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With a simple generalization of Bogoliubov's quasi-particle approach,
the results for the Josephson current in a superconductor are recovered,
without resorting to the usual pseudo-spin treatment.

Através de uma simples general izacdo do tratamento com quasi - particulas
de Bogoliubov, obtém-se os resultados para a corrente de Josephson em um
supercondutor, isso sem se fazer uso do tratamento usual de pseudo-spin.

Mostra-se também a equivaléncia entre as duas descrigdes.

INTRODUCTION

The Josephson effect! occurs when tunneling currents flow between two su-
perconductors separated by a thin isolating layer. This effect has been
extensively analized and different alternative derivationsof Josephson's
results are available in the current literature The most common ap-
proach" is that in terms of the pseudo-spin formalism of Anderson®. A mo-
re elaborate calculation, along the same lines, is due to Lee andScuIIy6
who included the interaction of the junction with the radiation field
contained in'the resonance cavity and the effect of the external (normal)
part of the circuit.

It has been remarked' that Bogoliubov's quasi-particle picture of super-

conductivity7, in its original form, does not allow a description of the

* Work supported by FAPESP.
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Josephson effect because the quasi-particle states do not have a definite
phase factor. The difference in phase of the superconducting wavefuncti-
ons, on both sides of the junction, is basic to the explanation of theD.C.
and AC. Josephson effects. In fact the ill-definition of the number of
electrons in the superconducting phase gives rise to the existence of a
well defined phase for the quasi-particle states, which is also coherent®,
This results in non-vanishing off-diagonal elements of the density matrixg.
This is just a manifestation of the condensation in Cooper pairs. A simi-
I'ar situation can be found in the case of condensation of the electrongas
in states with magnetic ordering or with the formation of charge and/or
spin density waves. These cases can be precisely described in terms of

Bogoliubov'!s quasi-particles with appropriate coherent phases”

These considerations lead us to propose a simple and straightforward ge-
neralization of the Bogoliubov-Valatin transformation which allow us to
recover the results for the Josephson current, within the usual Bogoliu-
bov-BCS scheme, without resorting to the pseudo-spin algebra. W show the

equivalence between the two representations.

1. OBTAINING THE JOSEPHSON CURRENT BY GENERALIZING THE
BOGOLIUBOV TRANSFORMATIONS

The formalism for dealing with tunneling effects is well known. Bardeen!?;
" Cohen, Falicov and Phillips!2, and Prangel3, have discussed the problem
from a many-particle point of view. As previously stated, we are interes-
ted here in tunneling between superconducting junctions.

V¢ use the effective Hamiltonian!®

S=XE'(§)(1VK+ )+ N V(KK) K,+ K,+ m c@ ., (.n

K KK'
where E'(.({) is the kinetic (band) energy of electrons in Bloch States |]{cr>,
and the V(K,K') are the matrix elements of the atractive electron-electron
interaction responsible for the ocurrence of superconductivity; the usual

second quantization notation has been used.
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Nov consider two independent superconductors which are brought together to
form the superconductor junction, and denote by H; and H, their respécti-

ve Hamiltonians. Th(\e couplting energy,

qu + b‘l2 b@) , (1.2)

%q
transfers Cooper pairs from one side to the other of the barrier.in (1.2},
T is the transfer integral, which we assume to be K-independent, and we
have introduced the operators for the creation and annihiltation of a Cooper
pair, namely,
+ + + b

=C c

Prg ™ e e

IgE ISE = C_]S:Lg CIS'rE s g = 192 H

each value of 5 refers to the superconductor on each side of the barrier.

It is straightforward to calculate the tunneling current, since

dn
J=—eagl (1.3)

is the operator representating the current flowing from side 1 to side 2
across the insulating barrier, and IVl is the total number of electron on

side 1.

Using the total Hamiltonian

H=H,+H, +H,, , (1.4)

we easily find

T 1
Byo=gp 08 = : [rgnr * g1
- (1.5)
1 + +
=— 7% (b,,b.,=-b,b,)
i Iﬁz If_l gZ QZ Kl

At this point we introduce the usual Bogoliubov operators of quasi=-parti=

cles through the matrix equation
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K K K
+ = * * . + Iy (]'6)
B—K --‘1)}'g ul.{. C—IS
with the condition
lug|? + log ]2 =1, (.7
where
ng = coseg s »vg = saneg R

and we verify that the Josephson effect does not occur since these opera-

tors do not add a definite phdse factor to the quasi-particle states.

W avoid this difficulty by identifying the Bogoliubov 2x2 transformation

matrix with the 2x2 complex matrix associated with a rotation in the R(3)

space, i.e, u and V ate taken as Cayley-Klein parameters”:

&
1

Y = exp(%- in) . €os (% OK) . exp(% iyK) ,
- - B (1.8)

<
1

X exp(- %- ilPK) . sin(]i GK) . exp(-%— iYK)

W find that this new transformation matrix satisfies all the orthonorma-
lization conditions of the preceding one. When we put ¥ =y =0 for every

K, we recover the transformation widely used to study the superconducting
state.

To deal with the Josephson tunneling, we propose here a simple generaliza-
tion of the quasi-particle operators @ and 8, choosing Yy = 0 and wK = +,
for every X, in Egs. (1.8). Just as in the quasi-spin formalism, a degene-
racy appears in the ground state since we obtain linearly independent de-
generate ground states for different values of $. The transformation is ge-

nerated by the matrix
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cos % . exp(—lz- iy) sin % . exp(- ’ S iw)]

(1.9)
-sin g- . exp(-;— ZP) cos % . exp(- —;— )

With (1.9), we form the new operators O and BK in order to express the tun-
neling current (1.5) . Ve take its averaae in the BCS ground state, using the

properties
Byl¥ges™ = 0 » oy [¥geg> = 0,

and obtain

2eT
<J> = 7

KngineIg sin eiz sin(b; =) . (1.10)
This is the well known form of the DC - Josephson effect, and along simi-
lar lines one can also derive the AC - Josephson effect. W have thus shown
that these effects and related questions can be studied within :the scheme
of Bogoliubov!s quasi-particle description of the superconducting state.

2. EQUIVALENCE OF THE PSEUDO-SPIN AND QUASI-PARTICLE
FORMALISM

Consider the two quantum mechanical states |K¢> and |-K+>, and the opera-

tors

+ +
ch : c_IS+ : ng : c_]g (2.1)

of annihilation and creation of an electron in those states. V¥ use them to

define the pseudo-spin operators:

+_
Sy = O e
%k ™ S Ot
R T +
Sox =7 (ks Cxa =~ Cos O (2.2)
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With these operators, Anderson’ has shown that the BCS Hamiltonian is equi-
valent to that of a system of spins in the presence of a magnetic field plus
an anisotropic (X,Y) exchange term. To solve this magnetic version of the
problem, he uses the molecular field approximation, and then rotates each
pseudo-spin K by an angle 6 around the Y-axis {(so that the new SOK remains
in the XZ-plane and makes an anglti eK with the old SO(). The three compo~
nents of the rotated pseudo-spin SK Ean be expressed, in terms of the Bo-
goliubov operators ag» s B_y and B_& ,in the same way as the initial com-
ponents of the pseudo-spin SK are expressed in terms of the operators (2.2).
In particular, the transformed BCS Hamiltonian is a sum of terms proporti-

onal to the SOK‘

Here, we shall prove that the same relationship holds for the more general
Bogoliubov operators defined by (1.6) and (1.9). Instead of the simple ro-
tation discussed above, (1.9) generates a rotation obtained by first rota-
ting ¥ around Z and then & around the new Y-axis. The components of the

rotated pseudo-spin are then

SOK = coseK . SO]_{{ + sinels coswlg . Sx + sinGK sinw]g. Sy ,

SxK=-sin6K . SOK + coseK cosw‘z{v . S:c + cosGK

sin\bK . Sy . {2.3)

Sy{{ = —sinIPK . Sa: + coslp]S . Sy »

- -~ —~ ~ hg ~+
where we have used S, =-%- (" +57) and s, =-124 (s -8") to better show

the rotation.

-+ ~a
Reverting to S and 8§ , we easily prove using (1.6) and (1.9) that

o S

%k~ Px

S~ = B-IE otIg

s _ 1, + _ ot
Sox =7 (% o By By - (2.4%)
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The pseudo spin operators (2.2) act on a two dimensional vector space gene-
rated by two states: in one of them both [Ig+> and I—.7£+> are occupied, while
in the other both are empty. It is always possible to find a unitary trans-

formation P, in this two dimensional space for which!®

- +
Sozg = P~ Sm'E Pé ,

L + ’

s P~ SJS PIE

gy = P s> P;(' (2.5)

This argument completes the proof of the equivalence between the two des-
criptions, one with pseudo-spiin and the other with the Bogoliubov operators.
VW remark that both (2.2) and (2.4) generate the Lie algebra of the group
SU(2); this group is homomorphic with the rotation group 0(3). This homo-
morphism provides the connection between the rotation of the pseudo-spin and

the unitary transformation in the space of state vectors.

I thank Dr. Roberto Luzzi and Dr. Mario Foglio for helpful discussions and
suggestions, and for a critical reading of the manuscript, and Dr. J. 1. C.
Vasconcellos for rousing our interest on the subject.
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