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In this paper we show how to introduce, in the band structure calculati-
on by the KKR method, a simultaneous evaluation of the isotropic defor-
mation potentials, without altering the structure factors. An applica-

tion to niobium is presented.

Neste artigo, mostramos como introduzir o calculo dos potenciais de de-
formagdo em um calculo de estrutura de faixas pelo &todo de Korringa,
Kohn e Rostoker. A virtude de nosso método € de preservar os fatores de

estrutura. Como aplicagcdo, estudamos o caso do metal Nidbio.

1. INTRODUCTION

The Green function (KKR, multiple scattering) method (Refs.1,2,3,4) for
crystal and molecules, though much faster than other methods, is seri -
ously handicapped whenever one is faced with the calculation of the ma
trix elements of a Hamiltonian perturbation. These calculations are
usually complicated due to the peculiar expansion of the wave function

in the region outside the spheres circumscribing the atoms. In that re-
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gion, the expansion is made in terms of scattered functions of many cen-
ters thus complicating the calculation of the volume integrals. in what
follows, we consider a special perturbation which can be handled by the
Green function method in a surprisingly simple way: the perturbation of
an isotropic lattice expansion in cubic crystals.

A.strain deformation of the lattice affects the band structure by means
of coefficients known as deformation potentials, For a given strain ten-
sor, 811.7" the energy of a certain state in the Brillouin zone is shif-
ted by

e = L D..€., , (1.1)
ig WO

where Di'g is the deformation potential tensor. In the special case of
an isotropic strain in e cubic crystal, Eq.{1_1)is equivalent to

8¢ = -C 8a (1.2)

where da is the change in the lattice parameter. The purpose of this
note is to show how to calculate ¢, in Eq.{(1.2), simultaneously with the

band structure calculation.

2. THEORY

In order to fix our notation, we review the equations of the KKR rnethod:

st a

NCRR ¢(A,A") Ayy = 0 (Z.1)

At

is the secular equation, where X denotes the pair {(%,m) defining an an-

gular momentum;

) 3o (KR)L, - K Jg(KR)

8 (2.2)

A _ '
nz(KR)Lz K nl(KR)

where jSZ, and n, are the spherical Bessel and Neumann functions; while
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_ ui(R, )

L, (2.3)

uz(R,e)

are the logarithmic derivatives at the sphere radius R and energy E;

K2=e-V” s (2.4)
where Vll is the constant potential in the region outside the spheres;
GOLAY) = bm C I, (A" T (K, B, (2.5)
A A

the IA’s denoting Gaunt integrals for A = (z,M), and

> Ly
T, (K, %) = eot—kRr § .
A A MY kg (k)

. + N
exp{—(IT{ gl;; K;Z/haz} SRS nEeD e
+g]? -

Q™

are the structure factors expanded as series in the reciprocal lattice
vectors a for a given point K in the Brillouin zone.

When strained isotropically, the lattice parameter changes from a, to a,
and a given energy state from €, to €. The determinant D of the matrix
in the secular equation (2.1) is a function of a and g and if E and E
are to be solutions to (2.1) for the lattice parameters a and ao,we must

have
ple,a) =0 , (2.73)

D(Eo,ao) =0 . (2.7b)

Expanding D(g,a) to the first order in (e = EO) and (@ = a,), we arrive

at
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2 le
e=eg ~Cla-a) =¢ - S (a~a) . (2.8)
0 0 0 BD 0
Je a,

In a band structure calculation, one has simple access to the denominator

3D in Eq. (2.8) because, in order to find the eigenvalue E,? one has
= la.
to calculate the determinant for a net of E values. A numerical deriva-
tive of the determinant in this net produces g—g .

a

]

aD

The calculation of the numerator o can be simplified if we consider

E
0

the special form of the structure factors I‘A, Eq.(2.6), now written as

2 cot(Ka.R/a) _ ' b
I‘A(K,k) AL s FA,O - :
Vi Q/a?) KagL(Ka.R/a)
exp{('|a%+a_g>|2 + (Ka)?)/4G%a?} N
* jL(laz’fagl.R/a)YA(@g) ;

s |a% + ag|? - (Ka)?

(2.9)

> >
In a lattice expansion, the ratios Q/ad, R/a, and the vectors ak and ag
are kept constant. Thus, FA depends on E and a only through the product
Ka, that is

Thus, instead of considering the determinant D as a function of E and a,
we may also consider it as function of a and Ka. Using the relation (2.4)

between E and K, we obtain

D 3{xa)
da ‘ da
C = Ka + € . (2.]0)
3D 3(ka)
o€ ' %e
a a
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in (2.10), the derivatives appearing in the second term can be readily

performed. In the first term, the numerator becomes
asT!
32 =3 A My, (2.11)
%a X 8 A
Ka @ g

where MM is the minor of the element (X,A) in the secular matrix, and

3L9' I BL,Q [K 2 QV” ’ ] .\ LQ’
-1 . - = - il
BSA _ 1 oa e 3e a X da e a (2.12)
da Xa KR? ., 2
[3,0 1, - x 300
Denoting by HM' , the secular matrix element, we have
_?2 l = __BHA)\‘ M.
o€ a M IS a AN e
and obtain
~1
33)\ l u
X fa gy M )
C = P S L (2.13)
9H, 4y a d¢a
AL €
) M
AN 3e

Thus one sees that in order to make a calculation of the coefficients C
along with the band structure calculation, we also need, besides the lo-

oL oL
garithmic derivative, the values of ﬁ& | s -,a_& and V11 tabulated
€ a E

=
in a net of energies E. These values depend on the model assumed for the

potential and its change in a lattice expansion.
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3. APPLICATION TO NIOBIUM

The procedure described above was applied to the band structure of nio-
bium. The potential was assumed equal to a sum of atomic potentials. In
a lattice expansion, the atomic potentials were supposed to move rigidly.
Slater's average of the exchange in the free-electron gas approximation

was used®.

The results for a lattice parameter a = 6.2377 a.u. are shown in the Ta-
ble and in Figs. 1 and 2. In Fig.l, we plot the energy bands, the bands
being numbered from below. In Fig.2, we show the behaviour of the coef-
ficient C in the Brillouin zone for the bands numbered in Fig.1. It fis
qgite remarkable that C varies much within a band, and any model, for the
electron acoustic phonon interaction for instance, based on a constant C

is very unrealistic.

TABLE = Energy eigenvalues and isotropic deformation poten-

tials in ths Brillouln zone of niobium.

€ c

% (0,0,0)

r, -0.97% °  ~0.177

T, -0.563 -0, 161

Ty, -0.378 -0.059
% (0,0,1)

7, _ -0,878 -0.355

1] - -

a 0,201 0.067

E, 0.181 -0.2%
tg.oy.p

P, i -0.666 -0.321

P, -0.317 -0.002

P, 0.304 0.241
td.1.o0

n, -0.854 -0.375

5, -0.710 -0,253

LA -0.394 0,043

n -0, 364 -0.028

v, 0. 325 -0.013

¥ -0. 149 0.118
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Fig. 2 - Deformation potentials of niobium for the bands numbered in Fig.1.
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