Revista Brasileira de Física, Vol. 8, Nº 1, 1978

A Study on a New Tabulation of Kaon-Proton Total Cross Sections

B. DI CLAUDIO and G. VIOILINI

Istituto di Física dell'Universita, Roma, Istituto Nazionale di Física Nucleare, Sezione di Roma

Recebido em 11 de Novembro de 1977

A new tabulation of kaon-proton total cross sections, with a treatment of data and errors, which is particularly suitable in calculating with dispersion relations, is presented.

Apresentam-se novas tabelas de seções de choque para espalhamento kaon--proton, como também um tratamento dos dados e erros que se revela particularmente conveniente quando se calcula com relações de dispersão.

1. INTRODUCTION

Forward dispersion relations are currently used with the purpose of predicting the value of coupling constants and of thereal parts of a scattering amplitude¹. Their use involves the evaluation of integrais of the type

$$I = \int_{a}^{b} h(\omega) \sigma(\omega) d\omega, \qquad (1.1)$$

where $\sigma(\omega)$ is the total cross section, at the laboratory energy, w, for the process under consideration (or for the crossed one), and $h(\omega)$ is a weight function which may be singular at some energy value. In such a case, *I* must be evaluated as a principal value integral.

In the evaluation of (1.1), there are two sorts of ambiguity: first of all, the function $\sigma(\omega)$ can be known only at discrete energies ω_i , and each value $\sigma(\omega_i)$ is affected both by a systematic and a statistical error

which must be taken into account if one wants to estimate the uncertainty on I; secondly, the particular form of $h(\omega)$ may enhance these uncertainties, at least in some energy region. From this discussion, it is clear that, in order to evaluate both the value of I and of AI with high accuracy, one must have a good set of input data. In particular, one must get rid of two possible sources of spurious effects: a) for a given experiment some points may be accidentally displaced in comparison with the remaining ones; b) when many experiments have been performed in the same energy region, there may be some systematic discrepancy between them.

The first effect can produce a structure in the real part, due to the principal value integration, and there is no doubt that it is generally unreasonable to interpret a single shifted point as an evidence for a structure in the amplitude. The second effect can have various consequences, according to the method which is followed in the interpolation of the data points, and often makes it hard to estimate significantly the errors on the calculated quantities. Therefore, it is important that the total cross section data be carefully examined before they are used in dispersion relations. In a sense, this is what was currently done already in the sixties, for example in the πN analyses performed by the Karlsruhe group², where the experimental points of $\sigma(\omega)$ were replaced by a suitable interpolating function. In that way, however, the estimate of the statistical error on *I* is a difficult task. This is only one of the two extreme approaches which can be pursued, the other being that of rejecting any suspicious point.

More recently, this problem has been deeply examined by Ferrari³, still in the case of πN scattering. For this reaction, the problem of distinguishing statistical from systematic errors is particularly important, even more than for other reactions, like those considered in the present paper, where only occasionally there are two experiments in the same energy region, with comparable statistical errors and exhibiting systematic discrepancies.

In the πN case, Ferrari, besides taking into account the systematic errors on the various sets of points coming from different experiments,

190

proposed a procedure to smooth the data so that no spurious structures are introduced. His procedure is intermediate between the two above extreme approaches. In fact, he performs a fit to several data points in energy regions determined by inspection of the data. Whenever the best fit curve does not cross the error bar of a given point, the value of this is replaced by that predicted by the fit to the neighbouring points. However, to keep a memory of this substitution, to the new point is attributed an extended error, of the order of the difference between experimental and fitted values.

2. THE Kp TOTAL SECTIONS

In this work, we follow the procedure of Ref.3 for Kp scattering. As we mentioned above, in our case we do not pay much attention to the problem of the systematic errors; this is not a serious limitation because in these reactions they are generally folded into the statistical ones and **it** would be **almost** impossible to extract them, and to distinguish the two contributions.

Before discussing our calculations, let us briefly summarize the experimental situation of Kp total cross sections.

The reaction $\mathbf{K} \mathbf{\bar{p}}$ has an interesting feature; it exhibits a remarkable structure which is also extended below its threshold because of the existence of coupled channels having the same quantum numbers as the $\mathbf{K} \mathbf{\bar{p}}$ system and a lower mass ($\pi\Lambda$, $\pi\Sigma$, $\pi\pi\Lambda$).

It is unnecessary to exhibit a tabulation of the imaginary part of the amplitude in the unphysical region; however, it might be useful to recall that the procedure to estimate it is to perform an analytic continuation of the amplitude from the low-energy region. The formalism currently used for this purpose was originally proposed by Dalitz and Tuan⁴. It is based on a K-matrix parametrization, for which the earliest approximation was one of a constant scattering length. Already in this form, the solutions exhibit* a s-wave resonance corresponding to the Y^{*} (1405)

^{*} We disregard some old analyses which presented also non-resonant amplitudes as possible solutions⁵.

and this feature is preserved in the mst recent analyses which parametrize the K-matrix using either an effective-range or a zero-range approximation. Typical representatives of the two alternatives are Refs. 6 and 7, respectively.

The analyses of these works are obviously confined to the very low energy region. At higher energies, we analyze directly the data; whenever it is possible, we only make use of the mst recent. and accurate data, neglecting previous data which in most cases are much les accurate. For this reason, they are not very important in the fits even when they fail to follow the trend of the most recent experiments. The list of the experiments which we considered in our fits up to 3.3 GeV is given is Refs. -8-13; in the tabulations, we shall quote the experimental source for each point so that one can identify the data we neglected, for example by comparison with compilations of KN data¹⁴. In the region between 3.3 GeV and 6 GeV, only very old data are available, Refs. 12, 15, 16, and their errors are larger than those at lower and higher energies.

The situation for $K^{\dagger}p$ is quite different in the sense that one does not observe such a complex structure. In fact, in this channel there is only some structure in the 1 GeV region, for which conjectures were made that it could be interpreted as an evidence for the existence of exotic resonances.

We have selected the experimental points for K^+p scattering according to the same criteria as for K^-p . The experiments from which we extracted the data are those of Refs. 9-13 and Refs. 17-24. Also, for this reactions the data in the region from 3.3 GeV to 6.0 GeV are rather scarce and old¹⁶⁻²⁵.

At higher energies, there is an improvement in the status of our knowledge of $K^{\pm}p$ total cross sections. The region from 6 to 20 GeV was studied about ten years ago at Brookhaven²⁶, and later the knowledge was extended to higher energies using the Serpukhov²⁷ and Fermilab²⁸ accelerators. At these energies it is more convenient to give the values for the combinations

192

$$\sigma^{(-)} = \sigma(K^{-}p) - \sigma(K^{+}p) ,$$

$$\sigma^{(+)} = \sigma(K^{-}p) + \sigma(K^{+}p) ,$$
(2.1)

and this for various reasons: first of all, the theoretical analysis of $\sigma^{(\pm)}$ in terms of a Regge pole model is much simpler because these combinations separate the contributions of poles of different parity. This allows one to perform separate and significant fits, each with a smaller number of parameters, instead of performing a unique fit to all data. Moreover, it is convenient to write the dispersion integrals in terms of $\sigma^{(-)}$ and $\sigma^{(+)}$; this makes the estimate of the errors more convenient than when using $\sigma(K^-p)$ and $\sigma(K^+p)$, because in the latter case one should consider the correlation of the errors coming from the fact that the same pole term contributes to both cross sections.

3. PARAMETRIZATION AND CALCULATIONS

In the previous Section, we described the experimental situation of $K^{T}p$ total cross sections. As we wrote there, a first selection of the data was done by excluding those data bearing a statistical error much larger than that of the most recent experiments.

Another problem of choice of data occurs when, in a certain energy range, there exist several points from different experiments. If in such a case the points did not show any systematic shift, they were all considered in the fit. If instead it appeared that there was some systematic difference between the points from different experiments, we selected one set of data, on the basis of the statistical accuracy and of the matching with the data in the nearby energy regions. We were particularly careful in handling this problem; in our fitting procedure the matching was insured by performing fits with the last few points of each experiment together with the first few points of the next one, and constraining the continuity with the parametrizations of both regions.

Continuity constraints were imposed by requiring that, at the energy ω , separating the two sets which were fitted, both a and $d\sigma/d\omega$ have the

same value for the two parametrizations. This was done not only for the connection between different experiments but also when the structure of the cross section suggested to break up the interval covered by one experiment into subintervals.

Let us now present our calculations. It is convenient to discuss them following the same partition of the data as in Section 2.

For energy values lower than 6 GeV, we parametrized the cross section for each reaction in the form

$$\sigma = a + bT + cT^2 + dT^3 , \qquad (3.1)$$

where T is the kaon kinetic energy

The parameters a,b,c,d were determined in each interval by fitting the corresponding data with the continuity constraints.

We shall make only a few comments on these fits, referring the reader to the tabulation of our i-esults.

The energy from which we start to use the parametrization (3.1), for the reaction K \mathbf{p} , is that of the lowest energy point of Ref.8, i.e. $\omega = 551$ MeV. Below, we use the K-matrix parametrizations of Refs. 6 and 7 which are in good agreement for the shape of the curve, with only a slight discrepancy in magnitude. We then impose the continuity between the two regions, and use the points from Refs. 8 and 9. The rich structure of the reaction and the form of the parametrization forced us to break up the energy range into many intervals in order not to destroy that structure by our smoothing procedure.

One could think that by choosing a different number of points in the fit, for a particular region, one could obtain different best fit curves. This is not so because the continuity constraints, although unable to determine uniquely how many points are to be taken for a given fit, are sufficient to make the results independent of such a choice.

194

The situation is definitely simpler for $K^{\dagger}p$; in this case, it is possible to select few regions, each with a relatively high number of points. Taking advantage of the wellknown fact that only *s*- and p-waves are present at the lowest energies, i.e. below $\omega = 857$ MeV, we used there only the first three **terms** of the expansion³.

For both reactions, the region between 3.3 GeV and 6 GeV is much. less well known. There, the data do not allow to perform significant fits, and for this reason we treated that region in a different way; namely, we used there an interpolation from the two contiguous regions, exploiting the usual constraints, but giving no importance to the actual value of the experimental data. This procedure is not as arbitrary as it could appear, if one remembers that the purpose of our work is to determine a set of values of total cross sections which is sufficiently smooth and with a reasonable estimate of the errors. Now, all the data in the region are very old and have larger errors than the points from more recent experiments: therefore, since we used those errors as an estimate of the uncertainty on our data in the region, and since the old data are not in disagreement with the calculated values, we may use our values with confidence. A further argument in favour of this procedure is that it is known that the data of the region below 3.3 GeV, and those of the region above 6 GeV, join quite smoothly²⁹.

Above 6 GeV, we have data up to energies as high as 280 GeV. In this interval, the Regge theory states that the combinations $\sigma^{(-)}$ and $\sigma^{(+)}$ have contributions from poles with different quantum numbers; in particular, one has

$$\sigma^{(-)} = F_{\omega} + F_{\rho} ,$$

$$\sigma^{(+)} = F_{p} + F_{A_{2}} ,$$
(3.2)

where by F_x we denote, apart from kinematical factors, the amplitude corresponding to the exchange of a pole having the quantum numbers of the particle x.

The use of Kp data, only, is not sufficient to determine the parameters of all the poles; this would require the simultaneous use of Kn data

because the contributions from ρ and A, have opposite signs. Therefore, we assumed that $F_{\omega} + F_{p}$ could be approximated by one effective **pole**, and that the contributions to $\sigma^{(+)}$ come from the **Pomeranchuk** pole and from a secondary pole which **may** be considered as an effective pole averaging the p¹ and A₂ contributions.

The fits were performed assuming a Regge pole expansion; for the even amplitude we also added a rising logarithmic term, whereas for the odd one we considered both a pure Regge pole model and one with cuts in the complex plane. Typical values of the parameters which can be used for the Regge expansion are: $\beta_{p} = 17.80 \text{ mb}$, $\alpha_{p} = 0.465 \text{ for the crossing-odd}$ combination, parametrized as $\sigma^{(-)} = \beta_{p} \omega^{\alpha p^{-1}}$, and $\beta_{p} = 14.78 \text{ nb}$, $\beta_{p'} = 40.46 \text{ mb}$, $a_{p'} = 0.571$, c = 4.334 mb, $\alpha^{\gamma} = 0.967$ for the crossing-even one, parametrized as $\sigma^{(+)} = \beta_{p} + \beta_{p'} \omega^{p'} + c(\log \omega)^{\gamma}$; for both parametrizations, ω is given in GeV.

Our results are displayed in Tables I-VI, where for each point we give the incident kaon momentum in the laboratory system, the calculated values of a and $\Delta\sigma$, the experimental values of the same quantities, and the experimental source.

In Tables 5 and 6, we exhibit values of parameters which fit best the total cross sections for the various energy intervals. These parameters do not have a particular physical significance, since other sets of values can give fits of comparable quality. We report them in order to allow the reader to calculate cross sections, at other energy intervals, in a dispersive integral.

CONCLUSIONS

To conclude this work, it may be interesting to give a brief account of possible applications of Kp dispersion relations which have some interest in the present status of the matter.

The first application which can be thought of is to calculate again the NYK coupling constants, and the Kp real parts. The interest for this is

TABLE 1

TOTAL CROSS SECTIONS FOR K-P BETWEEN 0.245 AND 6. GEV/C

PLAB	SIGMA- CALC.	ERROR CALC.	SIGMA- EXP	ERROR EXP.	REFERENCE
(GEV/C/	(MB)	(MO)	(MB)	("D)	
. 245	101.330	14.816	113.800	8.000	MAST/75 [8]
•255	97.086	5.300	98.000	5.300	MAST/75
•265	96+697	4.400	94.000	4.400	MAS1/75 MAST/75
.285	84+025	9.416	75.100	3.000	MAST/75
•295	80.059	3.500	82.500	3.500	MAST/75
.305	76.591	3.200	78.600	3.500	MAST/75
• 315	73.834	5.037	70.900	3.200	MAST/75
.335	71.441	2.800	71.500	2.800	MAS1//D MAST/75
.345	70.827	2.900	71.300	2.900	MAST/75
.355	68.924	2.300	68.800	2.300	MAST/75
•365	70.016	2.000	70.000	2.000	MAST/75
.375	//+905 68-947	4.425	81.800	2.100	MAS1/75
.395	91.395	1.900	91.600	1.900	MAST/75
.405	80.524	4.277	76.600	1.700	MAST/75
•415	70.879	2.000	70.700	2.000	MAST/75
+425	63.640	4.015	66.700	2.600	MAST/75
.445	55.332	4.505	55.700	3,000	MAST/75
455	53.142	4.200	57.200	4.200	MAST/75
.475	49.801	.963	48.960	.470	BOWEN/70 [9]
.506	45.088	.450	44.940	.450	BOWEN/70
.536	41.667	•561	42.080	.380	BOWEN/70
•566	39.230	• 340	39.290	• 340	BOWEN/70
.627	36.508	-280	36.410	.280	BOWEN/70
.657	35.788	.330	35.530	.330	BOWEN/70
•686	35.244	.370	35.290	• 370	BOWEN/70
•717	35,309	.350	35.640	.350	BOWEN/70
•736	35.958	+ 350 34 0	35+640	.300	8UGG/68 [10]
.794	40.852	-260	40.960	- 260	Bugg/68
.819	40.958	.300	40.670	.300	BUGG/68
.839	40.417	+658	39+860	.350	BUGG/68
-660	40.651	•560	41.130	•290	BUGG/68
• 681	41.545	•855	42.360	.200	BU66/68
.936	45.766	+415	45.460	.280	BUGG/68
.965	48.250	.956	47.330	.260	BUGG/68
.991	50.088	.395	49.790	.260	BUGG/68
1.020	51,226	.614	51.700	• 390	BUGG/68
1.070	01+099 49-387	1.133	52+170	• 370	BU66/68
1.070	46.724	.652	46.130	. 970	8466/69
1.119	43.463	.260	43.230	.260	BUGG/68
1,144	40.672	.916	39.800	.280	BUGG/68
1.169	30.478	•260	38.670	•250	BUGG/68
1.219	35.073	-250	35.210	•250	8066768
1.244	33,584	.220	33.390	.220	BUGG/68
1.270	32.281	.293	32.520	.170	COOL/70 [11]
1.274	32.129	.230	32.110	.230	BUGG/68
1.285	31.831	•675	32.500	•090	COOL/70
1 320	31.152	.140	31.030	+2=0	C001 / 70
1.325	31.117	.554	30.600	.200	BUGG/68
1.336	31.079	.080	31.120	.080	C00L/70
1.350	31.094	.900	31.200	.900	COOK/61 [12]
1.370	31.212	.110	31.270	•110	C00L/70
1.375	31.338	-261	30.900	•150	BUGG/68
1.406	31.562	.170	31.630	.170	8166768
1.434	31.793	.080	31.830	.080	C00L/70
1.442	31.912	.374	32.280	.070	BUGG/68
1.509	33.295	102	32.840	•060	COOL/70
1.349	35.882	.155	34.000	.100	C00L/70
1.583	34.150	.080	34.170	.080	C00L/70
1.637	34.176	.133	34.070	.080	COOL/70
1+687	35.816	.070	33.840	•070	C00L/70
1.735	32.241	.070	33,190	•0/0	COOL/70
1.035	31.258	.281	31-530	.070	COOL / 70
1.840	31.181	.070	31.190	.070	C00L/70
1 •b79	30.740	.130	30.850	.070	C00L/70
1.685	30.685	.143	30.810	•070	COOL/70
1 085	30.343	+120	30.490	•0/0	COOL/78
1.900	30+213	•000	30+1/0	*0an	COUL//0

TABLE 1 (CTD)

PLAB	SIGMA- CALC.	EPROR CALC.	SIGMA- EXP.	ERKOR EXP.	HEFERENCE
(GEV/C)	(MB)	(MB)	(MB)	(M3)	
				.4.0	Cool (70
2.035	30.116	•140	29,990	• 100	COOL / 70
2.080	27.972	.102	29.890	.000	COOL / 70
2.124	29.694	.131	29.810	• ()00	
2+104	27.803	•060	29.790	•000 •60	COOL /70
2.200	27.613	.000	23.070	.000	COOL / 70
2.240	27.191	•060	27.790	.000	COOL /70
2.250	27.180	•150	29.190	• j00	COOL / 70
2.001	27+0/4	•060	23.030	. 050	ABRAMS/70 1131
2.350	27.443	.050	67+44U	. 50	COOL (70
2.351	29.439	• 150	29.380	•100	
2.092	29.164	•11/	29.070	•070	A99AMS/70
2.400	27.107	.050	27.100	070	COOL / 70
2.423	20.940	•070	20.060	.070	A0DAME /70
2.450	20.1/0	• 110	20.070	• 070	BUGGZ68
2.70/	20.077	•205	28+300	• 1 • 0	100000000
2.500	20:007	.060	20.400	• ()00	ABRAMS770
2.550	20.291		20.000	.000	ABRANSZTU
2.000	28,129	+107	28.210	• 070	ABRAMSZ70
2.700	27.841	.192	28.020	•010	ADDAME (70
2.750	37.716	130	20.020	.070	ADDANC 170
2.0730	27 401	176	27 7 7 20	• 070	ADRANG (70
2.650	27,404	. 244	27.730	- 060	ABRANS/ 70
2.600	27.303	.197	27.500	060	ADDAMC (70)
2 000	27.205	204	27.500	• () 0 ()	ADDAME (70
3.000	27.199	.230	27.020	- 060	ADDA NC / TO
3.050	27,101	.116	27.200	• () C C	ADDANG / 70
3.100	27.000	.060	27.000	- 000	ADRAMS/ /0
3.150	26.894	.105	26.980	.060	ABRAMS / TO
3.200	20.781	- 060	26.780	- 060	100000000000000000000000000000000000000
3.250	26.658	.070	26.700	.070	ABRAMS
3.300	26.523	.216	26.730	.060	ABRAMS
3.500	25,925	1.411	27,150	.700	DIDDENS/63 FIET
3.710	25.569	1,557	26,900	.700	0100ENS/63
3.920	25.185	1.071	25.950	.750	DIDDENS/63
3.980	25.108	.700	25.400	.700	C00K/61
4.666	25.083	3.650	28.200	1.000	BAKE0/63 [14]
4.1.30	24.941	.600	25.140	.600	DICOENS (63
4.340	24.762	1.259	25.840	-650	DIDDENS (03
4.760	24.549	.700	24.740	.700	DIDOENSZÓ3
5.180	24.438	.700	24.030	. 780	DIDDENC263
5,500	24.355	.800	24.300		BAKEDIAN
	2		24:505	• 400	DANKIN 03

TABLE 2

TOTAL CROSS SECTIONS FOR K+P BETWEEN 0.145 AND 6. GEV/C

PLAB	SIGMA+ CALC.	ERHOR CALC.	SIGMA+ EXP.	ERROR EXP.	REFERENCE	
1021707				, -		
•145	11.497	•800	11.800	•800	CAMERON/74	[17]
•175	11.622	.500	12.100	.500	CAMERON/ 74	
+205	11.758	.300	11.600	.300	CAMERON/74	
• 235	12 002	.300	11.800	• 300	CAMERON/74	
.265	12.049	•540	11.600	.300	CAMERON/74	
•295	12.194	.300	12.300	.300	CAMERON/74	
• 325	12.552	1.370	11.100	+600	CAMERON/ 74	
.355	12.458	1.170	11.400	.500	CAMERON774	
• 366	12.500	.855	13.280	+320	BOWEN/70	
.385	12.507	1.361	11.400	.700	CAMERON/ 74	
+05	12.629	.9/2	13.550	• 310	BOWENT	
•417	12.605	• /10	12+280	•710	CARROLL//S	1101
•432	12 711	000	12+600	•500	ROWEN (70	1193
.440	12.718	-250	12.690	.250	CARROLL /73	
475	12.756	705	13.440	.170	BOWEN/70	
479	12.758	.500	12.900	500	ADAMS/73	
462	12.760	.450	12.930	.450	CARROLL/73	
.500	12.762	-200	12.600	.200	CAMERON/74	
.505	12.760	160	12.580	160	BOWEN/70	
.506	12,759	.326	12.990	.230	BOWEN/70	
-520	12.749	.130	12.200	, 30	GOLDHABER/62	[20]
.525	12.743	.500	12.300	.500	ADAMS/73	
536	12.727	.427	12.350	.200	BOWEN/70	
•560	12.675	.252	12.440	. 090	CARROLL/73	
•566	12.658	.436	13.050	.190	BOWEN/70	
.569	12.648	.900	12.700	.900	BOWEN/73	[21]
. 592	12.565	2.182	14.360	1.240	BUGG/68	
.593	12.560	.950	13.050	- , 950	BOWEN/73	
•596	12.547	.437	12.940	.190	BOWEN/70	
.611	12.476	.180	12.320	• 090	CARROLL/73	
.618	12.440	•650	12.650	.650	BOWEN/73	
.620	12.429	•490	12.910	.490	BUGG/68	
+627	12.389	.140	12.330	•140	BOWEN/70	
.643	12.288	.850	12.500	.850	BOWEN/73	
.044	12.281	.768	12.880	.480	BUGG/68	
.657	12.190	.200	12.200	.200	BOWEN/70	
•666	12.121	.090	12.210	.090	CARROLL/73	
∎b68	12.105	1.039	13.100	.300	BOWEN/73	
•686	11.993	.620	11.400	•180	BOWEN/70	
.698	11.952	•750	12.600	•750	BOWEN/73	
.713	11.938	.871	11.140	.350	BUGG/68	
•717	11,942	•840	11.140	.250	BOWEN/70	
.719	11.945	•315	12.250	•080	CARROLL/73	
•727	11.964	.629	12,450	.400	BOWEN/73	
•757	12.151	•640	12.650	.400	BOWEN/73	
•768	12.265	•286	12.540	•080	BUGG/68	
•770	12.276	.949	13.000	•949	COOL/70	
•786	12.502	•300	12.800	.300	BOWEN/73	
•795	12.629	•171	12.760	.110	CARROLL//3	
.617	12.939	.090	13.200	.300	BOWEN/73	
∎620	12.981	•134	13.080	•090	CARROLL//3	
.823	13.024	•250	12.970	200	BUGG/68	
∎646	10.351	.300	13.450	.300	DUWEN/ /3	
•647	13.365	• 124	13.250	•1±0	BUCC (CA	
∎864	13.610	•466	13.210	•240	6400014 (33	
.872	13.726	•268	13.470		CARROLL/75	
•691	14.006	•540	14.050	.110		
•n97	14.096	•110	17:050	-100	GTACONEL (I / 20	6 00 7
.900	17.141	100	14.230	190	BUGG/48	1221
•904	14.201	•190	14 200	*00	0000768	
•916	14.385	.300	14.500		CARDOLL /73	
.924	14.509	•114	14 500	-10	BUSCION	
• 938	14+130	• 210	14.370	. 360	COOL /70	
• 942 05 1	14 040	-110	18-880 19+310	. 10	CARROLL /73	
. 751	15.210	• • • • •	15.630	220	BLANDZER	[23]
• 707	15.254	-671	15,400	671	COOK /61	
.970	10.250	-0/1	15.520	•0* •	CARPOL 173	
.9//	15 = 4 =	. 103	15-200	, 350	BOWEN/73	
+785	10.010	+ / U7	15.970	.270	COOL /70	
.992	10.038	•420 300	16.100	. 300	BOWEN/73	
1.020	10.123	100	16.110	100	CARROL1 /73	
1.021	10.1/2	+100	15 400	170	BUGG/62	
1.029	10.325	+030	17.300		C001 /70	
1-043	10.003	+020 300	16.060	-00	BOWEN/73	
T+022	10+049	• 300	10:30	• 3 - •		

PLAB (GEV/C)	SIGMA+ CALC. (MB)	ERROR CALC. (MB)	SIGMA+ EXP. (MB)	ERHOR EXP. (MB)	REFERENCE
	16 052	222			
1.066	17.001	•880	16.400	•880	GIACOMELLI/70
1.884	17.261	-279	17.030	.170	BUGG/68
1.090	17.345	.300	17.600	. 300	BOWEN/73
1.094	17.399	.375	17.120	.250	C00L/70
1.125	17.767	.300	17.550	• 300	BOWEN/73
1.130	17.819	1.050	18.080	1.050	GIACOMELLI/70
1.140	17.914	•170	18.020	•170	BUGG/68
1.160	18.080	-350	17,950	•150	BOWENI/73
1.170	18.150	.671	18-100	.671	COOK/61
1.189	18.261	.263	18.060	•170	BUGG/68
1.194	18.285	.221	18.470	•120	C00L/61
1.210	10,350	.900	18.580	.900	GIACOMELLI/70
1.245	18.428	.120	18.540	120	C001 / 70
1.250	18.432	2.508	20.710	1.050	GIACOMELLI/70
1.293	18.403	.150	18.440	•150	BUGG/68
1.295	18.399	.236	18.610	.110	C00L/70
1.300	18.389	,949	17.900	•.949	C00K/61
1-345	18-303	.170	19+330	.100	COOL / 70
1.347	18.299	.160	18.270	.160	8UGG/68
1.360	18.240	.840	18.640	.840	GIACOMELLI/70
1.395	18.214	.100	18.270	.100	COOL/70
1.408	18.192	•262	17.970	•140	BUGG/68
1.445	18,132	.100	18.000	• 762	COOK / 30
1.468	18.097	.160	17.940	•100	BUGG/68
1.480	18.079	.100	18.040	.100	GIACOMELLI/70
1.495	18.057	.156	17.930	•090	C00L/70
1.550	17.982	•350	17.700	• 208	ABRAMS/70
1.506	17.955	* 335 197	17.750	•140	BUGG/68
1.600	17.920	292	17.710	.203	ABRAMS/70
1.646	17.869	.060	17.860	.060	C00L/70
1.654	17.869	» 900	18.300	•900	BARROWES/59 E24
1.690	17-824	*671	17.500	•6/1	C00K/61
1.700	17.814	195	17.730	,195	ABRAMS/70
1.746	17.772	.060	17.800	.060	C00L/70
1.750	17.769	-192	17.830	•192	ABRAMS/70
1.796	17.732	*091	17.800	• 060	COOL/70
1.650	17.693	.191	17.770	.191	ABRAMS/70
1.877	17.675	2.317	15.500	.800	BARROWES/59
1.696	17.664	.158	17.810	.060	C00L/70
1.900	17.661	• 191	17.790	•191	ABRAMS/70
1.945	17.634	. 191	17.750	.191	ABRAM5/70
1.970	17.624	.880	16.900	.500	C00K/61
1.996	17.611	.080	17.600	•080	COOL/70
2.000	17.609	.186	17.630	•186	ABRAMS/70
2.050	17.589	•191	17.720	•191	ABRAMS/ /U
2.100	17.570	.189	17.560	.189	ABRAMS/70
2.150	17.555	.189	17.570	.189	ABRAMS/70
2.196	17.542	.080	17-540	.080	C00L/70
2.200	17.541	.189	17.600	•109	ABRAMS/70
2.300	17.516	. 184	17.440	.184	ABRAMS/70
2.350	17.508	.180	17.520	•180	ABRAMS/70
2.396	17.499	.080	17.550	.080	C00L/70
2.400	17,498	-186	17.560	•186	ABRAMS/70
2.450	17+489	•179	17+480	+1/9	ABRAMS/ /U
2.473	17.479	-182	17.490	.182	ABRAMS/70
2.550	17,469	.179	17.440	.179	ABRAMS/70
2.000	17.458	.180	17.500	•180	ABRAMS/70
2.050	17.445	.179	17+470	•179	ABRAMS/70
2.700	17.430	•179	17.410	•179	ABRAMS/70
2.750	17.393	•179	17-410	.179	ABRAMS/70
2.030	17.380	.896	16.700	.583	C00K/61
2.850	17.371	.178	17.300	.178	ABRAMS/70
2.900	1/.345	.176	17.340	•176	ABRAMS/76
2.950	17.314	.176	17.300	•1/8	ABRAMS/70
3-050	17.241	.176	17.140	.176	ABRAMS/70
3.100	17.197	.178	17.080	.178	ABRAMS/70
3.150	17.147	.176	17.150	.176	ABRAMS/70
3.200	1/+092	.174	17.130	+1/4	ABRAMS/70
3-300	16-961	.250	17+130	174	ABRANS/ /P
3.460	16.723	1.992	15.000	1.000	VOVENK0/62 [25]
3.700	16.547	1.000	17.500	1.000	VOVENKO/62
4.00	10.474	1.200	17.600	1.200	BAKER/63
4.350	10.545	2.830	18.500	.700	VOVENKOZ02
70.30		E	274000		- OT CHILDY CH

TABLE 3

CROSSING-ODD COMBINATION BETYEEN 6. AHD 240. GEV/C

PLAB	SIGMA(-) CALC.	ERROR CALC.	SIGMA(-) FXP.	FRROR EXP.	REFERENCE
(GEV/C)	(MB)	(MB)	(MB)	(MB)	
6.000	6.818	.316	7.000	.316	GALBRAITH /65 (261
10.000	5.195	.224	5.200	. 224	GAL APATTH/65
12.000	4.713	+470	4.300	. 224	GAL BDATTH/65
14.000	4.340	.329	4.100	, 224	GAL BRAITH/65
15.000	4.184	•239	4.290	. 224	DENICON/73-71 [373
16.000	4.042	.412	4.300		GAL DOATTU/CE
18.000	ð.795	4.601	5.300	4.601	GAL PRATTU/65
20.000	3.558	•180	3.520	.180	DENICOV/73-CAL PDATTU/65
25.000	3.184	•156	3.040	.156	DENISOV/73-31
30.000	2.889	.279	3.120	156	DENISOV/73-71
35.000	2.660	+150	2.610	150	DENICOV/73-71
40.000	2.477	.177	2.540	177	DENICOV/73-71
45.000	2.326	.402	2.690	170	DENISON/73-71
50.000	2.198	•128	2.240	128	CARPOLI /76 Enc.2
55+000	2.089	.319	2.320	220	DENISOV/73-71
70.000	1.837	.094	1.860	.094	CARROLL /76
100+000	1.513	•092	1.570	.092	CARROLL /76
120.000	1.377	+092	1.450	.092	CARROLL/76
150.000	1,222	•090	1.240	.090	CARROLL/76
170.000	1.143	.177	1.010	,117	CARROLL/76
200.000	1.048	•214	+860	.102	CARROLL/76
240.000	•950	•252	.740	.230	CARROLL/76

TABLE 4

CROSSING-EVEN COMBINATION BETWEEN 6. AND 240. GEV/C

PLAB	SIGMA(+) CALC.	ERROR CALC.	SIGMA(+) EXP.	ERROR EXP.	REFERENCE
(GEV/C)	`(MB)	(MB)	(MB)	(MB)	
6.000	41.145	.316	41.000	.316	GALBRAITH/65
10.000	39,555	• 332	39+800	+224	GALBRAITH/65
12.000	39.165	.347	38.900	.224	GALBRAITH/65
14.000	38.901	+224	38+900	.224	GALBRAITH/65
15.000	38.801	.239	38.910	.239	DENISOV/73-GALBRAITH/65
18.000	38,587	4.601	39,500	4.600	GALBRAITH/05
20.000	38.496	.180	38+520	.180	GALBRAITH/65
25.000	38.375	.156	38.400	.156	DENISOV/73-71
30.000	58.344	.267	38+560	.156	DENISOV/73-71
35.000	38.362	.150	38.250	.150	DENISOV/73-71
40.000	38.403	.292	38.640	.177	DENISOV/73-71
45.009	38.471	.170	38.450	.170	DENISOV/73-71
50.000	38.544	.224	38.360	.128	CARROLL/76
55.000	38.623	.220	38+660	.220	DENISOV/73-71
70.600	38.874	.094	38.900	•094	CARROLL/76
100-000	39.369	.092	39.330	•092	CARROLL/76
120.500	39.673	.092	39.730	-092	CARROLL/76
150-000	40.086	.160	39.960	.099	CARROLL/76
170.000	40.337	.117	40.290	.117	CARROLL/76
200-000	40.681	.103	40.660	.103	CARROLL/76
240.000	41.090	.252	41.300	•139	CARROLL/76

^T sup	Α	В	С	D	Tsup
(FM-1)	(FM+2)	(FM+3)	(FM+4)	(FM+5)	(FM - 1)
•26054+00	10862+02	·26068+02	14173+03	+14971+03	252823+00
.52823+00	50360+03	.27491+04	-49204+04	.29278+04	.63521+00
·63521+00	•10628+04		.80428+04	- 42205+04	71589+00
•71589+00	·21860.+03	* •€7831+03	.72330+03	-+25882+03	.95763+00
•95763+00	18282+02	*•25304+02	.14820+02	29590+01	.16551+01
+16551+01	17438+02	.39480+02	24347+02	•49340+01	.20977+01
•20977+01	•25631+03	* •36317 * 03	.17292+03	*. 27258+02	+23296+01
•23296+01	87570+02	- •90817+02	.32383+02	* •37675*01	.34968+01
•34968+01	<pre>+99851+02</pre>	* •77866+02	·21963+02	-21340+01	36585+01
•36585+01	•14024+03	* •95142 * 02	·22355+02	- •17753+01	+42729+01
•42729+01	12280+03	* •72132+02	.14451+02	96218+00	.50653+01
•50653+01	•10 ⁸ 25*02	*•28130*01	•17328+00	·16366-01	.54149+01
•54149+01	- •23812+02	·11488+02	*•15650+01	.67797-01	+69610+01
•69610+01	·70548+02	* 25342*02	• 31747+01	*+13277+00	.85487+01
•85487 * 01	+34133*02	84017+00	*10625+01	·85908 01	+88830+01
•88830+01	•31413+02	*•98656+01	+11399+01	*•43866*01	.97953+01
•97953+01	•78229+01	*•71355+00	·87110-02	·13402 02	.10661+02
•10661+02	•81204+01	* •11868+01	.89644-01	-·23329-02	·14408+02
•14408+02	.51122+01	* •32821+00	13641-01	* •19161*03	.28008+02

Table 5. Best fit parameters for K-P.

T _{sup}	Α	В	C	D -	T_{sup}
(FM - 1)	(FM+2)	(FM+3)	(FM+4)	(FM+5)	(FM - 1)
•00000+00	.11194+01	.30267+00	14602+00	•00000+00	.17050+01
•17050 ⁺ 01	• 31530+01	-+20B27+01	•55346+00	•00000+00	.21791+01
+21791+01	16698*01	·98228+00	• 27815+00	·39269=01	.32931+01
• 32931+01	- •38512+01	+32939+01	-61210+00	.35819-01	.45129+01
•45129+01	+22126+01	* •13156+00	.12796*01	* •42703 * 03	.14408+02
•14408+02	• 36598+01	*+28654+00	+13194=01	*19363* 03	.28008+02

Table 6. Best fit parameters for K+P.

 \sim

not only the well known relation of the problem with SU(3), and the still more basic assumption of analyticity, but there is also another point. These calculations can be performed using several different methods^{29,30}; although they are equivalent (in the sense that if the analyticity assumption is correct they must lead to the same result), it may not be so because of the different weights given to different data affected by a statistical error. Thus, the consistency of the various calculations is a way of testing the mutual consistency of the data on the total cross sections, and on the real parts, and the clarification of this problem requires the use of a good set of input data.

A consistency test of this type is, e.g., provided by the socalled Haber--Schaim method³¹. This method has been used only rarely for KN dispersion relations³² in the past, and has been reconsidered by us very recently in a work³³ where we make use of the total cross sections given in the present paper. Moreover, in the same framework, it might be interesting to reconsider some less conventional ideas and techniques, like for instance the use of inverse dispersion relations³⁴, and compare the corresponding results obtained with those provided by the conventional methods.

It is a pleasure to thank **E.Ferrari** for valuable comments and discussions.

REFERENCES

1. N.M.Queen and G. Violini, *Dispersion Theory in High-Energy Physics*, McMillan, London, 1974.

2. G. Höhler, G.Ebel and J.Giesecke, Zeitschr. für Phys. 180, 430 (1964).

3. E.Ferrari, Rev.Bras.Fis. 2, 225 (1972).

4. R.H. Dalitz and S.F. Tuan, Ann. Phys. (N.Y.) 10, 307 (1960).

5. R.H. Dalitz and S.F. Tuan, Ann. Phys. (N.Y.) 8, 100 (1959).

6. J.K. Kim, Phys. Rev. Lett. 14, 29 (1965).

7. B.R. Martin and M. Sakitt, Phys. Rev. 183, 1352 (1969).

T.S. Mast, M. Alston-Garnjort, R.O. Bangerter, A.S. Barbaro Galtieri,
 F.T.Solmitz and R.D. Tripp, Phys. Rev. D14, 13 (1976).

9. T.Bowen, P.K. Caldwell, F.N. Dikmen, E.W.Jenkins, R.M.Kalbach, D. V. Petersen and A.E. Pifer, Phys. Rev. 02, 2599 (1970).

D.V. Bugg, R.S. Gilmore, KM. Knight, D.C.Salter, GH. Stafford, E. J.N. Wilson, J.D. Daviers, J.D. Dowell, P.M. Hattersley, R.J. Homer, AW.
 Dell, A.A. Carter, R.J. Tapper and K.F. Riley, Phys. Rev. 268, 1467 (1968).

11. R.L. Cool, G.Giacomelli, T.F.Kycia, B.A.Leontic, K.K.Li, A. Lundby, J. Teiger and C. Wilkin, Phys. Rev. *D1*, 1887 (1970).

12. V. Cook, D. Keefe, L.T. Kerth, P.G.Murphy, WA Wenzel and T.F.Zipf, Phys. Rev. Lett. 7, 182 (1961).

13. R.J.Abrams, R.L.Cool, G.Giacomelli, T.F.Kycia, B.A.Leontic, K.K. Li and D.N.Michael, Phys. Rev. DI, 1917 (1970).

14. E Bracci, J.P. Droulez, E. Flaminio, J.D. Hansen and D.R.O. Morrison, report CERN/HERA 72-2 (1972); U.Casadei, G.Giacomelli, P.Lugaresi--Serra, G.Mandrioli, A.M.Rossi and F.Viaggi, report CERN/HERA 75-1 (1975).
15. A.N. Diddens, E.W.Jenkins, T.F.Kycia and K.F.Riley, Phys. Rev. 132, 2721 (1963).

16. W.F.Baker, R.L.Cool, E.W.Jenkins, T.F.Kycia, R.H.Phillips and A. L. Read, Phys. Rev. 229, 2285 (1963).

 W.Cameron, A.A.Hirata, R.Jennings, W.T.Morton, E.Cazzoli, G. Giacomelli, P.Lugaresi-Serra, G.Mandrioli, A.Minguzzi-Ranzi, E. Castelli, M. Furlan, P.Poropat, C.Omero and M.Sessa, Nucl. Phys. *B78*, 93 (1974).

18. A.S. Carroll, T.F. Kycia, K.K. Li, D.N. Michael, P.M. Mockett, D.C. Rahm and P. Rubinstein, Phys. Lett. *B45*, 531, 1973.

19. C.J. Adams, G.F. Cox, J.D. Davies, J.D. Dowell, T. Dimbylow, G. H. Grayer, P.M. Hattersley, R.J. Homer, R.J. Howells, C.Mcleod, T.J.McMahon, HB. Van der Raay, L.Rob, C.J.S. Damerell and M.J. Hotchkiss, Nucl. Phys. 66B, 36 (1973).

20. S. Goldhaber, W. Chinowsky, G. Goldhaber, W.Lee, T.O'Halloran, T.F. Stubbs, G.M.Pjerrou, D.H.Stork and H.K.Ticho, Phys. Rev. Lett, 9 135 (1962).

21. T.Bowen, E.W.Jenkins, R.M.Kalbach, D.V.Petersen, A.E.Pifer and P.K. Caldwell, Phys. Rev. 70, 22 (1973).

22. G.Giacomelli, P.Lugaresi-Serra, G.Mandrioli, A.M.Rossi, F.Griffiths, I.S.Hughes, D.A. Jacobs, R.Jennings, B.C.Wilson, G.Ciapetti, V. Costantini, G. Martellotti, D.Zanello, E.Castelli and M.Sessa, Nucl. Phys. 20B, 301 (1970). R.W.Bland, M.G.Bowler, J.L.Brown, J.A.Kadyk, G.Goldhaber, S. Goldhaber, V.H. Seeger and G.H. Trilling, Nucl. Phys. 13B, 595 (1969).
 H.C. Barrowes, D.O.Caldwell, D.H.Frisch, D.A.Hill, D.M.Ritson, R.A. Schluter, Phys. Rev. Lett. ², 117 (1959).

25. A.S.Vovenko, B.A.Kulakov, M.F.Lykhacev, A.L.Ljubimov, Yu.A.Matulenko, I.A.Savin, Ye.V.Smirnov, V.S.Stavinsky, Sui Yuin - chan, Shzan Nai--sen, Proceedings of the 1962 Annual International Conference on High--Energy Physics at CERN, Geneve, 1962.

26. W. Galbraith, E.W. Jenkins, T.F. Kycia, B.A. Leontic, R.H. Phillips, A.L. Read, Phys. Rev., *B138*, 913 (1965).

 S.P. Denisov, S.V. Donskov, Yu. P. Gorin, A.I. Petrukhin, Yu.D.Prokoshkin, D.A. Stoyanova, J.V. Allaby, G. Giacomelli, Phys. Lett. B36, 415 (1971); S.P. Denisov, Yu.P. Dmitrevski, S.V.Donskov, Yu. P. Gorin, Yu. M. Melnik, A.I. Petrukhin, Yu. D. Prokoshkin, V.S. Seleznev, R. S. Shuvalov, D.A. Stayanova, LM. Vasiliev, Nucl. Phys. B65, 1 (1973).

28. A.S. Carroll, I.H. Chiang, T.F.Kycia, K.K. Li, P. O. Mazur, P. M. Mockett, W.F. Baker, D.P. Earthy, G. Giacomelli, P.F.M. Koehler, K. P. Pretzl, R. Rubinstein, A.A. Wehmann, R.L. Cool, O. Fackler, Phys. Lett. *B61*, 303 (1976).

29. N.M. Queen, M. Restignoli and G. Violini, Fortsch. der Phys. 17, 467 (1969).

30. N.M. Queen, M. Restignoli and G. Violini, Fortsch, der Phys. 22, 569 (1973).

31. U. Haber-Schaim, Phys. Rev. 104, 1113 (1956).

32. N. Zovko, Zeit. für Phys., 192, 346 (1966); G.H. Davies, N.M.Queen,
M. Lusignoli, M. Restignoli and G. Violini, Nucl. Phys. B3, 616 (1967).
33. B. Di Claudio and G. Violini, in preparation.

34. N. Zovko, Phys. Lett. 23, 143 (1966).