A/cm?) , sample preparation for magnetizati-
on measurements (long cylindrical rods) is much easier in such systems
than for direct current-voltage measurements (thin tapes or threads).The
purpose of the present article is to describe how much information
about pinning forces can be drawn from magnetization measurements, es-
pecially from the so called “minor hysteresis loops'. W do not intend
to present a complete review of irreversible properties of type~il su-
perconductors. This was excellently done by Campbell and Evetts® and,
more recently, by Ullmaier®. Both reviews also contain a more compre-~
hensive bibliography. Detailed information about many specific problems
may be obtained from the proceedings of the discussion meeting in St.
Andreasberg in 1974, Ref.10. Melville's review paper11 stresses the
great influence of the surface on a.c. losses, which are closely rela-
ted to the magnetization hysteresis treated in the present paper. The
article of Livingston and Schadler!?, although 13 years old, may still
serve as a valuable introduction to the whole field of relations between

superconductivity and metallurgy.

In Section 1, a short introduction to the general properties of type-l|
superconductors is presented. The second Section describes, in a quali-
tative rather than in a mathematically exact way, the main microscopic
interaction mechanisms and the statistic summation of these elementary
forces to the macroscopic volume pinning force. Orne of the most fruit-
ful ideas for the understanding of irreversible effects in type-Il su-
perconductors was the concept of the critical state, introduced by
Bean'®, which will be treated in Section 3, followed by a review of
different methods of measurement. The last two Sections present some im=-

portant experimental results about bulk and surface pinning,and discuss
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specially the different effects of surface and near-surface pinning as

well as the influence of magnetic field history.

1. TYPE-Il SUPERCONDUCTORS

This Section is just to give a concise introduction to the equilibrium
properties of type-It superconductors and the basic phenomenological
concepts for describing them. For more details, | must refer to one of the
textbooks 1listed in the first part of the bib\iographyl's.

The difference between type-t and type-It superconductors is bestillus-
trated by theirequilibriumrelation betweenmagnetic induction (flux
density) B and the applied field H (Figs. la and Ib). Type-| supercon-
ductors are charaterized by a complete exclusion of the magnetic flux
(perfect diamagnetism) up to the critical field HC, where the transi-
tion to the normal state takes place. In type-Il superconductors, the
surface energy between superconducting and normal phases is negative,
thus the free energy can be decreased, in fields above the lower criti-
cal field Hc], by a splitting into normal and superconducting "domains'
on a very fine scale. This is accomplished by a partial penetration of
magnetic flux, reflected by that part of the BH curve of Fig.1b bet-
ween Hc] and HcZ ("mixed state' ). At the upper critical field HcZ’ the
flux penetration is complete and the bulk of the specimen becomes nor-

mal.

For practical reasons (higher resolution of the ordinate), the magneti-
zation curve =M(H) is given instead of the induction curve B{H) in most

cases (Fig.lc). The magnetization M may be defined by

B =y (#+M , (1.1)

0 *

although it does not have the direct physical meaning of a magnetic di-
pole density as, e.g., in ferromagnets. With this definition, the ini-
tial slope of the magnetization curve in the perfectly diamagnetic sta-

te becomes -1.

A theoretical description of this behavior is provided by the Ginzburg-

-Landau equations”, twa coupled nonlinear differential equations for the
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Fig.2 - Structure of a single vortex line (solid line: microscopic mag-

netic field h; dotted line: order parameter v).
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order parameter ¥ which might be interpreted as a kind of macroscopic
wave function for the condensed electrons, and for the vector potential
A, They contain two material parameters with the dimension of a length,
i.e., A (“penetration depth’) and £ (“'range of coherence'), which repre-
sent the characteristic lengths of variation of the microscopic field h
and of the order parameter ¥, respectively. Typical values of A and §

are of the order of some hundred Angstroms.

The ratio A/E is the dirnensionless Ginsburg-Landau parameter k. In type-
=11 superconductors, K > 1/¥2. The ratio of the critical fields chch]
increases monotonically (but not linearly) with k. The two characteristic
lengths and the Ginsburg-Landau parameter vary strongly with the mean free
path of the normal electrons. 1In a certain alloy system, the parameter
K increases linearly with the residual resistivity”. Therefore, alloys

general ly are type-11 superconductors with k > 1/v2.

In 1957, Abrikosov!® found periodic solutions of the Ginsburg-Landau e-
quations which only several years later were recognized as describing
exactly the mixed state of type-til superconductors”. Abrikosov's solu~-
tion showed that the mixed state consists of a two-dimensional array of
vortices or flux lines each of which carries one flux quantum ¢0:

by =n/2e =2.07 x 107° v.s = 2.07 x 1077 G.cm?. (1.2)

Each flux line can be imagined to consist of a normal conducting core
>
with a maximum of the microscopic magnetic field Z = curl A, surrounded

by circulating supercurrents {Fig.2).

In an ideal (reversible) type-l1 superconductor, these vortices form a
regular two-dimensional lattice, usually of hexagonal symmetry. The ex-
perimental observation of this regular lattice (Fig.3), first by neu-

Zl’zz,was

tron diffraction?® and later directly by a decoration technique
the proof for the correcteness of Abrikosov's solutions. The rnagnetic
structure of a single flux line within the lattice was also studied by a

precise determination of the form factor in neutron diffraction2®.

Because each vortex contains one quantum of magnetic flux, ¢0, the mean

flux density B = <> is related to the line density n of the vortices
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Fig.3 - Perfect triangular flux line lattice (FLL) as emerging from the
top face of a superconducting niobiumcylinder (8 = 73 mT). The points
of exit of the flux lines are decorated by small ferromagnetic particles
{photograph by U Essmann).
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Fig.4 - Irreversible magnetization curve with mnor hysteresis I|oop.

231



by B = n.¢,. In thermodynamic equilibrium, the line density n, and thus
the induction B, is constant throughout the sample, and at a certain

temperature a unique function of the applied field H (Fig.1b): B = B, {(#).

Although the lattice parameter of the flux line lattice (FLL) is séveral
orders of magnitude greater than that of crystal lattices (several thou-
sand Angstroms) , there are many analogies between them. The FLL is elas~
tically deformable, and can be described by tensors of elastic strain and

24,26 27231 However, becau-

stress , and elastic constants connecting them
se of the long-range interaction between the flux lines, the elasticity
theory of the FLL is highly non-local. This has important consequences
for strains and stresses varying at short distances®*2?3® put was not con-
sidered until quite recently (Refs.24,25,34). Another analogy between
FLL and a crystal lattice is the existence of lattice defects (vacant 1i-
nes, interstitials, dislocations, stacking faults®%*3®} which in som

cases may strongly influence flux movement and the critical current374L

2 PINNING FORCES

In thermodynamic equilibrium, the line density n of the vortices is cons-
tant throughout the sample, a state which can only be realized if the
vortices are freely movable. In real crystals, however, there are always
inhomogeneities with spatial variations of the free energy for a vortex
which give rise to attractive or repulsive interaction potentials and
forces. The maximum effective interaction force, fm, between one flux
line and one defect is called "elementary pinning force”™. In the follow-
ing, the main interaction mechanisms in the bulk and at the surface
of the specimen are described in a qualitative way. More details and
quantitative formulations can be found in the original papers we refer~
red to, and in the two review articles of Refs. 8 and 9.

2.1. Pinning Interactions in the Bulk

The specific volume of a metal increases by about 10-7 at the transition
to the superconducting state. Thus the core of a vortex is a contracted
cylinder within a superconducting matrix. This effect is further accen-
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tuated by the magnetostriction caused by the microscopic field Z around
each vortex. Thus each flux line, especially the core but also the re-
gion of decreasing field, is a source of eigen-strt-:sses"2 which interact
with the stress field of a lattice defect. This first-order interaction
(A-v effect, para- elastic interaction) was first described by Kramer

*3 and further studied, for specific defects, by Kronmuller and
Ulyh5

and Bauer

Schmucker

A second-order elastic interaction is due to the softening of thecrystal
lattice in the transition to the superconducting state. The relative de-
crease of the elastic constants is of the order of 107% The elastic self-
-energy of a lattice defect depends on the elastic constants, thus it is
higherinandnearthecoreof afluxline. A first estimate of this
repulsive interaction (A-E effect, dielastic interaction) between a screw

b‘QG,

dislocation and a simplified flux line was published by Web ; a very

general treatment based on Seeger's and KronmUller's micromagnetic equa-

“72%8 was recently given by Schneider®®*5%,

tions of superconductors
A third, non-elastic, interaction is caused by spatial variations of su-
perconducting material parameters like the Ginzburg-Landau parameter K
(hence A-K effect) in precipitates or clusters of defects. The self-ener-
gy of a vortex 1ine can be decreased, for example, by passing partly
through a normal conducting precipitate or a void. A similar mechanism
acts in a grain boundary: because of the anisotropy of material parame-
ters like ch (Ref.51) and thus of the Ginzburg-Landau parameter K, the
self-energy of the vortex may be different in two adjacent grains, thus

leading to pinning effects due to the grain boundary.

A general feature of all these pinning mechanisms is that they are only
effective if, loosely speaking, the dimensions of the defects are at
least of the order of the core diameter, i.e. some hundred Angstroms.
Thus, defects like vacancies or non-magnetic impurity atoms can only pin
weakly through their eventual density fluctuations, whereas a homogene-
ous distribution does not give rise to any pinning effect.
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2.2. Statistic Summation

A comparison of the observed mean volume pinning forces, Py with these
elementary pinning forces revealed that the former were frequently one
order of magnitude smaller than expected from a simple summation of the
elementary f'm forces. This is due to the elastic coupling of the vorti-
ces within the FLL which allows only a small fraction of the pinning si-
tes to act with the maximal force fm. A consideration of the two limiting
cases of a completely rigid and a completely soft FLL will clarify this
argument: If the FLL is completely rigid and if there is a statistical
distribution of pinning sites, there will be an equal number of sites
acting with force ?m’ and with force -?m, thus the net pinning force on
arigid FLL will be zero.In a completely soft lattice, on the other hand,
the vortices can occupy the positions of maximum force fm at all pinning
sites, thus for a density N_of the pinning centers, the mean volume pin-
ning force will be Np.fm. The intermediate case, however, the statistic
summation of the pinning forces in an elastic FLL, is a rather complica~
ted problem, and its detailed description is far beyond the scope of this
article. The first approach to a solution of this problem was made by

Yamafuji and Irie32253

, who considered the energy dissipated during flux
movements (dynamic approach). The statistical treatment of the static FLL
in the critical state was elaborated by Labusch®*. For statistically dis-
tributed point pinning centers, both theories yield, for the mean volume

pinning force, the expression
p, = a.Np.fm.(B/¢o).S(0) , (2.1)

where a is the radius of the pinning centers of density Np,B the magne-
tic induction, ¢0 the flux quantum, and 5(0) the maximum displacement of
the flux at the pinning center. The local theory of elasticity of the FLL

gives for this displacement??®

5°

J B , (2.2)
Wi ¢ Cops

0 (]

s(0) =

where Ceff is an effective elastic constant given by

-1 2 -0.5 -0.5
Ceff (Cl 1Cuu) * (Csecuu) : (2.3)
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Recent calculations, based on the nonlocal elastic properties of the flux
line lattice, showed that the displacement may be larger by a factor of
up to 100 depending on the flux density B, the relation between 5(0) and

fm, however, remaining linear3?.

A different approach which may be more appropriate for the case of

55 using the

high defect densities was made by Kornfeld and Kronmuller
concept of "flux bundles' %%, and further elaborated by Schmucker and
Kronmiller****S for pinning by density fluctuations of point defects and

by dislocations.
23. Surface Pinning

In contrast to these pinning mechanisms in the interior of the material,
the effects of the surface are not yet so well established. At verysmooth
surfaces parallel to the vortices, there exists a barrier against entry
and exit of vortices resulting from the distortion of the vortices ne-
cessary to obey the boundary condition of zero normal current. This dis-
tortion can be interpreted as arising from "image vortices' outside the
specimen, and the barrier as being due to an attractive interaction bet-

57958 Roughening of the surface will

ween the real and the image vortices
decrease this barrier. Experimentally, however, it was frequently ob-
served (see Section 5) that surface pinning increased when the surface
was roughened®?28%, Thus also geometric irregularities of the surface,
like asperities or slip lines, for example, must be considered pinning

centers.

Another effect of the surface is the reduction of the coupling of the
flux lines to the FLL which can be described as a softening of the FLL
in a surface layer. Extending Brandt's oalculations of the elastic cons-
tants2®, to the case of a plane surface separating a semispace with a
real flux line lattice from another with an image lattice®3®, it is possi-
ble to estimate that Css is the elastic constant with the strongest de-
crease in a surface layer of 10 to 20 lattice constants (Appendix A). As
the effective elastic constant Ceff in Eq.(2.2) is mainly determined by
C__ , pinning centers like dislocations or precipitates will bemuch more

66
effective in this surface layer than in the bulk of the material®@.
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There is no theory yet for the statistic summation of these elementary
surface and near-surface interactions. Because of the softening of the
FLL in the surface layer, however, it is expected that the naive suma-
tion of the elementary surface forces should give a rather good valw for

the observable mean surface pinning force ps.

3. THE CRITICAL STATE

The phenomenological model of the critical state describes irreversible
effects in superconductors using macroscopic concepts like the " flux den-
sity gradient” and the ''mean volume pinning force'™, without considering
the details of the underlying mechanisms. The relation between microsco~
pic and macroscopic description of pinning effects can be illustrated by
the example of a sand hill: although the elementary frictional interac-
tion between single sand grains may be rather complicated, the knowledge
of one macroscopic quantity, the maximum possible inclination of the sto-
pe (“critical slope'), is sufficient to predict macroscopic properties
of a sand hill. In a similar way, the cooperation of the elementary pin-
ning interactions gives rise to the existence of a certain "eritical flux
density gradient', the niaximum gradient which can be maintained by a cer-
tain distribution of pinning centers. For a quantitative elaboration of

the mdel, the elastic properties of the flux line lattice are essential.

The local equilibrium condition for an elastic continuum in the presence

-5
of a volume force pv can be written as

divo+?, =0, (3.1)
or, in components,
2 3Gij
+p, . =0, (3.2)
b Baci v, J

where a is the (second order) elastic stress tensor which, in linear
elasticity theory, is related to the strain tensor € by Hooke's iaw. For
a triangular flux line lattice, the tensor C of the elastic constants has
three independent components (e.g., € ,CM and C66 in Voigt's notation

11
which have been calculated by several authors (Refs.27-31, 34).
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In magnetization experiments, a two-dimensional isotropic compression nor-
mal to the vortices is the most important elastic deformation, the ""bulk
modulus'! CL being given by

= -_ = 2 E-l
c =¢, c. =B2. (BH)0 . (3.2)

The index 0 is to denote local equilibrium, (3B/3H), being the slope of
the reversible inductions vs. field curve. For this type of deformation,
the components (11) and (22) of the stress and strain tensors are equal,
and all the others are zero. The trace of the strain tensor E (the re-
lative size change of an area S normal to the vortices) 1Is related to

the difference AB of the flux density B from its equilibrium value Bo by

AS/S = tr e = - AB/B, . (3.3)

Thus Hooke's law yields, for the nonzero components of the stress, the ex-

pression

-1
0,=9,,*= C -tres= -Bo.(BB/aH)o AB (3.4)

If now AB and thus the deformation varies in a direction normal to the
-5
vortices, Eg. (3.1) yields’the necessary volume force p, which must be pro-

vided by the pinning centers to keep the system in equilibrium:
> -1 -
p, = B,.(3B/3H)," . grad, AB = B,.(3B/3H),' . grad, B , (3.5)

where the symbol grad, stands for the two-dimensional gradient in the
X-y plane normal to the vortices. This equationwas first derived by
Friedel et ql.%% using thermodynamic arguments, and therefore the expres-
sion on the righthand side is sometimes called Friedel force.

Eq.(3.5) is a special form, for isotropic compression varying normally to
the vortices, of the more general equation66

<>

P, = B x curl H , (3.6)

which may be interpreted as follows. A current density 3 = curl H acts
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on the system of vortices (of mean flux density 3) with the '"Lorentz for-
"z
ce' p,

-

> >
p =3 *B . (3.7

Thus, Eq. (3.6) is the condition that, in equilibrium, the sum of lLorentz

force and mean volume pinning force is zero.

These considerations give the quantitative basis for the far reaching
equivalence between the magnetic hysteresis and the critical current of
a type-I1 superconductor. However, whereas Iin magnetization experiments
a real flux density gradient is realized (Eq.3.5), the deformation of the
FLL in critical current measurements is much more complicated (in gene-
ral the flux lines are curved® which demands the use of the more gene-
Eq.(3.6)).

If the flux density B varies continuously within the specimen, Eq. (3.5)
yields the necessary volume pinning force to maintain this flux density
gradient which is equivalent to a bulk current density. If, on the other
hand, the limiting flux density BS at the specimen surface is notin equi-
librium with the applied field Ha, there is a discontinuous jump ABS =
B5 - Bo(Ha) of the flux density (equivalent to a surface current perlen-
gth of the specimen) which can on!é be maintained by a surface pinning
force 65. By integrating Eq.(3.5), one obtains

p, = B,.(2B/oH)," . B, . (3.8)

For a given distribution of pinning centers, there is a certain maximum
value of the volume and surface pinning forces, Pum and Pgm? which are
determined by the density and type of the defects, and which in general
will be a local function of the flux density and temperature. It should
not, however, depend explicitly on further variables such as the magnetic
history, the sign of the gradient, the distance from the surface, the
flux density in neighbouring points, etc. In Section 5, we shall see how

far these assumptions could be confirmed experimentally.

A consequence of the existence of a maximum volume and surface pinning

forces is the eritiecal state. It is defined as that state in which the
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flux density gradient, grad,B, and the flux density jump at the surface,
ABS, take their maximum possible values (aand ABz). These values are
determined by p, - and p_ together with Egs. (3.5) and (3.8). The impor-
tance of the critical state, a concept introduced by Bean'®, is based on
the fact that in most experiments grad,B and ABs adjust and maintain
themselves always to a and ABE Thus, the measurement of these quanti~

ties gives directly the maximum volume and surface pinning forces.

Let us consider, e.g., an isothermal magnetization process of a long cy=~
lindrical sample without surface pinning, but with bulk pinning centers,
in a parallel field. When the applied field is increased above Hcl’ flux
lines will be nucleated at the surface of the sample. The situation is
unstable, with consequent movement of the lines into the interior, aslong
as the flux density gradient is greater than a Upon reaching the criti-
cal gradient, however, the vortices will stop moving and the situation
will become stable. A further increase of the applied field again will
cause a movement of the vortices until a new critical state is establi-
shed. Decreasing the magnetic field causes the flux density gradient to
adjust itself again to its critical value, this time with opposite sign.

Thus in the critical state
grad,B = * ol(B7T) , (3.9)

where the upper and lower signs correspond to an increasing and a de-

creasing field, respectively.

In the absence of surface pinning, the flux density Bs at the surface is
in equilibrium with the applied field Ha; with surface pinning, BSinthe

critical state takes the value

[+ _ C
B =Bo(Ha) T ABS(B,T) , (3.10)

with the same sign convention as for Eqg. (3.9). Thus the flux density pro-
file is completely determined by these two equations. The local flux den-
sity is lower than the equilibrium value B (#,) at all points in the in-
terior of the specimen inan increasing field, and higher in a decreasing

field, thus leading to a hysteretic B(Z,) curve.
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As the critical state is not a state of thermdynarnic equilibrium,it
cannot be completely stable. Anderson®® was the first to propose a ther-
mally activated ""flux creep' in the critical state toward thermodynamic
equilibrium (B=Bo). Later, this effect was experimental ly observed, e.g.
in one of the few quantitative measurements by Antesberger and Ullmaier’®
The observed creep rates, however, are so low (a typical relative change
of the flux density gradient is of the order of 10~% per hour, Refs.9 and
69) that the static critical state model is sufficient for mst practi-
cal purposes. This flux creep should not be confused with “flux flow',
the movement of vortices caused by overcritical flux density gradients or
overcritical currents.

The critical state mdel, as described so far, cannot be complete in ano-
ther sense, to ~ for geometric reasons, a flux density gradient normal to
the vortices can only be created without macroscopic lattice curvature
by distributing dislocations in the FLL3%. A simple geometric relation
between the density of flux line dislocations and the flux density gra-
dient was deduced and experimentally proved by Essmann and Triuble’®” 3¢,
The critical state may be influenced by the presence of these dislocati-
ons, either by the violation of local equilibrium in their neighbourhood
or by their influence on the critical shear stress of the FLL®?3%, Recen-
tly, Schmucker®??*? treated quantitatively the effect of flux line dislo-

cations on the statics (Eq.3.5) and dynamics of a pinned FLL.

4. MEASUREMENT OF FLUX PROFILES

The only direct method of measuring elementary pinning forces fm is pro-
vided by neutron diffraction’! since the width of the so called rocking
curves is directly related to the mean bending of the vortices. In gene-
ral, however, the determination of pinning forces in magnetized speci-
mens is based on measurements of flux profiles which, by Egs. {3.5) and
(3.8), are related to the mean volume and surface pinning forces p, and
py-

The hysteretic B(H) and rnagnetization curves reflect only mean properties

over the whole specimen cross section (the same is valid for the mecha-
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nical measurements, s. Ref.72). This integrated information can only be
analized quantitatively in terms of pinning forces for specimens with
very small dimensions in the direction of the gradient®®*”3, and without
surface pinning, so that the flux density gradient can be considered cons-

tant across the sample in a good approximation.

4.1. Minor Hysteresis Loops

The method of "minor hysteresis loops'" offers the possibility of measuring
separately volume and surface pinning forces as a function of the local
flux density in bulk cylindrical sarnples. It was developed by several au-
thors for different measurement techniques. In the so-called d.c. techni-
ques, the applied field is varied linearly in time, and the corresponding

74175 o1 the differential susceptibility %278

variation of the magnetization
is measured. The same information is obtained from a.c. techniques, where
a small .a.c. field is superimposed on a large d.c. field. The voltage sig-

773578
’

nal induced in a pick-up coil can be analized harmonically directly

79280 or by integration using a lock-in amplifier®!. Al

from its waveform
these methods of minor hysteresis‘loops are based on the generalized con-
cept of critical state described in the preceding Section. As an example,
the technique of differential susceptibility measurement will be described
in more detail since this technique gives a direct graph of the flux den-
sity profile. The experimental arrangement consists of a pick-up coil wound
closely on a long cylindrical specimen, and a compensation coil witl the sa-
me product (turns.area), but at a certain distance from the specimen. The
two coils are adjusted to give a total voltage signal, u, which is propor-

tional to the time variation of the mean magnetization

M _ (/) 4

da _di
U= gt dt - (4.1)

If the applied field Ha varies linearly in time, this voltage is proportio-

nal to the differential susceptibility ¥,

M &
E‘E=E.3‘E=X.E—E . (1‘-2)

Fig.l shows schematically a hysteretic magnetization curve of a type-i1| su-

percondutor. The applied field is at first monotonously increased to the
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value H0 , and then decreased with a constant sweep rate dd/dt. The mean
magnetization follows the bold curve connecting the two branches of the hys-
teretic magnetization curve. The resultant induced voltage signal of the
two coils is shown in Fig.5 as a function of the field decrease AH. The ini-

tial slope of the minor hysteresis loop is (-1), equal to the slope in the
perfect diamagnetic state. This value can thus be used to calibrate the

susceptibility scale of Fig.5.

The critical state model (Eqs.3.9 and 3.10) determines uniquely the flux
density profile B+(r) in the specimen after increasing the applied field
monotonously from 0 to #, (Fig.6, solid curve). When the applied field is
now decreased, at first this profile remains unchanged as long as |B+(R) =
BO(HO-AH)I is less than the critical surface discontinuity AB:.The corres-
ponding horizontal part of the susceptibility curve in Fig.5 extends from
A4 =0 to AH  which is related to AB; by

M =2, AB: . (o8/2m) )} (4.3)

(Appendix B). A further decrease of the applied field then causes vortices

to leave the specimen, and again a critical state will adjust itself (B_(r),
dotted curve of Fig.6). As long as the field decrease A# is not too large,

i.e. the induction discontinuity can be considered constant, the profile
B_(r) is exactly symmetric to B, (). The maximum depth x up to which the
flux density has changed is determined by the condition B+(R-x) = B_(Rr-z),
the induction at this depth being

B+(R-x) =Bo(H) - 05 x (3B/3H), . AH, for AH> A#, - (b.1)

As shown in Appendix B, the susceptibility of Fig.5 is given by

x=1-2_ GBroE) .x , (4.5)
o4 0

when the front of the profile change is at depth x (P is the periphery,and

A the area of the specimen's cross section).

Equations (4.4) and (4.5) are two linear relations between X and x on the
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Fig.5 ~ Differential susceptibility as a function of the field decrease

AR in the rninor hysteresis loop.
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Bo(H,)- 4B,
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":7/[ 1 B,(H,-Ali)_
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Fig.6 - Flux density profiles B _(r) and B_(r) in the specimen during a

rninor hysteresis loop (schematic) ,
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one hand, and B(R-x) arid A# on the other hand. Thus the susceptibility cur-
ves X(AH) are immediately linear representations of the profile B+(x)-B§Ho)
near the surface,. turned for 90°, as indicated by the dotted coordinate sys-

tem of Fig.5.

Despite this important advantage for the analysis of the measured curves,
a.c. methods are frequently preferred because of the increased resolution
which, e.g. in the ''direct waveform analysis' of Rollins et al.??, is mo-
re than an order of magnitude higher {0.2um) than in the differential sus-
ceptibility measurements (* 5um). Considering the lattice constant of the
FLL 0.1 = 0.2 um in niobium) and the far-reaching mutual interaction of
the vortices, however, it might be doubted whether this higher resolution
really provides more relevant information and not just incidental micros-

copic details.

4.2. Field Profiles on Cylinder Faces and in Slits

As the normal component of the magnetic induction B is continuous at a sur-
face, the flux profile-outside but very near a plane surface intersecting
normally the vortices - is identical to the profile in the interior. Three
principally different methods have been developed for the observation of

this field profile.

Based on earlier works with a moving Hall probe®2?®3 \weper and Riegler
measured simultaneously the field in a number of very small Hall probes
arranged along a diameter of the samples“. By miniaturization of the pro-
bes, a resolution of better than 0.5mm was obtained®®?%€. To decrease the
effect of the field distoction in the small gap between sample face and

probe, and within the probe thickness, a slit geometry is generally used.

The other two methods can only be applied to an end surface of a specimen.
In the technique of Essmann and Trauble?®®, the points where the surface is
intersected by flux lines are decorated by very small ferromagnetic par-
ticles, the whole arrangement then being investigated, by a replica tech~
nique, in an electron microscope. This method allows of a direct counting
of the vortex densities and shows, furthermore, a lot of details like dis-

locations in the FLL. However, the technique is highly sophisticated and
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time consuming, so its application just to determine flux density gradi-

ents in general does not seem to be justified.

A compromise between the complicated high-resolution and the relative sim-
ple low-resolution method may be possibly provided by the magneto-optical
method®7?%% originally restricted to observations of the coarser domain
structure of type-! superconductors in the intermediate statego, but re-
cently also applied, with promising results, to type-I1i superconductors“.
A thin film of a material with high Faraday rotation is evaporated on a
specimen surface, and the flux distribution is observed Zn situ by an op-
tical polarization microscope. Because of the use of visible light, it is
not possible to resolve individual vortices. However, since differencesin
the mean flux density cause different angles of rotation of the polariza-
tion plane, flux density gradients can be detected. This method seems to
be especially appropriate to observe the general geometry of flux entry

and rapid flux movements®2,

Although these methods are powerful tools to get much information about
flux density profiles, there remains some uncertainty with respect to the
edges of the observed surface, Thus they are probably restricted to the
determination of the flux distribution in the bulk of the specimens, below

a certain surface sheath.

5. EXPERIMENTAL RESULTS

5.1. Flux Density Profiles

The profiles, determined by one of the methods described in the Sections
4.1 or 42, generally exhibit the following common characteristics (Fig.J):
the flux density gradient in a surface layer of a few um is extremely high.
This .is only observable by the described a.c. methods. The other techni-
gues determine this short range drop of the flux density as a discontinu-
ity AB: at the surface. After a transition region of up to 200um, the flux
density gradient becomes constant, or, for high gradients, slowly varying

with the mean flux density.

In terms of the generalized critical state model as described in Section 3,
the flux density gradient o in the interior of the specimen is related to
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Fig.7 = Typicai flux density profile near the surface in increasing field:
deviation of the local flux density B from the equilibrium value BO(H) as
a function of the distance x from the specimen's surface (deformed niobiurn
single crystal, B = 180 mT, T = L.2K, Ref. 93).
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Fig.8 - Flux line lattice and image lattice near the surface.
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the mean bulk pinning force, Py» by eq.(3.5), while the surface disconti-
nuity, AB; , is caused by a surface pinning force Py (Eq.3.8). The exis~
tence of a transition region with a curved flux profile up to a distance
of sometimes 0.2mm, however, cannot be explained by this mode! if cylin-
drical symmetry is assumed. Although it was possible, in a special case ,
to relate this ''near-surface' effect to oxides in a surface layer of nio-
biumg', this cannot be the only reason because in other experiments it was
observed that it varied strongly with the surfaces roughness even for the

same oxidation states®1?6?

5.2. Volume Pinning Force

There is a great number of publications describing measurements of flux
pinning by different defects in the bulk of specimens. Sometimes, it was
possible to relate the measured volume pinning forces quantitatively to
the theoretically calculated microscopic interaction, mainly when preci-
pitates are the pinning centers (Refs.68, 95-99). A quantitative investi-
gation of the influence of dislocations, however, is much more diffi-
cult!®+101  This is due to the fact that the dislocation distribution in
deformed single crystals, where these measurements are made (Refs. 60, 75,
102-104), is far from being homogeneous, and furthermore is highly aniso-
tropic, whereas the theoretical calculations are mainly restricted to the
case of a statistical distribution of dislocations parallel to the vorti-

CeS.

Qualitatively, it can be said that the pinning force of individual dislo-
cations is rather weak. A quantitative description of the effects of an
inhomogeneous dislocation distribution, however, becomes very complicated
because of the fact that in these cases besides the long-range stress field
of dislocation groups, pile-ups, and networks, a variation of the electron
mean free path in regions of high dislocation density may give rise tolo-
cal variations of the Ginzburg-Landau parameter (A-K pinning). Such a com-
bination of elastic and A-K interactions is also responsible for the high
critical currents of the technical superconductor NbTi. It is interpreted

1055106

as arising from precipitates nucleated along dislocations Possi=

bly, a similar effect may be taken advantage of to increase the critical

current of A-15 superconductors®®7,
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For the application of superconducting magnets in future fusion reactors,
the influence of radiation damage on the critical current is essential.lt
is expected that the defects produced by irradiation (interstitial and va-
cancy dislocations,loops, voids, etc) are effective pinning centers. In
pure metals and simple alloys, this was really observed’?; in systems li-
ke Nb,Sr or Nb,Ge, however, the resulting decrease of long-range orders,

108,110

and the corresponding decrease of the critical temperature are of

much greater influence.

The "scaling laws" first introduced by Fietz and Webb!!!, and discus-

112 can be used to analyse the underlying inte-

sed extensively by Kramer
raction mechanism which gives rise to an observed volume pinning force.
These scaling laws are based on the fact that the field and temperature

dependence of the volume force frequently can be expressed as
n
p, = C.B,-f(B/B,) (5.1)

where the constants C and n and the function f can be compared with ex-
pressions characteristic of each pinning mechanism. The exponent n, which
describes the temperature dependence, generally lies between 1 and 3, and
the field dependence can frequently be approximated by an expression like
k
)

) =50 - p)¥, (5. 2)

withb =B/B ,, 0 <A <1 and 1<k < 2.

c2

5.3. Surface Forces

Although the critical surface discontinuity AB:, or the equivalent surfa-
ce current, was observed in a number of flux pinning experiments, it was
not generally realized that this corresponds to a pinning force. Further
systematic investigations, besides the few existing ones, seem to be very
important, considering that, on the one hand, the "‘surface' region of the
FLL extends down to a depth of the order of some um (10 to 20 lattice cons=
tants, see Appendix A), and that, on the other hand, the filaments in mo-

dern technical composite wires have diameters of 5 = 10um,
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Most of the earlier papers discuss the effect of the surface in terms of
an intrinsic surface current related to the surface superconductivitybet-
ween H_, and A _, (Refs.113,115), or to image forces37°63, |f these were
the only causes, roughening of the surface should decrease the effect. Ho-
wever, the opposite was observed much more frequently, i.e.,, increase of
pinning by roughening of the surface®®’®2, The surface roughness was pro-
duced by scratching or grinding, by the slip lines occurring in plastic
deformation of single crystals, or by chemical etching. In the first ty-
pe of measurements, it might be difficult to distinguish the effect of rou-
ghness from that of the dislocations produced simultaneously, but the other

two experiments seem to be conclusive.

Das Gupta and Kramer!!® observed another effect of the surface: surface
pinning varied in the same way as the bulk pinning condi'tions were alte-
red, even at the same polished surface. They concluded that crystal de-
fects (dislocations in their case) near the surface are much more effec-
tive pinning centers than the same species of defect in the bulk. As al-
ready mentioned in Section 2, this is probably due to the softening of the

elastic constant ¢ . of the FLL near the surface (Appendix A).

All kinds of surface pinning may be reduced considerably by plating the
specimen with a magnetic metal or another supercondutor. Evetts!!7 and
Campbe11118 investigated especially the effect of a diffused thallium la-
yer on the surface of specimens of a lead-thallium alloy. They were able
to suppress completely surface pinning of unpolished as well as of poli-
shed surfaces. The explanation is based, on the one hand, on the altered
boundary conditions reducing the effect of the Bean-Livingston barrier 57
as well as of the lattice softening and, on the other hand, the diffusion

process reduces also the surface roughness.

5.4. Field History Effects

The critical state model predicts that the critical flux density gradient
for a given defect distribution is a unique function of the local flux den-
sity and of temperature. The absolute value of the critical gradientshould
thus be the same on the increasing and on the decreasing branch of an iso-

thermal magnetization curve, and the minor hysteresis loops should be com-
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pletely symmetrical. Experiments have shown, however, that both of these
requirements are frequently violated (Refs.76, 80, 119), especially inap-
plied fields H < 0.5 ch, but recently also observed in fields up to 0.9
ch (Refs.93, 120). Generally, it is found that the critical flux density
gradient is lower along the branch of decreasing field. No correlation
seems to exist between this field hystory effect and the absolute value
of the critical gradient. The experimental results of different authors
contradict each other. In the following Section, some possible causes of

this effect are discussed.

A second result not consistent with the critical state model is an asym-
metry of the minor hysteresis loops, sometimes observed in d.c, measure=-
ments. Apparently the sharp change of the flux density gradient (Fig.6) at
r =RX is rounded off. Eckert and Handstein’® conclude that flux varia-
tions must occur even deeper than z inside the sample. If this is really
the case, it is certainly due to effects of nonlocal elasticity. For a
complete understanding, also relaxation effects have to be taken into ac-
count. De Lima!?® observes this asynunetry only if the field is maintained
constant for some seconds after the first semi-cycle, before completing
the minor loop (trapezoidal pulses). If both semi-cycies follow each other
immediately (triangular pulses), the loops exhibit a nearly perfect sym-
metry. These measurements were made with a sweep rate of the applied field
of 4mT/s.

When the sweep rates are much higher, as they are generally in a.c.measu-
rements, relaxation effects due to the viscous damping of the oscillating

1% observed, however, that this effect influ-

vortices may occur. Bodmer
ences the shape of the hysteresis loops only for frequencies of about 60Hz
and higher, which corresponds to sweep rates of the order of at least 100

mT/s.

6. DISCUSSION

As outliped by Schmucker®®, the magnetization processes in a cylindrical
type-{1 superconductor are only possible by plastic deformation of the
flux line lattice. Here, the reversible part of the minor hysteresis loops

may be interpreted as the elastic deforrnation of a surface layer of the
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FLL preceding the.plastic flow, with the field decrease AHy/2 correspon-
ding to the critical shear stress of that surface layer. There are some
important differences, however, between the elasto-plastic deformation of
a material crystal and a flux line crystal.

In deformation experiments of material crystals, the macroscopic elastic
stress is uniform throughout the specimen. When the critical shear stress
in the most favorable glide system is reached, plastic deformation begins

in the entire volume.

in the case of a FLL, in an irreversible superconductor, pinning centers
prevent the elastic stress initially from penetrating farther than into a
thin surface layer. Thus, the surface plays a dominant role in the defor-
mation of the FLL. This leads to another important difference. The flow
stress in a material crystal is mainly determined by a number of bulk pro=-
perties: it is the necessary stress to activate dislocations sources or to
move dislocations over obstacles {e.g. precipitates or the stress field of
other dislocations). Although this type of flow stress also exists inthe
FLL {Ref.39), surface effects probably play here a preponderant role. This
is due to the fact that, in the case of the FLL, the elasto-plastic con-
tinuum itself has to be created or destroyed at the surface, simul taneously
with the plastic deformation. Thus, the critical shear stress (the pos-
sible field decrease A#, withouth flux change) is mainly determined by

surface forces.

The experiments show that there are at least three sources of surface pin=
ning forces:

57 arising from image forces is only rele-

a. The Bean-Livingston barrier
vant at very smooth surfaces of samples with weak bulk pinning, the appli~
ed field being exactly parallel to the surface. Otherwise,it is masked by
the much stronger contributions b. or c.

b. Because of the softening of the elastic shear constant Cee,pinning cen-
ters like precipitates or dislocations are much more effective near the
surface than in the bulk (Section 2.3 and Appendix A).

c. There is a direct interaction of the vortices with the asperities of a

rough surface.

Only qualitative suggestions for the origin of this latter interaction exist
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at the moment. Ore contribution should arise from the length variation of
the part of a vortex within a surface asperity. The extreme case of this
mechanism, vortices crossing perpendicularly a surface of well-defined
roughness, was investigated experimentally by Morrison and Rpselu.

A second contribution to the observed pinning of a rough surface mgy be
due to the necessarily numerous initial intersections of a flux line with
the surface asperities. At each intersection, the vortex is strongly dis-
torted!?? which increases its self-energy. If the vortex it not normal
to the intersected surface, this energy is further increased by a curva-

ture of the line.

The depth of the layer where these mechanisms are effective is less than
2um, in many cases only about 0.5um. Thus, they are no doubt responsible
for the discontinuity ABS of the flux density in the surface, but they are
not able to explain the observed enhanced flux density gradient in adepth
of up to 200um (Fig.7, transition region). To understand this observation,

62

we proposed some ideas®°® which are based on the flux spot mode! of Hart

and Swartz®®.

The critical state as described thus far is a two-dimensional model, as-
suming straight flux lines in an infinite parallel cylinder. In reality,
however, the flux line will not penetrate into the cylinder at once over
its entire length. Initially, it will be created over a short length only
at such a point of the surface where the nucleation energy is occasionally
lowered {e.g. near the end faces or at other geometric or chemical inho-
mogeneities). During the further flux penetration, the points of exit of
this flux line have to move longitudinally along the cylinder surface
(""flux spots™). Even when the center section of a line is already in the
bulk of the specimen (e.g. 200um deep), one or both end sectionsof the
same line are still in the surface layer, where they are subject to the
high surface forces. Because of the line tension of the vortices, the de-
eper penetrated parts of the line are coupled elastically to these end
sections, thus still feeling, although indirectly, the surface forces.
This mechanism will be even more pronouced if the surface is not exactly

parallel to the applied field.
In samples with a strong anisotropy of the macroscopic pinning forces (e.
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g., plastically deformed single crystals), there is another mechanism lea-
ding to an apparent deep reaching enhanced flux density gradient. The in-
duced voltage in the pick-up coil is an integrated signal over all azimu-
thal directions. The analysis of the curves by Eqs.{4%.4) and (%4.5) thus
yields mean values of the eventually anisitropic flux density gradients.
If the anisotropy is however so strong that the flux changes in some di-
rections have penetrated into the bulk region whilst, in other directions,
they have not yet overcome the surface layer, the susceptibility method
yields an averaged value between surface and bulk properties without much
significance, simulating an enhanced gradient in a layer much thicker than

it is in reality.

The influence of the magnetic field history, the fact that the absolute
value of the flux density gradient is different in increasing and decrea-
sing field, is hardly understood yet. One of the properties which mightbe
different on the two branches of the magnetization curves is the density
and distribution of dislocations in the FLL (Ref.,119). If there are no
Frank-Read sources!?® in the bulk of the FLL, all dislocations have to be
created at the surface. In an increasing field, they will originate and
penetrate into the bulk together with the vortices. in a -decreasing field,
however, the flux line lattice arises at first homogeneously in the whole
cross section as soon as the field reaches H_,+ The dislocation density

of this initial high-field lattice is probably rather low. When the field
is now decreased, the necessary dislocations to build up a flux density

gradient have to be created at the surface and penetrate deep into the
bulk opposite to the direction of flux movement. This will in general re-
sult in another dislocation density and distribution rather than in an in-

creasing field.

At first sigkt, this mechanism should give rise to the strongest field
history effect at fields just below ch, where the difference in the dis-
location density between increasing and decreasing field is greatest, in
contradiction to all observations. At these high fields, however, the shear
modulus of the flux line lattice is so small12®*2* that it behaves more
like a "'tiquid" than like a “'solid", without the necessity of dislocati-

ons for a plastic shear.

Another mechanism which may contribute to the field history effect is ba-
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sed on the surface barrier of a rough surface. 1f this barrier is very much
stronger for leaving, than for entering, vortices, it may become possible
that in decreasing field some sectors of a cross section are pinned com-
pletely by the surface. In minor hysteresis loops, these sectors will not
contribute to the total flux change which therefore is less than expected
from the gradient. The averaging measurement thus sirnulates a lower flux

density gradient in decreasing field.

Similar mechanisms may contribute to the observed asymmetry of the rninor
hysteresis loops. Besides this, the nonlocality of the elasticity of the
flux line lattice will play an important role here. The Friedel force on
an element of the FLL is then determined not only by the local flux den-
sity gradient, as described by Eq. {(3.5), but also by the gradients in the
vicinity, up to a distance of several lattice constants?*. In the model
calculations of Section 4% and Appendix B, it was assumed that the criti-
cal state is always realized by a constant flux density gradient. By the
nonlocal elasticity of the flux line lattice, this cannot be completely
true in minor hysteresis loops near r=R-z (Fig.6), where the flux density

120 chow that,

gradient suddenly would change its sign. Detailed calculations
during the formation of the flux profile in minor hysteresis loops (Fig.6),
a generalized Friedel force acts in the direction of the sample surface
even at a radius slightly less than (R-x). This gives rise to a blunting
of the sharp edge in the flux density profile, at r=R-x, as observed by

Eckert and Handstein’®.

In minor hysteresis loops, relaxation processes frequently cannot be ne-
glected. At least two relaxation times have been observed. The first is of
the order of 10ms; this is probably due to viscous damping of the vorti-
ces, and only becomes important for a.c. measurements with higher frequen-

10%  The second relaxation time is of the order of Is; it describes

cies
the flux creep or "settling down” of the flux profile immediately after
it was forced to change. This relaxation time is consistent with the re-
sults of direct flux creep measurements in hollow cytinder®®orby a SQUID

technique®?.
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APPENDIX A: SOFTENING OF THE FLUX LINE LATTICE NEAR A SURFACE

The pair interaction potential between two parallel London flux lines at

a distance r is given by

Ulr) = 2(¢,/4m )2 Ko(rll) s (A.1)

where Ko(x) is the modified Bessel function, and A the penetration depth.

Calling J the self energy of a flux line, the total energy of an arbitra-

ry arrangement of N flux lines can be written as??
F=NJ+ L U.. , (A.2)
<j .

as long as all mutual distances are large compared with core dirnensions.
Following Brandt?®, the bulk modulus €, is given by

AF i
0, = = , =— (A-3)
L 14 2¢2
with the strains Em = EW = g, and the shear constant C'66 by
AF 1
Cee =7 .=z (A.4)

with the shear anglea = +*E < The two constants can be calculated by
deforming the lattice homogeneously and calculating the corresponding va-

riations AF of the total energy (A.2).

Egs.(A.3) and (A.4) are only useful if C| and Cg¢ are constant within the
volume V. To use them also for the calculation of possibly varying cons-~-
tants, we choose for the volume one lattice cell and substitute the double
sum in AF by a single sum over the variations in the pair potentials ofone
flux line. Taking account of the lattice symmetries this leads finally to

the expressions?®
n oy dzU(iﬂu) , (
c, = —— A.5)
L B 2 u
u dlr'u )
2
;oo ) d U(r'u) L3, dU(ru) e
U (A.6)
u u
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Fig.9 = Softening of the elastic constants CL and C, of the FLL near a

plane surface.
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Considering a flux line at a distance x from a parallel plane surface, out-
side of which there is vacuum with a lattice of image lines (Fig.8), all
contributions to the sums in Eqs.(A.5) and (A.6) coming from flux lines
deeper than 2z, within the sample, are cancelled by the contributions of
the image lines. Numerical summation becomes thus very simple and yields
the dependence of the elastic constants shown in Fig.9a and b: Both cons-
tants decrease considerably near the surface, especially the shear cons-
tant Ces’ the softening of which already begins in a depth of 10 to 12 A
(0.5um in the case of Nb). The naive application of Eqs.(A.5) and (A.6),
for a regular FLL up to the surface, would even give negative shear cons-
tants very near the surface. In reality this means that in this region the
vortices form a " flux line liquid'™ rather than a flux line lattice.

APPENDIX B: DIFFERENTIAL SUSCEPTIBILITY IN MINOR HYSTERESIS
LOOPS

The flux density profile, B+(r), after increasing the applied field mono-
tonously from 0 to H can be calculated from Egs. (3.9) and (3.10):

R
5,0 =5 (a) -85 - [0 ar (6.1)
r

Decreasing now the applied field, this profile will not change until AZ =
A, where AH0 is determined again by Eq. (3.10), now with the opposite

sign, i.e.

[

<, (8.2)

B(H-ME) +MB = B (H) - AB
0 0 0 S [

which yields, for AB:, the critical flux density discontinuity in the sur-

face:

AB;:[B*‘(R)] =% ‘%o(Ho) ) Bo (Ho-AHo)] -

1
5 (0B/0H) . M . (B.3)

For Ag>AH , flux lines leave the sample, and the new critical stateis gi-

ven by the profile B_(»):
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BO(HO—AH) + AB: + fR a.dre’ , for R—x<r<pr ,
r

B-(r)= (8.4)
B (r) , for rsR-z .

The flux density varies down to the depth x, given by the condition B_(R-
x) = BL(R-X), and thus related to the field decrease AH by

R

| et =g B, ,08,) - B (8 0] = L Bam), (-an) , (8.5)
R—x

so that the flux density, at R-x, becomes

B(rR-x) = B {H) —% (8B/3H) .AH (B.6)
0 1] 0

The total decrease of the magnetic flux in the sample is

Ay = 1 [BAx) - B ()] dr , (8.7)
A

which can be approxirnated by

R
o=p. | B -50] (8.8)

R-x
if x<<R, where P is the periphery of the cross section A. With the rela-
tions 4B = Ad/A and H =H -AH, the differential susceptibility x =dzf4/dHa

becomes

1

=
&

-X = ] ‘-,LI‘O—A' sy (59)
which cornbined with (B.4), (B.5), and (B.8), takes the form
x =1 -2 (B/oE) = (8.10)
[SPY4 0
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The linearity of Eq. (B.IO) 1is a direct consequence of the condition x<<R.
For a circular cross section, however, it is possible to generalize this

equation in order to make it valid for the whole cross section:

= x = 1-(2/u)-(28/3H) (/) .[1-(x/28)] . (8.10a)
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