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The AW method is associated with a general eigenvalue problem of type
(A - )\B); = 0, in which the matrix B and in particular its lowest ei-
genvalue decide upon the stability of the solutions X and, therefore ,
upon the applicability of the method which may become very questionable
for heavier substances. Analytical proofs as well as explicit numerical

estimates for several solids are given.

0 método ''OPW'' (ondas planas ortogonalizadas) relaciona-se com um pro-
blema geral de autovalores do tipo (A ~ >\B)Sc> = 0, onde a matriz B e,
particularmente, seu menor autovalor decide sobre a estabilidade das so-
lugdes h e, portanto, da aplicabilidade do método, o que poderia tor-
nar-se questionavel no caso de substancias mais pesadas. Apresentamos

provas analiticas e avaliagoes numéricas explicitas para varios sétidos.

1. INTRODUCTION

The method of orthogonalized plane waves (OPW) has been used for the
calculation of the electronic band structure of almost all types of so-
lids. It has been successfully applied to metals, mostly in the sim-
plified version of the pseudopotential method!’2 which neglects non-

local effects. Most applications have been made to semiconductors ®, whe-
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re it is known to be superior to other methods of band theory, particu-
larly in the case of covalent binding where the potential cannot be well
approximated by the conventional muffin = tin construction*., Finally ,
even for insulators with large gaps, surprisingly good results could be

obtained® .

Among many attempts to improve the original version of Herring® as well
as the procedures of practical computation, there is one outstanding
example of perfection due to Euwema et al.” who even got self-consis~-
tency of the crystal potential. The approach of these authors provides

the most sophisticated state of the method at present.

Summarizing, one can say that the G method is a powerful tool of gene-
ral validity for the calculation of band structures of all kinds of
substances. Moreover, it is rather practical and time-saving from the
computational point of view since it leads to an eigenvalue problem in-
volving matrix elements which do not depend on the eigenvalues, as in
other methods of band theory. Therefore, the eigensolutions can be

found easily by conventional methods of linear algebra.

In all the above-mentioned applications, very little has been said about

the limitations®’?

of the methods. For instance, there is a well-known
example where the W  method fails, namely in the case of sd-hybridi-
zation in crystals of transition elements®, whose potentials may exhi-
bit resonances®. This failure is clearly due to the structure of the
secular problem arising in the W formalism which can be related to a
Born-series expansion, and it is known in scattering theory11 that re-
sonances cannot be appropriately accounted for in any order of such an

expansion.

On the other hand, when applying the 8 method to heavy substances, it
becomes apparent that there must be a basic unreliability inherent in
the formaligan which gets worse in going from lighter to heavier elements.
it is the purpose of the present paper to clarify this particular pro-
blem and to establish some criteria to gauge the applicability of the

method.
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2. THE OPW EIGENVALUE PROBLEM

Assume we know the exact Hamiltonian H including the true crystal poten-
tial, and denote by H the corresponding Hilbert space spanned by all
exact one-particle eigenstates. The idea of the OPW method is based on
the decomposition of H into the direct sum of three orthogonal comple-

ments:
- (g)
H = Hc® Hp o HR

Hc is the f~dimensional subspace of the so-called core states, ngg) the

g-dimensional subspace of band states, and HR a rest due to the trunca-

(g)

a denotes the set of relevant quantum numbers of a particular state,

tion of H at finite g. The core states will be denoted by la>, where
> .

and the plane waves by lz + Kj>’ with Z being the reduced wave vector,

and _123- (= 1,2,...,9) a reciprocal lattice vector. Under the assumption

that the basis of H_ is already known, the interest lies in finding the

basis ]7,'> for Hlig), starting with ordinary planewaves. This is done

by a partition of the Hamiltonian H into

H(A) = Hy + Mg, Hy = g Jas<al s

where HA contains the kinetic and the attractive as well as non-local
repulsive potential terms, which will not concern us in the following;
HB incorporates the terms arising from the orthogonalization to Hc (for
details see Refs. 9,12), and A stands for the set of band eigenvalues.

In this way, the original eigenvalue equation, restricted to Hpg),
H|i> = )‘ili>’ |2> € Hég) , for every 7 ,
is transformed into

H()‘i) {7?> = )\7:|i>, or HA|7?> = )‘i(l - HB)|'Z> s
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where [73> is the pure plane wave part of li> without orthogonality

terms. We may write
- g =
[i>= ¥ 2k +%,>,
2=1 2 3

and, after taking matrix elements of HA and (1 - HB), we are left with

the general algebraic eigenvalue problem

(4-Bz=0, (1)

N
x = {xm} s A= {a”m} , B = {bmn} s mm=1,...,9,

a =< +% | E+%> ,b =<&k+K |1-H|k+E%>
mn m ‘A 7 mn m B n
The additional indexi, in hi and X+7’, labels the g solutions to (1)

For positive-definite B, the shortest and most stable numerical way to
solve {1} is a Cholesky factorization
B =R'ER ,

with R being a regular right-triangular matrix, and a subsequent reduc-

tion to a special eigenvalue problem

(M -2A1)0 =0 (2)
by means of the transformations

Mm=®Y AR, T=-rRZ.

Eq.(2) is then numerically solved by standard techniques, as described
in Wilkinson and Reinsch'®. The use of the inverse of R should make it
clear that it is important to know something about the spectrum of B
particularly about its lower limit.

3. THE SPECTRUM OF B

The spectrum of B is of basic importance for reliable solutions of-(1).
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(g)

Since P = (I - HB) is a projection operator on H¥’', its spectrum e
must Tie in the closed interval [0,1]. In terms of the exact one-parti-
cle eigenstates of H the eigenvalues of P would be either 0 or ¥, but
in our case we take matrix elements of P between normalized plane waves,

which always decompose into
% + %3’) = yle> + zlp> ,

(9)
le> e H » lp>€Hp ,

where |c> and lp> are normalized appropriate linear combinations of co-
re states la> and band states |Z>, respectively, and |y|? + |z]*2 =1 .
Note in addition that Ple> = 0, and as a consequence, we find for the
spectrum {KE ,i =1,...,9} of B (at least forg==) the whole closed

interval

Os_kggl,foreveryi .

In foct, in an application to a concrete physical case, the lower limit
should not be attained, and hopefully, B does not differ appreciably
from theunit matrix, becauseusually theorthogonality coefficients
<alz + _123.> are small quantities {compared to 1), and

_ f
> > ->
b,=Fk+XlPk+%>=48 a§1 E+ % |oo<alk + X > . (3)

This may be true as long as we deal with lighter elements. However, as
can be seen from Eq. (3), the orthogonality terms accumulate with in-
creasing f, and as a consequence, the heavier the elements the more B
will differ from unity. The positive diagonal elements become smaller,
and the modulus of the off-diagonal elements larger. The diagonal do-
minance and with it the ''good' positive-definiteness are going to be
lost?® and this in turn means that the lowest eigenvalue, hereafter re-
ferred to as Aiin , is approaching its limiting value zero. This is the
behavior to be expected when going from light to heavy substances. The

qualitative trend will be the same for all kinds of substances but one
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expects different details for monoatomic and polyatomic crystals as well
as for mtals and insulators, based on the fact that the energetically
highest core states, which give rise to the largest orthogonaliy con-
tributions, may be different for these classes. In the following, we

are interested in a more quantitative analysis of the situation.

4. QUANTITATIVE NUMERICAL ESTIMATES

First, it is important to emphasize that certain eigenvalues of(A-AB)§=
0 may "explode'™ for small AInBﬁn’ in which case the whole eigenvalue pro-
blem becomes extremely ill-conditioned with respect to slight changes in
the input quantities. In any application to a real physical situation,
many appromations and simplifications have to be made and consequently,
the matrix elements of A and B are affected by errors which reappear in
the solutions, of course. The central question to be asked concerns the
relationship between a relative error § of input quantities and a cor-
responding error E of output quantities. W would speak of a well-con-
ditioned eigenvalue problem, in fact occurring in the case of light subs-
tances, if E were roughly equal to 6. Unfortunately, the estimated be-

havior of )‘iin can lead to situations like

O]~

already for low-order matrices, and the situation will get even worse
in higher dimensions due to accumulation of numerical errors. Once an
instability of the above mentioned strength is present in a calculation,
the adjustment of parameters which have to be introduced in every appli-
cation (at least the zeroth Fourier coefficient of the crystal poten-
tial) and their physical interpretation become meaningless. Even achie~
ving a reasonable adjustment, at a particular point in the Brillouin
zone, would be no real advantage because the dispersion of the energy

bands is too unreliable.

In the following, we would like to investigate trends of )‘iin for va-
rious substances. Associating a particular a with the main-, angular-

and magnetic quantum numbers (n.Q,m), respectively, we note for comple~
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teness that the explicit form of the orthogonality coefficientslz, in

(3), is given by

> _ [ b V2 R . )
<a|f+KJ.> = [-ﬁ- (22 + l)] Gm,OJO dr TJJL(KJP)PnR(r) ;

Q = (4/3)7R* is the volume per primitive cell, jz a spherical Bessel func-
tion, Pnl(r)the radial part of a core wavefunction, and K, = % + _]%l
Only states with m=0 will contribute. For simplicity, we choose subs-
tances which crystallize in the fcc- or rocksalt structure. The calcu-
lation is based on an expansion into 65 plane waves (unsymmetrized) and
a group theoretical reduction of high order to low order matrices, aiming
at the greatest possible numerical accuracy. Without loss of generality,
we confine ourselves to the center T of the Brillouin zone, and consi-
der only the states of symmetry I’y which are the mst critical and in-
teresting ones for our purposes since they are affected by the largest

orthogonality contributions. In this case, the matrix dimension is 18.

It is generally true that the spectrum of Bis highly degenerate or
quasi-degenerate, that is, almost all eigenvalues accumulate in the
point 1, and only a very few of them are well separated from the rest,
and smaller than 1. The numerical problem is very delicate and, for this
reason, we used a Fortran version of a procedure which is the mst sta-

ble for such a situation®,

Table 1 gives a summary of the substance under consideration, their lat-
tice constants a and the number s of completely or partially occupied
core shells. To complete the inert gas series, we have included a hy-
pothetical Rn-crystal. The diatomic compounds are labeled by the total
nuclear charge per primitive cell.

According to the previous analysis, one would expect AB to be simply

min
a monotonically decreasing function of Z, the total nuclear charge per
primitive cell. However, this behavior is obscured by the dependence of
the orthogonality coefficient on the lattice constant like A2, \where
A= aa/li, furthermore by the details of the core wavefunctions for which
the overlap with plane waves may be rather sensitive, as well as by the

modification of the plane waves due to the change of the lattice cons-

277



Table 1. Lattice constants and number of core shells

a[ﬁ] s a Eﬁ] s

) 12
10ne 4,46 1 20440 4.21 . 3'39 3
18ar 5.31 3 19
3 K 5
'e Sece 6.29 176, 3
Kr 5.64 6
Sh%e 6.13 9 S%k8r 6.59 35g, 6
S6pn 6.70 13 : 37
20pp 7.33 Rb
13a9 k.05 -3 53
*osr 6.08 8 W0 5.4 SEu 12
798y 4,08 . 13
‘ 19049 4,92 92y 17

tant. In view of these facts, the following numerical results of the
spectral analysis of the matrix B can be taken without much ado. Tables
2, 3 and 4 show a representative contribution to the first diagonal ele-
ment of B, namely, é<3]a><al3>, where 8 = (0,0,0) is the zero wavevec-
tor, and the lowest three eigenvalues as well as the number IVA of ei-
genvalues which lie in the interval A close to 1. A was chosen to be 5%

of the total length of the spectrum, i.e., 0.95 S_).st_ I.

For the inert gas series, Agin is well behavedandwill not cause any
trouble, not even for the heavy hypothetical Rn-crystal. On the other
hand, the ionic and metallic solids show appreciably lower eigenvalues.
This can be understood from the fact orthogonalization in the QR method
is required only for those states which do not form the valence states.
Usually, the energetically highest states (or the outermost electrons)
give the largest orthogonality coefficients. For the inert gases, the-
refore, the s- and p-electrons of the octed shell do not contribute to

the matrix elements of B, whereas for the other elements they do. Irre-
B

min
charge, may occur as in the case of KCR. It has already been mentioned

gularities in the trend to decreasing A , for increasing total ruclear

that there exists a complicated interplay between the change of lattice
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Table 2. Lowest eigenvalues for the inert gases

§<'5 |o><a| 6>

B

B

B

Xpin X, A, Ny

Ne 0.00162 0.9162 1.0000 1.0000 17

Ar 0.00987 0.6385 0.9483 8.9999 16

Kr 0.0144k4 0.5306 0.8880 0.9660 16

Xe 0.02501 0.3620 0.7673 0.8888 15

Rn 0.02692 0.3356 0.7344 0.8483 15

Table 3. Lowest eigenval ues for insulators

<§<3| a><a|0> )\f‘ . A2 28 LA

Mg0 0.10427 0. 09450 0 4990 0. 8305 15

KCL 0.15003 0.03642 0.2331 0.7046 14

KBr 0.13490 © 0.04875 0.2667 0.6209 14

Rbl 0.14343 0.04042 0.2053 0.4913 12
Table 4 Lowest eigenvalues for metals and heawy oxydes

£<8|a><a|0> % 22 X N

z a><a min 2 -} A

AL 0.07970 0.12513 0.5686 0.9918 16

Sr 0.174kk 0.01585 0.1377 0.8792 15

Au 0.21993 0.00626 0.0939 0.1764 14

Eu0 0.32958 -0.00494 0.0600 0.6532 1

uo 0.50968 -0.02217 0.0674 0.2355 10
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constant connected to the change of nuclear charge when going from one
particular substance to another. The most striking situation is found
for the heavy oxides EuQ and UO in strict contradiction to the exact

analytical lower limit for the spectrum.

5. CONCLUSIONS

It was the aim of this paper to display a basic weakness of the Q%W me-
thod inherent in the formalism itself and rather independent of parti-
cular physical approximations used in concrete épplications. This weak-
ness is due to the lower limit of the spectrum of the matrix B, in the
OPW-eigenvalue problen (A - )\B); = 0, which approaches zero for heavier
substances, a property which in addition is rather sensitive to the or-
dinary uncertainties in the matrix elements. If one assumes that, in a
hypothetical exact calculation, a small lowest eigenvalue results, one
knows that already slight errors in B can drive it much closer to zero
or even below zero, as is the case for Eu0 and UO, for instance. Under
such circumstances, the matrix elements of A which are much more affec-
ted by uncertainties than those of B, because they contain the crystal
potential, blow up according to the solution (2). These extreme insta-
bilities will make at least some of the solutions entirely meaningless.
The number of stable solutions is rougly equal to the number NA shown
in Tables 2,3 and 4. One could argue that a random distribution of
errors over the matrix B cannot account for such instabilities, since a
coherent change of certain elements is necessary for this mechanism.
However, since the matrix elements of B are nothing else than overlap-
-integrals between orthogonalized plane waves, an error in any of these
functions will propagate systematically through rows and columns, cau-
sing exactly such a coherent change. For completeness, we would like
to mention that Agin + 0 means that certain rows or columns of B become
linearly dependent, and that, in turn, means that by orthogonalizing the
plane waves to the core states, quasi-linearly dependent functions have

been constructed.

% hope that our criticism will contribute in making future applica-

tions of the RV method more reliable.
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