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W modify the basic model of the phase transition inthe hydrogen-bonded
layered crystal SnC%,.2H,0 to account for the presence of ionic defects.
It is easy to obtain a series expansion for the high-temperature entro-
py of the ionic model in terms of closed subgraphs, with vertices of
degree two, of the original three-coordinated 4-8 lattice. W also show
that the high-temperature entropy of the ionic model is identical to the
residual entropy of a simple antiferromagnetic Ising model in a 3-4-8
lattice. This latter model can be solved exactly by a set of transfor-
mations which lead to a well studied Ising model in a Union Jack latti-

ce.

Modificamos o modelo basico para a transicdo de fase no cristal SaC%,.
2H20, que apresenta ligagoes de hidrogénio dispostas en camadas, a fim
de levar em conta a presenca de defeitos ionicos. E facil obter uma ex-
pansdo em série para a entropia de transi¢do deste modelo iGnico em ter-
mos de subgraficos fechados, com vértices de grau dois, definidos na re-
de 4-8 original, de coordenacdo trés. Também mostramos que a entropia
de transicdo do modelo ionico € idéntica a entropia residual de um no-
delo antiferromagnético de Ising definido numa rede 3-4-8. Este mode-
lo pode ser resolvido exatamente por un conjunto de transformacgdes que
o reduzem a um modelo de Ising bastante estudado, numa rede do tipo

"Union-Jack''.
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1 INTRODUCTION

Stannous chloride di hydrate (SCD) is a layered hydrogen-bonded crystal
whi ch exhi bits an order-disorder transition at T, = 218K, Ref.1. Figu-
re 1 depicts the schematic topol ogy of a layer of hydrogen bonds, accor-
ding to X-ray? and neutron diffraction results ®. The water molecules
are of two types. An oxygen of type | has both its proximal protons on
hydrogen bonds joining this oxygen to other oxygens. An oxygen of type
!} has only one of its proxinal protons on one of the three hydr ogen
bonds joining it to other oxygens; the remaining proton proxinal to a
type it oxygen points toward a chlorine atom The phase transition has
been definitely shown to be associated with the ordering of the protons
on the hydrogen bonds 3.

The two-di mensional character of the hydrogen bonds in S(D is particu-
larly attractive because it has been possible to obtain exact solutions
for several two-dimensional statistical nechanical nodels. Salinas and
Nagle" have sol ved basic protonic nodel of the phase transi tion in SCD,
whi ch had been previously proposed by Mitsuo et a2.%. This basi ¢ model
assumes the socal l ed "ice-rules'" in the context of SCD

(] each hydrogen bond has precisely one proton located in one of two
of f-center positions on the bond,

(i i) there are no ionic defects. That is, each oxygen of type ) has pre-
cisely two proxinmal protons and one distal proton on its three hydrogen
bonds. Each oxygen of type 11 has precisely one proxinal and two distal
protons on its three hydrogen bonds.

Rules [i] and (i i) determne all allowable protoni ¢ configurations on
the hydrogen bonds. In order to calculate a partition function, and the
t her modynam ¢ properties as a functions of tenperature, Salinas and
Nagl e have chosen a set of phenonenol ogi cal vertex energies, Jjust as
S ater had done for KH_PO, , Ref.6. The total entropy of transition of
the basic nmodel, which had been previously obtained by Nagle”, could be
easily calculated as a by-product, making att vertex energies equat in
the expression of the partition function. This theoretical value, ho-
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Fig. 1 — Topology of the hy-
drogen-bonded network with
the two different types of
oxigens. Oxygens of type Il
have one hydrogen fixed, po-
inting toward a C% atorn. The
re are three inequivalent
bon types, horizontal, ver-

tical, and diagonal.

(b)
Fig. 2 — (a) Hydrogen configurations around an oxygen vertex. The di-
rection of the arrow designates which of the two off-center positions
on each hydrogen-bond is occupied by a proton. (b) The six allowablc
vertex configurations, in terms of half-edges, which occur in the weak-

graph series expansion for the ionic model.
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wever, is a bit small compared to experiments, so it is worth conside-

ring some refinements of the basic model.

Our aim in this work is to propose an ionic model for SCD, and to per-
forn an exact calculation of its high-temperature entropy. lonic models
allow violations of electrical neutrality, rule (ii), but do not allow
the presence of Bjerrum faults, that is, of violations of rule (i) .
Thus, the existence of no protons per bond or of two protons per bond
is supposed to be very rare and not to influence the equilibrium  pro-
perties of SCD, as it is the case for ice. On the other hand, we suppo-
se that ionic defects are quite nunerous, as in KHZPOH, despite being
rare in ice. This is suggested by the lack of symmetry between oxygens
of type | and oxygens of type |1, and seems to be compatible with recent

neutron diffraction results?®.

The particular ionic model we consider allows the three '"free' hydrogens
to be shared by both oxygens. Thus, oxygens @l and Cll have either two
or one hydrogen near by, which gives the six hydrogen configurations
around each oxygen vertex shown in figure 2. The thermal behavior of
this six-vertex model in a three-coordinated lattice has some theoreti-
cal interest on its own. However, in what follows we assume that all
vertex configurations are equally probable, and evaluate the infinite

temperature entropy only.

In Section 2, we obtain an exact series expansion for the high - tempe-
rature entropy in terms of weak-graphs on the 4-8 lattice. Several terms
of the series, which involves closed graphs with vertices of degree 2
only, can be easily calculated to give an approximate value for the en-
tropy of transition. The zeroth order term of the series turns out to
be the same as Pauling's approximation in the context of this model. In
Section 3, which is completely independent of Section 2, we show that
the high-ternperature entropy of our ionic model is ident'ical to the ze-
ro temperature entropy of an antiferromagnetic Ising model in a 3-4-8
lattice. This Ising model can be solved by an application of the star-
-triangle, and the decoration transformation to another Ising model in
the original 4-8 lattice. The approximate series result is very close

to the exact value for the entropy of transition.
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2. SERIES EXPANSION

The six hydrogen configurations around each oxygen vertex are characte-
rized as shown in figure (2a); the direction of the arrow designates
which of the two off-center positions on each hydrogen-bond is occupied
by a proton. Each configuration of arrows in the 4-8 lattice defines an
allowable state of the ionic model. If WN is the total nurnber of states,

the high-temperature entropy is given by
5=knw, , (2.1)
where k is the Boltzrnann constant, and N the nurnber of vertices.

As the 4-8 lattices can be divided into two sublattices, there is a
one-to-one correspondence between hydrogen configurations of the ionic
model and the subgraphs of certain type on the lattice. These subgraphs
are obtained if we associated an edge to each arrow directed toward an

oxygen of type I, for example. The total nurnber of subgraphs is WZV'

Let us now formulate the weak-graph expansion8 for WZV . The vertex con-
figurations (Ei; where | labels a lattice site, and Ei =1, ....,6) are
shown in figure (2b). Each of the solid lines incident to a vertex
may be throught of as a half-edge in one of the WIV subgraphs. Each of
the dashed lines incident to a vertex may be thought of as a half-edge
of the latticewhich is not included in the subgraph. Along the lines

9

of weak-graph rnethod developed by Nagle®’® we can write

€], (2.2)

1
Wy, = I a+ C..(8.)C..
g:edges ’[ tg e % 3

N

where the sum is over configurations, and the product is over all bonds

7. Tha variables Cv;j(go") are given by

Cij(gi) =a" , if F,i has a half-edge on edge %J,

—-aq'2 it EZ does not have a half-edge on

edge 7J.
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Of course, the purpose of this choice is to provide for the matching and

the mismatching of half-edges. We can now write:

W= w6, (2.3)
o

where the weight of a graph G is given by

gh/2 W S./2
i G * nooc.iE) . (2.4)
i=1 ¢ a k
i ik in G

w(G) = O‘—Z

We are using the standard notation of Nagle®, where g=3 for the 4-8
lattice, and Si is the degree of the ith vertex in graph G. Now it ia
easy to write expression (2.4) as

3v/2

w@ @ = &7 ()P (F2 (2.5)

2

where P, and p, are the number of vertices of degrees 0 and 2 respecti-

vely, and the graph G has no vertices of degree 1 or 3. So, we have

N
6 v e Po
W = v 2.6
: [23/2} I'e® , (2.6)
p
where V = - 1/3, and g(g) is the number of subgraphs of the 4-8 lattice

>

> > > . . .
defined by the vector p = (p,,p,,p ), that is, with p vertices of de-
gree Si for i =1,2,3. The line in the sum indicates that we are res-

tricted to subgraphs of vertices of degree two only, that is, p, =p,=0.

In zeroth order, expansion (2.6) gives Pauling's approximation

which yields the following value for the entropy per vertex:
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S -
=, ey 0.7520387... . (2.8)

Without too much effort, we were able to calculate &n WIV up to terms of
order v!®, which amounts to one of the longest available series for

ice-type models® . So we have

1 _ 6 _ 1 8
_]v &N W]V n 23/2 = -EU +-gU +
+ 010 +]7—zv12 -ul‘*+%v16 . (2.9)

This series in v is identical to the usual high-temperature tanh K se-
ries expansion ' for the Ising model in the 4-8 lattice. The connection
between the ionic model and an Ising model in the 4-8 lattice will -be
fully explored in the next Section. A simple analysis of the series
(2.9) yields an impressive result for high-temperature entropy, which is
accurate up to at least six digits,

5= 0.755162 . (2.10)
Kk
In Section 3, we compare the approximate value (2.10) with the exact re-
sult. This will be another example of the potentialities of the series

method.

3. THE EXACT RESULT

The exact solution is obtained by observing that the high-temperature en-
tropy of the ionic model is identical to the zero-temperature entropy
of an antiferromagnetic Ising model (with spin 1/2 and nearest-neighbor
interactions), in a 3-4-8 lattice. This 3-4-8 lattice is obtained from
the basic 4-8 (or bathroom tile) lattice (Figure 3a) by the combination

of a decorationt?»1!

and a star-triangle transformation (Figure 3c)Ref.
11. We justify these assertions in the following way: (i) suppose that

there is a spin at the middle of each bond of the basic 4-8 lattice
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(a) / (b)

{c)

FIG.3 - (a) basic 4-8 lattice; (b) decorated 4-8 lattice;, (c) 3 -4-8
lattice. The decoration transformation applied to the Ising model inthe
4-8 lattice (a) gives the Ising model in the decorated lattice (b). The
star-triangle transformation applied to the Ising rnodel in the decora-

ted 4-8 lattice (b) gives the Ising model in the 3-4-8 lattice (c).
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(this leads to the decorated lattice of Figure 3b); (ii) suppose that
the spin is pointing up (plus) if the arrow along the bond is directed
from an oxygen of type | towards an oxygen of type Il, and is pointing
down (minus) otherwise; (iii) define an antiferromagnetic Ising model
in ""3-4-8" |attice of figure 3c. It is easy to see that each allowable
configuration of arrows in the basic bathroom tile lattice corresponds
to a certain configuration of spins in the antiferromagnetic transforrned
lattice of Figure 3c; moreover, only spin configurations such that the
three spins around any triangle do not have the same sign are going to
occur. But these can be recognized as the configurations of the highly
degenerate ground state of the antiferromagnetic spin -1/2 Ising model
defined in the "3-4-8" l|attice (this degeneracy of the ground state is
a well-known fact for the Ising lattices that do not admit the subdivi-
sion into two sublattices; for example, the zero-temperature entropies
of the antiferromagnetic triangular and the '"kagomé' lattices are esta-

blished results!?,

Our task then is to evaluate the partition function for an antiferro-
magnetic Ising model in the ''3-4-8" lattice. This will be achieved by
writing I1t, through the star-triangle and the decoration transformations
(as indicated in Figure 3), in terms of the partition function for an

Ising model in the 4-8 lattice.

(a) The star-triangle transformation'! gives
N
7, (x") = g >z k) (3.1)
14
exp(bx”) = SN (3.2)
g = 2(cosh 3K'.cosh3k?)!/* , (3.3)

where ZS and ZT are the partition functions for the star (Figure 3b) and

the triangle lattices (Figure 3c); K! and X" are the interaction para-
meters of the lattices divided by kT; in this particular case, NS, the
number of star vertices, is the same as N, the total number of spins in

the basic 4-8 lattice.
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(b) The decoration transformation' gives
My
z. (k") = f  25(0), (3.4
D
exp(2K) = cosh 2K' | (3.5)
f£2 = 4 cosh 2K' , (3.6)
The decorated lattice is our old star lattice, that is, ZD = ZS‘ and

the basic lattice is in Figure 3a. For this particular case, the fol-

lowing holds:
N = o N (307)

where IVD is the number of spins in the decorated lattice (that is, the

number of bonds in the basic 4-8 lattice).
After some straighforward algebraic manipulations, we have:
3N/h
,30/2 [1 {e‘”‘" ' ‘H

2. (k") = zg(K), (3.8)
- lis
MK [el;x" N 3]zwz

™|

where

K=+ 4%n [:—;— (eL‘K” + 1):' . (3.9)

1
2

in the limit 70, or K" = = -L‘I-l——> - we obtain
kT

3/2
k 8n Z.l_(]{"—>-°°)=&1z an 2 +-N—EL+ k &n 2 (K=--’Qn 2). (3.10)
2 3 T B 2 .

350



From this expression, we have the ground state energy

u=-wnwlgf, (3.11)

and the zero-temperature entropy of the antiferromagnetic Ising mode 1
in the '"3-4-8" |attice,

(3.12)

where ZB’ N and K refer to the basic 4-8 or bathroom-tile lattice.
As far as we know, the Ising model in the 4-8 lattice has been solved

only in the book by Hurst and Green'?Z,

However, the notation of these authors is not always very transparent,
and they do not write down the prefactors of the partition function. So
we decided to use a dual transformation! which relates the bathroom
tile lattice to its dual, a sort of "Union Jack™ lattice (see Figure 4
worked out in detail by Vaks et aZ.'®. Before proceeding with this trans-

formation, let us note that

n 2 _ . 4n2
Bplk==—5=) = Zo(K=+ = (3.13)

(that is, the basic lattice is loose packed, its antiferromagnetic ground

state being non-degenerate), and that

tanhK:L, for x =02 . (3.14)
3 2
Now we can use the formula®"
Zg(K) A 2% (K*)
= - , (3.15)
*
M2 (sinh 2072 2 (ginn 2572
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T
|
l—, [PEA T,

"Union Jack'

the

FIG.4 - The 4-8 lattice (dashed lines) and its dual,

lattice.
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where

exp(2X*) = cotanh X , (3.16)
or

(sinh 2k*) (sinh 2K) =1 , (3.17)

and the superscript star (*) refers to the dual lattice. The entropy

{equation 3.12) can then be written as:

1/4
s . 3 RE . L] ,
7% = o 21/2+2 [N* an Z*(tanh X —7) (3.18)
Using the results of Vaks et «Z.,'? and evaluating one of their inte-

gral~,we have:

-2} 3 2m
N*SLnZ(ac) ;lnﬂ—g——)—-+-};zn%+-8]—( don {(1 - = cosB) +
0
52 5 c ) 1/2
+ |:1 =7 - 27 (1 +2) cosB + (— -—z—)coszeJ } . (3.19)

where

X = tanh K* = (3.20)

and
A= (e + 1) [2% + 1he* + 1 + 1623 (2?4 z + 1],
B=2x(1 - x?)%x? + 1)z +1)?, (3.21)
¢ = hx?(z? - " .
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The integral of expression (3.19) was evaluated numerically, and the

final result for the entropy per vertex, with six digits, is

s
=0, 2 . .22
k 0.75516 (3.22)

This value shows how accurate is the series result (2.10). Indeed,
Pauling's approximation, despite being a lower bound for the exact va-
lue, already gives a very good result. The entropy of transition of the
basic model*, which is of the order of the experimental values, is about
four times smaller than the value for the ionic model. A too large en-
tropy of transition does not rule out the ionic model. However, in order
to fully assess its physical significance, we have to go beyond this
high temperature calculation and define vertex energies for computing
the thermodynamic properties as a function of temperatura. This is a

more difficult task, which will be the subject of furthei- study.

We thank John F. Nagle for many discussions.
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