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A method is given of determining an upper bound of the entropy of a
classical interacting system. if the distribution function can be split
into an interaction part and a free particle part, then the former plays
the role of reducing the entropy. When a Gaussian type distribution func-
tion can be introduced for the first trial description of the spatial
distribution, the next distribution function can be obtained by a pro-
duct of the Gaussian function and the Boltzmann factor. A family of
Gaussian trial distribution functions is introduced for an electron gas.
it was found that the ring diagram energy corresponds to the  minimum
free energy which the family produces. in contrast to the ring diagram

method, our new approach is extremely simple and general.

.Apresenta-se um método de determinacdo de um limite superior para a en-
tropia de sistemas de muitos corpos ean interagdo. Caso a funcdo de dis-
tribuicdo possa ser dividida en parte de interacdo e em outra de parti-
culas livres, a primeira traz consigo a reducdo da entropia. Quando uma
funcdo de distribui¢do, de forma gaussianna puder ser introduzida, na
tentativa inicial de descricdo da distribuicdo espacial, a fun¢do de
distribuicdo seguinte podera ser obtida por produto da fungdo gaussiana

pelo fator de Boltzmann Neste trabalho, apresenta-se uma familia de gaus-
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sianas tentativas para un gas de electrons. Achou-se que o diagrama
em anel, para a energia, corresponde ao menor valor da energia a que
a familia da lugar. Contrastando com o método dos diagramas em anel, a

abordagem nova, a ser exibida, & extremamente simples e geral.

1. INTRODUCTION

The entropy of a physical system is defined, in statistical mechanics,

either by the Boltzmann relation"
5 = KnW (1.1)
or by the H function?
5=« { fla)anf(x)de . (1.2)

Here, W is the number of possible configurations, and f(x) is the dis-
tribution function of the system, x being a symbolic phase space varia-

ble.

Equations (1.1) and (1.2) are equivalent. 1In using these relations, a
maximization process is commonly used for estahlishing equilibrium
Through this maximization of the entropy, W or f{x) for equitibrium are
determined. The Gibbs H-theorem for the canonical distribution func-

tion is based on a maximum entropy.

The configurational function, W, or the distribution function f{z), in-
cludes, generally, parameters characterizing the system and some adjus-
table parameters which can be used for maximization. For instance, the
normalization condition of the distribution. function introduces an ad-

justable parameter when Lagrange's method of multipliers is used.

It is clear that the absolute magnitude of the entropy determined byEq.
(1.2) depends on how the distribution function is normalized. Since, in

most cases, only the relative entropy changes are important, the ambi-
guity in normalization is generally irrelevant. However, there arealso

cases where the absolute magnitude of the entropy becomes important
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The third law of thermodynamics is a typical example.

It is the purpose of this paper to discuss some very general aspects of
the entropy which are important for arbitrary interacting systems. In
the first place, we shall show that the entropy has an upper boundwhich

is proportional to the total number of constituents, N, of the system.

Hence, the existence of the thermodynamic limit will be clear ifa lower
bound is found also proportional to the total number. We shall then
analyse the role played by molecular interactions. in a subsequent pa-

per, we shall show how the general consideration in the present paper
is applicable to many body sistems for explicit results. In fact, sig-
nificant and explicit results shall be derived for typical many body
systems. For convenience, in the present paper, we shall assume the
system to be classical. Otherwise, our considerations will be comple-
tely general. Although we do not introduce time explicitly, our consi-

deration will be valid even if the system is in non-equilibrium.

2. UPPER BOUND FOR THE ENTROPY

For our purpose of finding an upper bound for the entropy, let us use

the inequality
[f(x)z'nf_(x)dx zj flx)eng (x}dx , (2.1

where

[ﬂxm =Jg<x)dm . (2.2)

This inequality holds for arbitrary non negative distribution functions,
flx) and g(x), satisfying the same normalization, i.e. (2.2). The proof

3

of the inequality has been given elsewhere® but since it does not take

space, we give an outline of it:

J{ﬂxmnf(x) - (@) ing(x) Yz = j g2 { gi((%gﬁ?,n {;—gg - %)y + 1}z 0

(2.3)
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Here, in the second equation, the important condition (2.2) has been in-

troduced, and the non negative character of the integrand used.
fn the distribution function, we have used a symbolic variable z.

This variable can represent velocities, coordinates and even discrete

variables (such as spins).

A set of conjugate phase space variables may have a dimension, but the
form of Eq. (1.2) suggests that intrinsic properties of the entropy can
be studied by using dimensionless phase space variables, x, and a di-
mensionless f(x), because the dirnension of the entropy has been provi-

ded by the Boltzmann constant k.

Based on this observation, let us consider a three-dimensional system
which is described by a ''true' distribution function, f(x). Let us as-
sume that f{x} is unknown but a trial distribution function g{x) exists.

Let us choose

3/2
glx) = [—72;-} exp (-iz?) , (2.4)

which is normalized to 1 in the 3-D space and has an adjustable parame-
ter. Obviously, g(x) represents the Maxwell distribution function if

22 = mv?/2¢T . Introducing Eq.(2.4) into ineq.(2.1}, we find

(2.5)

where <g2> is the second moment of f(x)- Since f(x) is normalized to

1, as g{a is,
@t = [t (2.6)

The parameter A can be chosen such that the right hand side is a mini-

mum.  Then

5<3 1. 3 =3 2t 2
— [1 &n 21T<x2>] , A S <a® > (2.7a)
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It is interesting to observe, in ineq. (2.5), that the second moment of
the distribution function determines the upper bound. Note that the

sharper the distribution, the smaller the upper bound.

We have used a single variable, x, in Eq.(2.4). 1t is straightforward
to generalize the above considerations to the case of N particles. 1f
these particles are the same, we will have
ﬁiﬂ[l-gn 3 ] . (2.7b)
2 2m<g?>

Hence, the entropy of the system can be proportional to ¥ if a lower
bound for the entropy S is proportional to N. W would then establish

the existence of the thermodynamic limit.

3. INTERACTION EFFECT

Let us investigate the case where the phase space is characterized by
two variables p and (. Let us associate p with momentum space, and (
with coordinate space. If the system is classical, we can express the

true" distribution function f(p,q) in a product form:

»

flp,q) = £,(p) 7,00 3.1

where f£,(p) shall be the Maxwell distribution in momentum space, as in
Eq. (2.4), and f,(q) represents the coordinate space part. Let us use

the normalization:

[ﬂp,q)dpdq - [ o) J F2lQ)dg = f fl@dg = 1. (3.2)

Correspondingly, we choose a ''trial' distribution, in the p-g space, as

follows
glp,q) = f‘1 (p) x 1. (3.3)
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This "trial' distribution function is constant (white spectrum for our

information) in coordinate space. Since g{p,q) has to be normalizedas

in Eg. (3.2), we require
j@=1. (3.4)

That is, dg = dr/v , where VvV is the total volume and dr is the volume

element.

Introducing Egs. (3.1) and (3.3) into ineq. (2.1), we find

[ £,10ins, (@ 2 o0 . (3.5)

Note that, with the product form of Eq. (3.1), the total entropy of the
system is the sum of the mornentum space part and the coordinate space
part. lIneq.{3.5) states that the interaction part of the entropy isne-
gative. That this is an intrinsic property of the entropy is clear be-
cause we have been using 3 dimensionless variable. Actually, the result
(3.5) is a direct consequence of ineq. (2.1) when g(x) is set equal to 1
The physical meaning of this negativeness has yet to be explored. The
result is quite general, being independent of the particular spatial
distribution of the system and of the characterof the potential, attrac-

tive or repulsive, which produces it.

The crucial point is that the interaction causes a certain spatial order
which in turn results in an entropy reduction. From this viewpoint,in-

teractions always feed negative values to the entropy.

W have considered rather simple cases where the trial distribution func-
tion, g(x), does not depend on coordinates. Since it is often possible
to describe a system approximately by an effective field, let us choose
a "trial" distribution function such that

(°)

) (p,q) =g,

© ¢! @

N .
= I gfo)(pi) g
i=1

(

2

0)(q7:) y (3.6)
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where g( )(q ) represents the part due to the effective field. |t is a
function of a single particle coordinate, q; The function g(o)(p ) re-
presents the kinetic energy part. Eq.(3.6) improves Eg. (3. 3). Again ,
to the true distribution function may be given the form of Eq. (3.1)

More explicitly, we use

N
fle,q) = 1 £ () T flg..) , (3.7)
=1 VY @y
where q =q; q3_ and (i‘j) means a pair of particles, i and ;7 , W&
have the normalization condition that
N
[f(p,q)dpdq =J Tz (q T dg,
(74] 7,=1
LA
= LE] g, (qi)dqi =q, = exp(-BF) , (3.8)

where F is the interaction part of the free energy, QIV being the confi-

gurational partition function .

Under this condition, ineq. (2.1) becomes

(

Jpz(quz)flnfz,(qlz)dqud'q’2 > f pl(ql)ﬂlngz")(ql)dq1 R (3.9)

where pz(qij) and p {g ) are the pair and singlet distribution functions
1 71

of the given system:

_N{w-1)
pz(qm) " Q J (1,7)f (q 7,3 1#1 2 dq !
N
(3.10)
v
pl(ql) - J (w)f (qw ’H‘] dq
The normalization of these functions are
J oz(qlz)dqldq2 = N(§-1) , [pl(ql)dq1 =v. (3.11)
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Inequality (3.9) then indicates that the true entropy, as given by the
left hand side, has an pper bound. That is

SI< Ne < Kngin)(q1)> , (3.12)
where <Qng£°)(ql)> indicates the average taken with respect to pl(ql).

We conclude that the use of an effective field distribution function

gio)(‘qi) increases the entropy.

The formal aspects of the entropy, which we have discussed in the pre-
vious sections, do not change. Here Sy denotes the part of the entropy
which depends on the interaction. Note that ineq. (3.12) can be much
more restrictive than what ineq. (3.5) suggests: the average <Slng(2°)(ql)>
can be negative for g§°)(q1) - exp[—&b(ql)], where ¢(g,) is theeffective
potential and B = 1/k7. So far, we have discussed some formal aspects of
the entropy. It is very desirable to find a lower bound which is pro-
portional to ¥. However, this may not be generaliy possible because the
relevant states rnust be those where the interaction is effective. The
specification of such states shouid vary from one system to another. In
other words, it is difficult to specify a unique state whichcorresponds

to minum entropy.

(0)

Inequality (3.9) suggests that a suitable choice of g, (ql) should gi-

ve a good approximation to the left hand side which is generally unknown.
In practice, it is perhaps more convenient to express the inequality in
termsof the freeenergy. |If, as in Eq.(3.6), a trial distribution

function is chosen, and if the next approximation is chosen such that

MV wa - aenBEe] . Ga3)

the Bogoliubov inequality will. read

<>, 2 F, (3.14)
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where <¢>; indicates the average taken with respect to g(o)(p,q). The

free energy, F , can be found from the normalization condition

J flayde = 1, (3.15)

or

exp(-BF) = <exp(-8¢)>0 . (3.15)

As in the case of ineq. (3.9) , we try to choose <¢>; as low as possible
so that a very good approximation for F is obtained. This depends on

the choice of the trial distribution q(o)(p,q).

4. APPLICATION TO THE ELECTRON GAS

Let us now apply our considerations of Section 3 to an electron gas .
W will show that the ring diagram formula for a classical electron gas

can be obtained very easily.

For an electron gas, with positive charges in the background, we requi-
re charge neutrality. Therefore, it is reasonable to choose glx) in
such a way that the left hand side of ineq.(3.14) does vanish. Thismeans
that g(z) should correspond to a completely random distribution without

any effect from the Coulomb interaction.

VW start with the momentum space representation of the Coulomb interac~

tion:
=1 7 u@ )2 -m, (5.1)
27 - 9
q#0
where
) N
u(g) _ e s 02 = ) exp(iz; . ;i) . (4.2)
q° 4 =
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The sum for p, may be considered as a random process
q

Hence, by analogy to the case of an ideal gas, we choose the zerothorder
“"trial'" distribution function, which serves actually as a weight func-

tion, as follows:

f g(°) (m)dx = c'{[exp(-ZXxﬂan dx, (4.3)

where X is an adjustable parameter, c the normalization constant, and
lo@ |

x = (4.4)
(ZN)I/Z

The factor 1\71/2 keeps the magnitude of X small. The next order trial

function is given the form of Eq.(3.13):

g(l)(x) =g(°)(x)exp8"F -y nu(q){xz(g) - %—{] , (4.5)
- q#0

where n = NV .

OF

0
Since g( )(x) and hence g x) are normalized to one, we find

Y

xp(-87) = I < expl-8mu(@) 2 @) = 511>, (4.6)
q

which corresponds to Eq. (3.15). With Eq. (4.3}, the average can be taken

at one. W arrive at

o2 —2) 2
Pl 3 {2n[1+ By (4.7)
28 q#0 2Xg? - q°
where k is the Debye constant given by
k? = hupne® . (4.8)

The .free energy given by Eq. (4.7) depends on the parameter A. It is in-

teresting to observe that, for large g, the first expansion term of the
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logarithmic function is cancelled exactly by the second term, irrespec-
tive of A. The free energy is lower for smaller A , but since the form

of Eq. (4.3) requires A>1/2, the lowest free energy expression is

1 k27K
F=— Z {&n]1 + 55 -:2-}. (4.9)
28 q#0 qg - q

The above result is known as the ring diagram result® = a result which
has been obtained by a ring diagram summation. In the case of diagram
theory, the factor 1/2 comes from the weight factor for a ring formati-
on and the two terms in the curly brackets represent the ring contribu-
tions which start with terms of order e. Hence, the last term plays
the role of eliminating the first expansion term of the logarithmic func-
tion. In our case, it is due to the non-fluctuating term of the Hamil-

tonian

Note in our result that the free energy is negative. Only when k>0 ,
the terms in the curly brackets vanish. In this case, the system has

the random distribution of Eg. (4.3).

The family of trial weight functions, introduced by Eq.(4.3), may be
generalized to

2
e-—)\x xZu 1

gla;d,n) = e R ‘ (4.10)

which is characterized by two parameters, A and u. Following the same

prescription, we find

F=t 3 {un[] +

2 u 2
- Bk»] Sk, t.11)
28 g#0 2)\q2 2

q

from which we conclude that unless the condition U = A is satisfied, the
free energy will give rise to an infrared divergence. Therefore, for
the Gaussian type trial weight functions, the case A = u = 1/2 produces

the hest result.
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5. CONCLUDING REMARK

W have used a Gaussian trial function as the zeroth approximation. Let
us now introduce a small perturbation to this trial function and watch

the consequence of it. Let us choose

2
2 oY/t

glx) = exp[ - % - yx ], (5.1)

,”1/2 1-erf(y/2)

where Y is a small perturbation parameter, and erf(y/2) the error func-

tion.

Following the same prescription given in the previous section, the free

energy in the next approximation is given by

exp [- {—2» (1- -]—,IJ) +§’12“—(91] 1-erf[y/2(1+4) /2

P ,(5.2)
q#0 (1+4) 1/2 1 - erf(y/2)
where
A =K2/g% . (5.3)
For small vy, the error function can be expanded. W find then
_ 1 kz _ k2 >
redr 3wl E] - Eaang, (5.4)
q#0 q q
where
2541
r,a) =X (- -2 y -3
(r,q) =3 (0 - 50 2y - T (5.5)

/2y (144)2/2

Note that h(?,—q*)q), The minimum of h(Y,C}) occurs at
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_2rt/2 (1+4) /2

Y =Y (5.6)
0 2 1+{1+4) 1/2
with the minirnum value
ny,,d) = - —= [1+ (e /2772, (5.7)

™2

Usi,ng this minirnum value, we find the total perturbation to the free

energy, due to the y term, to be

unffmn@£=fzﬁiw-%ifn@£1. (5.8)
. i

The last term makes the integral negative, but has to be set equal to
e,

zero because of charge neutrality.
Therefore, the free energy of the system will increase by the first term
of Eq.(5.8). It is very interesting to observe that this increase is

proportional to k® as in the case of the Debye-HUcke] free energy.

W have observed essentially the same property with the trial function

lwl/zexp(-l/Sy)

g(x) = exp(- a®- ya*)
k  (1/8y)
1 /%
Therefore, it seems that the Gaussian trial function was indeed a very
good one.
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