Revista Brasileira de Fisica, Vol. 8, N° 1, 1978
Playing with the Collective State
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We examined the condition for a large energy-shift of a single unper-
turbed level, due to the residual interaction, in a nuclear many-body
system. No separability assumption as made in the schematic model has
been considered. A simple algorithm for calculating the energy of the

corresponding state is presented.

Examina-se a condi¢cdo para que haja un deslocamento grande de um Unico
nivel ndo perturbado, pela presenga da interacao residual, en un sis-
tema nuclear de muitos corpos. Nao se faz hipdtese alguma de separa'
bilidade, ao contrario do que ocorre no modelo esquemético. E apresen-
ta-se un algoritmo bastante simples para se calcular esse deslocamento

de energia.

1 INTRODUCTION

The treatment of the nuclear many body problem is based on the indepen-

dent particle approximation, i.e. the shell model. The model Hamiltonian
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H describes independent: particle degrees of freedom and the levels of
its energy spectrum occur in well separated bunches which is characte-
ristic of the shell model. it is observed experimentally that the ener-
gy spectrum of a many-body system usually contains one or more levels
of collective character. The total Hamiltonian of the many-body system
is given by the model Hamiltonian H plus a residual two body interac-
tion ¥,and the collective levels would result from a strong mixture of
levels in a bunch, caused by this residual interaction. In ideal cases,
the resulting energies are strongly shifted with respect to the center

of the bunch of unperturbed energies.

Physically, the collective states are explained in terms of particle-
-hole excitations and the schematic model as described in Ref.1 supplies
some mathematical insight for that large energy shift. The schematic mo-
del is based on the separability assumption of the matrix elements of V
in the model space. However, such separability is not valid in general
so we eliminate here this restriction and discuss necessary and suffi-
cient conditions for the residual interaction to shift one of the ener-

gy levels of a bunch of unperturbed energy levels.

Starting from the eigenvalue problem in the form of a secular determi-
nant, we exhibit in Section 2 the condition for occuring a strong ener-
gy shift in a single level. This leads at the same time to a simpleal~
gorithm for calculating this energy shift. As an illustration we give
in Section 3 results of Aaalculations performed with this algorithm using

schematic and realistic Wamiitonians.

2. CONDITION FOR A LARGE ENERGY SHIFT, OR WHEN DOES A
STRONG ENERGY SHIFT ARISE?

VW are interested in physical many body systems for which it is appro-

priate to cast the energy eigenvalue problem into the form

L (H.. - ES

e, =0 2.1
P 7«J)J ’ (z.1)

where CJ. = <<I>3;]‘P> are the components of the many body wave function ¥

in a suitable model space spanned by a subset of eigenstates {@3.} of H
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.(the many body unperturbed Hamiltonian), and Hij is given in terms of

the unperturbed energies E| and the residual interaction V by

H..=E, 8., +<0.|V|[a.> .
1J T iJ I J

W introduce the average energy E® of a bunch of N unperturbed energies,
N
By L B
and the energy shifts will be measured from it. Let us then find the

conditions under which a single energy eigenvalue E, in (2.1), isstron-
gly shifted (either up or down) by 'V with respect to E°.

with &€ = E - £° and €; = Ei - E°, the eigenvalue problem (2.1) reads

]ei 6.7;‘7 + Vig " E 61’3" z 'hv,'j—e Gij’ = 0.

For large |e|, we may extract from each line the factor e and the re-

sulting determinant

P ]il 8 hZiZ hIV'I:N
X (-) (-e__- ]7;)(?-527:)....( = -SNiN)=0
P(Z 1 .uiiy) :
1 2 P
(the sum is over all possible permutations, P, of Z,, i, ... in) is then
expanded in powers of (h/g):
Q.
o1, %2 =z
l+e+€2+..+€N—0. (2.2)
Here
k
= (-)" ) e ovee. (2.3)
% it >0 1% Yk
12
where di L g, are the determinants corresponding to the submatri-

ces of h;.z containing rows and columns i i2 ik. Specifically,
1
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and

Due to trace invariance, the trace of h is also given by the sum of the
N eigenvalues of Eq.(2.2). Thus (-ocl) is the maximum possible energy
shift and occurs if o = 0 for k2 2. 1t is clearly sufficient thatak/e
be small for ¥ > 1 in order to have a single strongly shifted level.This
condition will be fulfilled if the nondiagonal matrix elements are com-
parable in magnitude to the diagonal ones, as can be seen for instance

from the expression

a = PR SN S
o= L by =)
>4
Thus if ak/ek is small for k > 1, the strong correlations we need between

the states can be built up.

We now show that the relative smallness of higher order terms in (2.2) is

also a necessary condition for the occurrence of a strong energy shift.

Indeed, let e , ez, eN be the roots of (2.2). Then,
N
CLI =T izl ef (2.43)
o= L oee; (2..4b)
<7
OLa == z 67: ej ek (2.,4¢)
1<i<k
RY. |
O"IV (=) €y 8, =+ &5 - (2.4d)
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Assuming that lell >> fek[, for k > 1, the order of magnitude of the terms

of Eq.(2.2) for this root e, are roughly

Q
R

e.
L-0m, 2=-0(z B, ...
EI i z>1 &

m

Thus the higher order terms are small when there is a single strongly

shifted energy level.

Remark: If two energy eigenvalues were strongly shifted then clearly
0L2/€2 would be comparable in magnitude to the first two terms in (2.2)

as is obvious from expressions (2.k4a,b).

The eigenvalue problem in form (2) will now be solved for the largest ei-
genvalue, using the following simple linearised scheme. W consider Eqg.
(2.2) truncated after the kth term. In order to solve it for thelargest

eigenvalue, we put

1 + iy = 0 (2.5a)

(!1 a,

1+ 2 0 (2.5b)

+ =
RO

+3] (12 Cx,k

1+ + + o+ =
NORNCONC) K =1y

0 (2.5¢)

and

* %%

a
1 o e =
P TR T e ek - O fer n>k
E 4 € € € e €

. (2.5d)

Equations (2.5a-c¢) determined the starting values for the iteration scheme

(n) -

(2.5d). In case of convergence, 1im /e = 1/gy, obviously solves the
n
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truncated equation. The convergence of € towards the desired eigenvalue
is very fast if the higher order correction terms are small. This can be

seen from the numerical examples given in Section 3.

Let us look into the conditions for convergence of the iteration scheme
(2.5d), starting with k = 2:

a - o
1 2
'+€n+7—)——(—yen€n_, =0 (2.6a)
or
-1
1 _ (2.6b)
E(ni a2
al + F(n—]j

This recurrence relation generates a continued fraction expansion for
which the initial value is given by (2.5a):

(n)

it is proved in the Appendix that the limit of 1/e fornm > = exists
only if azl > ‘laz . The limit value is given by the root of Eq. (2.6a)

with the largest magnitude.

The iteration scheme for k¥ > 2 has the same form (2.6b):

- — = ___..___&2 , (2.6¢)
0L1 + sln-li

with an effective &2 which, for k = 3, is given by

o}
o 3
o = o +
2 2 ein-Z)

The condition for convergence ‘is now af >4 &2 (the condition should be
ui > &2 where &2 is the limit for n = of & but we shall assume that
zZ o
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3 is stabilised) . One sees that the smaller the higher order terms, the
larger the energy shift of the resulting eigenvalue E

It is amusing to note that the a's can be obtained by the following gra-
phical prescription. The states d)i are represented by a line (labeled
i), the operator h by a "cross" x (like a one body operator), and hiJ is
drawn as

J

= - X

h..=
1d .

7
using the convention that the first label corresponds to the lineleaving
the vertex and the second to the line arriving at it. W exhibit in Fig.

1 the diagrarnatic expressions for a few of the a,b.’s.

=6

Omex vy FIG.)
2ol T

.4

O---x G-«

d«3= O---" + X %+ '

. Pl
O---x 'C>2 Q’ ’

Oemex Oceex ¥ M.
%= O-cx 4+ Beecx 4 ';©= . O---x PR ’lf
O---x x ¥ * y o

P x

R =

The rules for calculating the diagrams are the usual ones: each closed
loop carries a minus sign and one has to sum over all permutations ofthe
labels. The Sth graph of o, for instance, confains 4! = 24 terms cor-

responding to the determinantal expression {2.3).

Finally, let us consider the expansion coefficients ¢ = <¢k|‘1’> of Eq.
(2.1). Putting ey = 1, they are given as
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h.. - 8., = 8. R
o - | ¢ 7 € 67,,7)6.77( 6.77< %N] L k=1,2,..., -1,

where Sik =1 - 6jk’ both determinants being (¥-1) dimensional. Expan=-
ding again in powers of %&/e, we have

gt LTk LE g,
£ T 1

o = €% e¥ i<j g
k o a,
T+ = +-<=4 .,
e g?

where a}'{ are the expressions (2.3) restricted to the (¥-1) dimensional
(%)

submatrices of hij and d'j are the subdeterrninants built out of the
rows ij.. « and Kk, and columns ij.. . and N.
Thus, for instance
d(k)E - hkN R (2.72)
, hee ~ Paw
a)= : (2.7b)
Mt = P
© i Dy T P
k
d..” =l h,, h,, = h, 2.
(] Jr 43 Jv (2.7¢)
Mt Mg T M

W consider the lowest order approximation for ey by inserting into its

expression

0w
W_5 .
i=1 **
Using (2.7a), we can write
OB "
ko 71 h
) s T
o i
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The transition amplitude induced by an operator O from that state des-

cribed by ci') to another state [X> is proportional to
2 <x]ofe > <o, [7le,>,

which is a coherent sum and thus strongly enhanced for operators which
have the same signature in their matrix elements as the Hamiltonian h,
Example in the schematic model is the multipole operator used for O and
h.

3. NUMERICAL EXAMPLES

Let us first consider a few simple examples. The ideal cases for a ma-
ximal shift (up or down) of a single energy eigenvalue are those of Ha-

miltonians with constant matrix elements:

(a4
A4

('hij) =

In this case, clearly all the subdeterminants of order k > 1 are zero.
Thus, there is only one eigenvalue different from zero, e=N4, ¥ being
the dimension of the matrix, the other (#-1) eigenvalues being zero.

In order to see how the iteration scheme (2.5d) does work, we consider

next the less trivial matrix

109 . . .
0.9 1 . . .
(hij) ={ . . . . .

. . . . .

In Table 1, we exhibit for #=10 the first few relevant ork’s, the conver-
gent energies € of the continued fraction expansions and the effective

&-2 entering into these expansions.
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Table 1

a € &
k k k 2
1 -10.00 10.00 -
2 8.55 9.06 - 8.55
3 - 3.36 9.10 8.18
4 0.78 9.10 8.19

Clearly, the condition a? > 4 &2 is satisfied and the convergence of the

ek’s to the exact eigenvalue E = 9.10 is quite fast. The exact eigenva-
lues are obtained by diagonalisation of the matrix (2.8) which givesri-
se to one eigenvalue equal to 9.10, all the others being degenerate and
equal to 0.1.

As a less favorable case, we consider a matrix whose diagonal matrix

elements equal twice the off diagonal ones:

1 0.5 .
AR
() = |- « - v - (2.9)

The corresponding numbers are given in Table 2.

The condition ai >h &2 is again satisfied but the exact eigenvalue E =
55 is reached only by taking higher orders into account. lt is clearly
possible to redefine de zero of the energy thereby reducing the diffe-
rence between diagonal and nondiagonal elements and then the iteration
scheme will again converge very fast. Note that for these simple cases,
(2.8) and (2.9), it is possible to solve the problem imnediately by sub-
tracting from the diaganal matrix elements 0.1 and 0.5, respectively, as
these subtractions will produce constant matrices whose solutions are ob-

tained trivially (1st example presented) and, in order to obtain the ac-
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Table 2

tual eigenvalues, one has

k o, & a,
1 -10.00 10.00 -

2 33.75 divergent 23.75
3 -60.00 6.06 23.87
4 65. 63 5.38 24. 88

simply to add to these solutions

the amount

which has been subtracted from the original diagonal matrix elements.

As a further illustration,

we take a realistic case,

using as

interaction (i) 8§ = force and (ii) Sussex matrix elements?.

2% state at 443 MeV in '%¢C

residual

(i) This calculation was done in Ref.2 assuming that this state can be

described by a superposition of seven particle-hole states as given in

Table 3; the unperturbed energies E'L taken from experiment?.

Table 3

Configuration

hole . particle E'i(MeV)
181/2 ‘da/z 33.63
131/2 |d5/2 29.80
v, 2, 29.84
' ., 27.64
lpa/2 lf5)2 32.14
|p3/2 ]f7/2 25.74
w,, v, 13.77
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The two-body interaction used? is a simple 8-force which results in the
following particle-hole matrix elements
.=d., (~a,a.+ b.b,

Vi =9y (aﬂat7 ; ,7) , (2.10)
where the a's and b’s are simple geometrical expressions (see Egs. (2.
3a) and (2.3b) of Ref.2) and Jij are the radial matrix elements given in
Table 2 of the same reference., !f one had assumed constant radial ma=
trix elements, the interaction would be separable. The average energy
with respect to which the shift is calculated is E® = 27.509 MeV. The
results for the iteration scheme are presented in Table 4.

Table 4
o € a
k x x
i 18.55 -18.55 -
2 -161.0 ~-24 .99 -161.0
3 -1054 ~-23.49 -116.1
4 6342 -23.04 ~-103.4
The exact result,obtained by diagonalization of the matrix, is -23.08

MeV. Adding E° to the resulting €5 ONe obtains E = 439 MeV (the

strength of the 8-force has been adjusted to reproduce this 2 state).

(ii) Same as in (i) using the Sussex" matrix elements as particle - par-
ticle interaction. We used b = 1.6 fm for the harmonic oscillator size

parameter. The results are shown in Table 5.

Table 5
k o € a,
1 1.90 -1.90 -
2 -167.8 -12.80 -167.8
3 649.1 -15.46 -209.8
4 1613 -15.25 -203.4

Adding E° to the resulting €45 One obtains E = 12.26 MeV.
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For both cases (i) and (ii), the condition af >4 &2 is satisfied andthe

convergence is quite fast.

4. SUMMARY

W have shown that in order to determine the energy € of a state which
is strongly shifted, with respect to its unperturbed position, by a re-
sidual force, it is simply necessary to calculate the sum of the subde-
terminants of the full Hamiltonian matrix. These sums o enter into low
order equations for € which allow in addition for a simple recursive so-
lution in form of a continued fraction expansion. The smallness of ak/e
for k > 1, is a necessary and sufficient condition for the occurrence of
a large shift. In view of the simplicity of that procedure, compared to
the full N-dimensional problem, we have the feeling that there should be
a corresponding simplification in a microscopic many-body calculation of
such a collective state.

One of the authors (W.G.) would like to thank the members of the Insti-
tuto de Fisieca da Universidade de S50 Paulo, for their warm hospitality

during his stay in S3o Paulo.

APPENDIX

The continued fraction expansion {2.5b) or, in general, (2.5c) (assuming

a stabilised &9) is generated by the linear rational transformation

S =5 = ——— {A.1)

The nth order approximation is then given by

§*w) = s(s(5...8))...) , (A.2)

with w = 17/e{?). In order to establish the conditions for the existence

of 1im §™(w), we follow Wal1®. The mapping (A.1) has two fixed points
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-o +/a? - by
1 1

1,2 2;
a
2

and allows the following relations to be valid

S - )J(_ le—X1
= ,for‘X’_#_1 Xz
S-X, X w-X,
and
S S "L,forXI:X2

S-X w-X X

Therefore, the nth order mapping, (A.2), obeys

S(w)-X A - X,
S"(m)-X [J
)

and (A.3)
— ! c I n , for X, = X
" 1
S*w) - X, w-Xx, I,

From {(A.3), it is obvious that for n = «, the hm $™(w) has to be equal
to X,. Thus, for X =X the continued fractlon expansion converges to-

wards X,* For X # X, and [X1|<|X2|, we have for sufficiently large = ,
§Mw) - X, = sn(s”(m) - X)),
with

{8 _| = const <<l
n

=L
X

So

(A )
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Thus again the continued fraction expansion converges and 1im 5Mw) = Xl,

which is the fixed point of smallest magnitude (largest eng_ltog‘;’y).

Finally, if }x | = |x |andXx # X, the limit of the right-hand side of
1 2 1

(A.4) obviously does not exist. Thus, the condition for convergence of

(2.5b,¢) is

aZ > hq

or (OL1 # 0)

(assuming & estabilised).
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