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The reaction of a homogeneous sphere of a neutron matter, set in a ro-
tational motion under the influence of an external torque acting on
its surface, is investigated. For neutron matter, with a typical neu-
tron star density of 1 0 ~em3B and a temperature varying between 106
and 10' K, originally in uniform rotation, a time dependent differen-
tial motion sets in, which lasts a time scale of hours to some decades,
resulting finally in co-rotatior During these times, the braking in-

dex of a magnetic neutron sphere depends very sensitively on time.

Investiga-se a reacdo de esfera homogénea de neutrons posta a girar
por acdo de torque exterior a agir em sua superficie. Para a materia
de neutrons, com densidade estelar neutronica de 1015g ~ m - €, tempe-
ratura a variar entre 106 e 109 ok, em movimento de rota¢do uniforme ,
estabelece-se um movimento diferencial, dependente do tempo, que per-
dura por un tempo que vai de horas a décadas, resultando em uma co-ro-
tacao Durante esse movimento, o indice de freiamento de una esfera

de neutrons magnética apresenta dependéncia mui sensivel no tempo.
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1. INTRODUCTION

It is generally accepted that pulsars are rotating neutron stars. As a
rule, the interior of such a neutron star contains a liquid phase which
consists mainly of neutrons and also contains protons, electrons and
negative muons. In more massive neutron stars, with a central density
of pc> 1018 gc:m'3 also hyperons become importante constituents (Ruder-
man!, Baym and Pethick? ). However, we are interested in that part of
a neutron star which contains normal (i.e. nonsuperfluid) neutron matter.
Between densities of about 5§ X 10!! gcm'3 and 2 x 10" gcm'3 the neu-
trons are superfluid because of the 1S0 - attraction (Krotscheck3,Chao
et al.* ). The neutrons are supposed to be superfluid again, at den-
sities which exceed the nuclear densities, because of the P, - neutron
pairing (Tamagaki® , Tamagaki and Takatsuka® ). It should be pointed
out, however, that all these calculations, concerning the 1SO -pairing
as well as the anisotropic 3P, - superfluidity, should be regarded as
first estimates, since the energy gaps depend very sensitively on the
nuclear potential used. Detailed calculations performed by Takatsuka®
confirm that the onset of anisotropic superfluidity is a delicate func-
tion of the neutron effective mass. Moreover, it has been investi-
gated by Weyer7’8 that in the high densities regime, in neutron matter
(p25x w”gcm‘:"), a certain pairing correlation of neutrons in re-
lative singlet states may occur. This pairing is due to the asymmetry
of nuclear forces between even and odd states, which suggests the pre-
ference of singlet states for neutrons with equal momentum quantum num-
bers. These correlations build up the so called dineutron clusters ,
analogously to the a-particle picture. The decision, whether the di-
neutron correlation or the anisotropic superfluidity prevails in neu-
tron rnatter, still remains unsettled. Therefore we assume’ - even in
the presence of the 3P, - superfluidity = at least a normal component

between = 2 x 10** and 4 x 10** gem™3.

Our following model calculation, which refers to a normal neutronfluid,
may be applied to the normal component in the interior of a neutron

star.
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The question we would like to answer is how the surface angular velo-

city Qs(t), and the braking index n, defined by
.= 0 0-2
n(t)i= 9g(2) . 8(2) . 93%(2) , M

are modified by the existence of viscous normal matter in the interior
of a neutron star. This analysis is useful, since the experirnentally
found values of n are about 2.5, and special and general relativistic
effects have been proven to be too small to give a correction of the

desired order (Pfarr!l).

In the first Section, we give a short epitorne as to the calculation of
the first viscosity which we need in the second Section for an appro-

Ximate solution of the Navier-Stokes equation.

2. VISCOSITY OF NORMAL NEUTRON MATTER

In this Section, we briefly review the essential steps for the evalua-
tion of the first viscosity, in neutron matter, in the framework ofthe
Landau theory (Nitsch!?, Heintzmann and Nitsch® and the literature ci-
ted therein). In doing so, we derive as a first step, a simple repre-
sentation of Landau's interaction function of the quasi-particles which
we need as the most important ingredient, in the Boltzmann-transport
equation, to approximate the collision integral. There, this function
is related to the forward scattering amplitude of two quasi-particles”.
The second step only gives a rough sketch of the general assumptions

for the evaluation of the first viscosity.

The total energy, E, of an interacting system is a functional of the
distribution function nc(p) of the quasi-particles. If the function
nc(p) is sufficiently close to the ground-state distribution function,
n(‘;(p), we carry out an expansion of E[x] (Pines and Noziéres!?®), viz.,

Efn]- E, = OEp e, p)on (p) + (2!)'10.(7'2? p'fm. (p,p")on () on_, (")

(2)
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where the quasi-particle energy, eﬁ(p), is the first, and the interac-
tion function between the quasi-particles, fOO.(p,p’), the second, va-

riational derivative of the total energy E[n], i.e,

eg(p): = 6EEn]/5no(p) , (3)

and

iy rpop') 1= 6*E[n]/6n (pYon , (p"). ()
The deviation, 6no(p), from ng(p) is defined by
s (p): = n (p) - n;(p) . {5)

A simple approximation of the quantities eo(p) and f‘OO,(p,p'), by means

of the Hartree-Fock theory, gives

Bl = 1 p2em)in (p)+(2)70 ) <pop "o’ |V]pop o n (p)n (2,
1 !
asp 0,0%3p,pP

(6)

with

e (p)=p*(@m)™* + )} <pop'c’|Vipop'obn,(p"),  (7)
a’sp!

and

Foqr Pop') = <pop’c’|Vlpople’> . (8)
We describe the interacting forces between the neutrons using the uni-
tarily transformed (Mittelstaedt et al.'*) Gammel-Christian-Thaler po-

tential (Gammel et aZ.1% ).

in the considerations above, we dealt with stable, homogeneous distri-

butions, for which the function no(p) neither depended on time nor on

534



the relative position of the quasi-particles. In a more general case,
however, we consider a weak time dependent inhornogeneous perturbation
of the ground state of our system. As a consequence, the distribution
function of the quasi-particles becomes, in the classical Timit, ex-

plicit dependent on time and position: n_= nO(p,r,t).
V¢ determine no(p,r,t) by solving the Boltzmann equation
/9t + {n,€} =I(n), (9)

where I (n) is the collision integral of the quasi-particles, which we

approxirnate, in the case of binary collisions, specified by
Py *p, T pytp, (10)

in terms of Born collision cross sections using the interaction func-
tion of Eq.{8). The local excitation energy of a quasi-particle is

equal to

Eolp,»)= aﬁ(p) + Z fcc'(p’p')(sno' (p',n). (i
a';p’

Once the collision integral is known, we can study the transport pro-
perties of the system such as viscosity, thermal conductivity or spin
diffusion. If we impose on the system an inhomogeneous static perturba-
tion, containing a velocity gradient, this gradient induces a flow of
momentum which is only limited by the collisions between quasi-particles,
and which is - in the co-mving coordinate system - proportional to the
imposed velocity gradient. Thus, the first viscosity,n, is defined as
the proportionality coefficient between the momentum flux density ten-

sor Hik and the expression
(8v, /32y + B, /3x, -(2/3) (v, /2,)8,, ) . (12)

Since the calculation of n is somewhat lengthy and cumbersome, we here

only quote the final resultl®:

n=uwlp) . 772 . (13)



The density dependent function w(p) contains mainly all 'those quantities
which arise from the interaction of the neutrons such as forward scat-
tering amplitudes, and the effective mass m* of the quasi-partictles. The
explicit expression for w(p), as well as a Table for some n-values, are
given in the work by Heintzmann and Nitsch® . However, the result {(13)
can be easily understood by some qualitative arguments: since the neu-
tron-neutron scattering is restricted to lie within a layer of width
(kBT), around the Fermi surface {i.e. all elementary excitations of in-
terest are to be found in this layer), the transition probability for
the process (10), in the "thermal 1imit"!®, is of order (kBT)z. This
leads to a quasi-particle lifetirne, t_, proportional to 7-%. Moreover,
Tp represents a qualitative rneasure for the collision time of quasi-
-~particles which is proportional to the first viscosity, n, according to
the elementary kinetic theory of gases. V¢ shall see, in the next Sec-
tion, that the temperature dependence of n very sensitively affects the

duration of the differential rotation in neutron matter.

3. DIFFERENTIALLY ROTATING NEUTRON FLUID

W want, first, to describe our model. V& consider a uniformly rotating
sphere, of neutron fluid, with a solid outer layer. At a certain time,
to » we apply a torque from outside to the surface .of the sphere, py
switching on a homogeneous magnetic field in its interior. This torque
causes a braking at the surface and thereby produces - because of the
viscosity n - a velocity gradient within the star matter (Fig.1).We de-
termine this velocity field by solving the ''special'' Navier-Stokes equa-

tion,
dv/dt = dv/9t + (VW)v= -p~'Vp - Vd + p~InViy, (1%)
where we have already assumed that the density, p, as well as the vis-

cosity, n, does not depend on position and time. For » = 0, Eq.14 re-

duces to the weli-known condition for the hydrostatic equilibrium:

Vp =—pV<I> ) (]5)
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Fig.1a

Fig.1 - Velocity fields;

magnetic dipole field.

before (a)

Fig.1b

and after (b), switching on the



where p is the pressure of the neutron matter, and ¢ is the Newtonian
gravitational potential. From the form of Egq.lL4, we get a rough estij-

mate of the dissipation time of the viscous forces, which is
Tyist = OET (16)

where L is the characteristic length scale of the velocity field. This

time, T,is is independent of the initial condition for the differential
equation (14). For L-R, where R is the radius of the neutron star,and
-3

for a density p = 10ts gcm and a temperature T = 108K, we get T

vVis
10% sec. = 3 years. Afterwards, the rnatter is rigidly co-rotating again.

W simplify (14) using the following Ansatz (cf. Heintzmann et al. '’ )

for the velocity field v(r,z),

vir,t) = Qr,t)rsin ee¢ . an

In spherical coordinates, we obtain from (14) the following partial dif-

ferential equation for Q(»,t):

M(r,t) /0t = ¢ nld%0(r, ) /or®+ byt 30(r,t)/3r} . (18)
Here, we have already assurned Vp = - 0V® . According to the results of
Heintzmann et qZ.'7*%%, this assumption is justified.

For the complete solution of Eg.18, we need initial and boundary con-

ditions, which we define as follows:

Initial condition:

Qr,0+)=: Q, ;

boundary condition:

(i) The solution has to be regular at the origin, r = 0.
(i) 2(r,2) = 0. (2) is a function of time, with R (0+)= Q,, which will
be specified by the torque equilibrium condition exhibited below Eq.(24).
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The variable R denotes the radial coordinate at the surface of the star.
The solution of the Laplace-transformof the differential equation {(18)

reads

Essinh(r(s/\))‘/z) - 1/»(3/\))1/2 cosh(r(s/v)l/z)

2 (r,8)= 57 Qu+(w, (8)-s7'9,) ’
I ()sinh(R(s/\))l/z) - R(s/V) % cosh(R(s/v) %)

(19)
with
w, (s): = L{Qs(t)} R

and the quantity v= p~!n is the kinematic viscosity. The torque, at the

surface of the sphere, induced by the velocity field ofthe viscousfluid

given by Eg. 19 can easily be given by (cf. Landau and Lifschitz!®)

0
D| (s)= CnR(BQL(r,s) [or) 'r_RRsin 6.2mR%sin’6d0 = xR (80, [or) |, p .

(20)
Using Eq.(19), we explicitly get, for D, (s), the expression
_ 2
DL(s)=§—TT2?3n(wo(s) -8 1y { - B s/v) - 3}
' 1 - R(s/Vv) % coth(R(s/\))/z)
(21)

As already mentioned in the Introduction, we are interested in the in-
fluente of the viscous forces on the braking index, n(¢). Using the ba-
lance condition for the torques we evaluate Qs(t) in the following way.
The function DL(S), in Eq. {(21), cannot be transformed analytically into
the original space of the Laplace-transform. We therefore, give the

representation of D (¢) in the two limiting cases:

a) 8, << R and b) 8, »> R, (22)
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here 6t means the depth of penetration of the velocity field, at time ¢
(cf. Landau and Lifschitz [19]).

For 6t<< R, we get from Eq.21, the result

8

D{(t) = 3

-

t
™ R* (n np) /2 f dr(dag (1) |dr) . (£-1) "M/2 (23)

which, likewise, represents the solution of the analogous "plane"™ pro-

blem!®. In Table 1, we exhibit some values of times when the relation
(a) is valid. If we assume now that, at time £,, the braking at the
T[x] n[10!7 poise] t. n(tc)
10° 1.6 x 10° 1/2 hour 3 x 10°
107 1.6 x 10" 2 days 3 x 1g%
108 1.6 x 102 1/2 year 3 x 102
10° 1.6 50 years 3

Table 1. A1l values are, here, given for constant density, p=10159cm'3.

The time parameter, tc, is calculated by equating the radius R and the
depth of penetration §,:= Z(np'lt)l/z: t = 470" 'pR. The two cases, (a)

and (b), in the text, refer to t<<t_ and ¢>>t_, respectively.

surface of our fluid sphere is caused by the torque of a magnetic dipo-

le field, i.e.,

<
=
i

- (2/303)92 p®sin?y = Dvis(QS) , (24)

we get the following integro-differential equation for Qs(t):
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t
-(2/3c3)§2§ u?sin?y = %T- Rr* (1r'1np)1/2 ( d‘r(d’ls|d'r). (t-r)‘.% . (25)
u .

Here, y means the angle between the axis of rotation and the magnetic
dipole axis; u = 3033 is the magnetic dipole moment, and ¢ the velocity
of light. Two-fold iterative integration of (25), with the starting
Ansatz Qs(l)(t) = Qo + const. (t)l/z, leads to an approximate solution, for

small values of t:

2P () =9, = @lem £1/2(1-4 dael), (26)

with

et = 8 1R (rtnp) V2 (3¢ |2u?).

W

Hence, it follows for the braking index, =n, in the limit >0, the ex-

pression:

n(t) = c mQ7F Y2 -, 27

Obviously, the braking index, n, diverges to + ©® as t goes to nought.
And putting €, = Q__., = (R™36M)Y2 = 0.8 x 10* sec™! (Heintzmann et al'®)
we see that n decreases from + = to values of about 100 to 10, within
the allowed time scales (cf. Table 1).

In case (b) , the final state of a rotating viscous sphere of neutron
star matter has already been studied by Heintzmann et al.'”. We  howe-
ver, are interested in a dynamical process which corresponds to this

final state.

For <5t>>R, the expansion of (21), and the following transforrnation into

the original space, leads to the result:

p(t) = (8/15)TTRSO{Qs(t)+(35)'1R2n'lpﬁS ()} . (28)

In the limit n >, we get the torque of a rigidly rotating sphere with

a moment of inertia

I: = (8/15)mR% . (29)



Using the torque ‘equilibrium condition, Dvis(Qs) = Delm(QS)’ we  now
obtain an ordinary differential equation of the second order, for Qg(t),

which reads

. . - 5
I{Qs(t) + anﬂs(t)} =-a Qs(t) , (30)

where

a: = (35)"'”*n"Yp , and a: = (3¢%)7!. 2u%sin?y . (31

Those times for which (30) is a valid approximation can be taken from
Table 1. It is useful to write (30) in terms of dimensionless parame-

ters and variables. For that purpose, we define the following quanti-

ties

.o -1 2

b: = (@ cx(tAQA) . (32)
. = . = .= RS

x: = t/tA , QA. QS(tA), y: QS/Q , a a, tA ,

The constant time, tA’ defines the onset of the validity for the JVYimi~

ting case (b). Equation (30)reads, now

dPylde? + ady|de + by® =0 . (33)

The coefficients, a and b, are of the same order of magnitude, but both

are very large compared to 1 (see Table 2). For that reason, we inter-

7[¥] tp [sec] QA[sec‘I:I a b/a
108 10" 6 x 103 1.5
107
3 x 1010 2 x 102 2 x 108 1.8 x 107!
108 10" 6 x 10 1.5
10°
3 x 10'° 2 x 102 2 x 1o* 1.8 x 107!}

Table 2. The coefficients, a and b, of the differential equation (33)
are given for some special values of ternperatures, and initial data

tA and QA.
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pret the contribution due to the second derivative, in Eq. (33), as a

perturbation of the differential equation

adyldz + by® =0 . (331)
Its solution corresponds to the slow down law of the rigidly rotating
magnetic dipole and leads to the braking index n = 3. The approximate

solution of Eq. (33) is y! =-a”'by] , and

y =y, +ayi( +atbing} ), (34)
whence we derive the braking index
n{(t) = 301 + (35) '2a1™ Rzn"pszg(t) ) . (35)

Since we cannot give the complete solution Qs(t), for all values of t
we are not able to give the exact initial value . If we assume the
period of the crab pulsar to have the value Qs(t), the additive term in
(35) is of the order of 1072 to 107", It only gives a positive contri-
bution of the order of percents to the braking index of the magnetic

dipole.

4. RESULTS AND DISCUSSION

As we have seen in the first Section, the first viscosity of neutron
matter depends on the nuclear forces and on the density of the matter .
it is proportional to T~%. Especially, the temperature influences the
duration of viscous forces in the case of differential rotation of the
neutron matter. Within a more detailed investigation, in the second
Section, we come to know that viscous forces cannot be regarded as
acting during astronomical time scales (T??: = 100 years). From Table 2
we see that the coupling of the differential rotation to the rigid one
takes time scales of years to decades. However, in the above treatment
we did not consider turbulences as a possible mechanism to destroy the

velocity field!7. In Section 2, we have also answered the question of
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how far the presence of differentially rotating viscous matter influen-
ces the slowdown law of a pulsar. The resulting fact that the braking
index, n{t), is always larger than 3 is a consequence of our model cal-
culation: while the surface of the star is already braked by the dipole
radiation, the interior maintains its original angular velocity and
therefore hurries on in advance of the surface (Fig. Ib). As a conse-
quence, angular momentum is transported from the inside to the surface
due to collisions of the particles within the viscous fluid. This trans-

ported angular momentum leads to a braking index larger than 3.

The interaction of the rnagnetic field, in the interior of the star,with
the neutrons, may be neglected because of the large Fermi energy ofthe

29y . A more detailed discus-

neutrons in comparison to (uB) (cf. Pfarr
sion would have to include the existence of electrons, protons and ne-
gative muons, as constituents of a neutron star, together with their in-

teractions with the magnetic field.
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