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tn the eikonal approximation of classical optics, the unit polarization
3-vector of light satisfies an equation that depends only on the index,
n, of refraction. It is known that if the original 3-space line element
is do® then this polarization direction propagates parallely in the
fictitious space n2de®. Since the equation depends only on n, it is
possible to invent a fictitious curved L-space in which the light per-
forms a null geodesic, and the polarization 3-vector behaves as the
“"'shadow' of a parallely propagated 4-vector. The inverse, namely, the
reduction of Maxwell's equation, on a curved (dielectric free) space ,
to a classical space with dielectric constant n=(-goo)”/2 is well known,
but in the latter the dielectric constant E and permeability 1 must also
equal (-goo)—‘/z. V¢ calculate the rotation of polarization as light
bends around the sun by utilizing the reduction to the classical space.
This (non-) rotation may then be interpreted as parallel transport in
the 3-space n2d0?

Na aproximagdo do eikonal da optica classica, o vetor unitario de pola-
rizacdo da luz satisfaz uma equacdo que depende somente do indice de

refracdo, n. Sabe-se que se o elemento de linha, no espaco tridimensio-
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nal original, for da® esse vetor de polarizacdo propagar-se-a parale-
lamente no espaco ficticio, n%do?. Como a equacao depende somente de n
€ possivel criar un espaco quadridimensional ficticio no qual a luz
descreve uma geodésica nula, e o vetor unitario de polarizagcdo compor-
ta-se como a ‘'sombra’ de um quadrivetor paralelamente propagado. 0 in-
verso, isto €, a redugéo das equagoes de Maxwell, em um espago curvo, a

)-1/2

um espago cladssico com constante dielétrica n=(-gr00 . € bem conheci-

do, se bem que neste caso a constante dielétrica e e a permeabilidade u

0)‘1/2. Utilizando-se da reducdo ao espago

sdo também iguais a (—g0
classico, estudamos a rotacao da polarizagcdo da luz quando essa cur-
va-se ao passar nas vizinhancas do sol. Essa (nao-) rotagac pode ser

interpretada como transporte paralelo no espaco tridimensional nda?.

1. INTRODUCTION

it is well known, and cited in texts on classical optics!?? that the
behavior of light in a space with dielectric constant E, permeability

U, and index, n, of refraction in a metric of the form

ds? = ~e?dt? + do® 3 m# 1 L,e#1 ,u#l,
(D-space) (1.1)
d02=y\)dxudxv 5 U,y =1,2,3,

u

which we shall call "dielectric' or D-space, can be redescribed simply,
in the eikonal approximation, in a fictitious space (''B'"-space, or the

barred space) by
ds* = -c?dt* + d5° ,
(B-space] (1.2)

=2 W5V iy = 2
do —Ywdxdx,yuv nt oy

Here, YUV represents the original 3-space metric in curvilinear coordi-

nates, and it could just as well represent a curved 3-space.
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The reduction of Eq. (1.1) to (1.2) is possible only for those proper-
ties that depend only on the index, n, of refraction. These are then
the trajectory itself and the propagation of the unit 3-vector in the
direction of the electric or magnetic field. In terms of the B-space ,
the trajectory is a geodesic, and the unit polarization vector undergoes

parallel transport.

On the other hand, it is well known and cited on texts on General Rela-
tivity3 that Maxwell's equations, in a static curved space, without
dielectric constant, permeability, or index of refraction ("G" or '‘gra-

vitational' space) with metric

dr? = g, c*dt? + do®

(G-space) (1.3)
do? =, do¥ da’

can be redescribed in terms of a space of the type in Eq. (1.1), namely

D-space with the identification of the dielectric parameters as

g=Uu=n= (-goo)'l/2 . (1.4)

It is clear that the latter situation can be turned around to clarify
the classical problem: starting with the dielectric space, of Eq. (1.1},
without Eq. (1.4) being valid, i.e., without necessarily E = uw =N, one
can introduce a fictitious curved space of the type in Eq. (1.3), provi-

ded, however, that the properties under consideration depend only on n.

This then applies to the trajectory and the unit polarization 3-vector.
The former will be a null geodesic in the fictitious G-space, and the
latter will behave as the ''shadow' of a 4-vector that is parallel dis~
placed along the trajectory. Thus, from the point of view of the clas-
sical polarization problem (D-space), one can either introduce the fic-
titious B-space or the fictitious G-space for a simplifying redescrip~

tion in terms of parallel transport.

It is also clear that if one starts with a real curved space, light

propagation, as well as other electromagnetic phenomena, can be under-
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stood in terms of a fictitious D-space or B-space. V¢ shall apply this
reduction to the special case of the propagation of polarization of light

when it bends around the sun.

The basic ideas of this paper are not new. They are implied by the ge-
neral relativistic eikonal approximation as set forth by Ehlers* , and
by the reduction in Ref. 3 cited above. What we wish to do is clarify
their application to some special cases, and in particular to the tran-

sition from the classical D-space to the curved G-space.

In Sect.2, the relationship between a L-space covariant derivative and
a 3-space one is discussed briefly. In Sect.3, classical eikonal ‘theo-
ry in a dielectric medium is discussed, with a simplified reduction to
B-space presented in Sect.4. The redescription of the classical problem,
in terms of the fictitious G-space, is contained in Sect. 5. Here, the
relation between the geodesic behavior in B-space, and that in G-space,
is discussed, and the polarization behavior in G-space derived. {n Sect.
6, the use of D-space, to calculate a problern originating in a curved

space, is presented.

2. MATHEMATICAL DIGRESSION

In this paper, Latin indices represent values 0,1,2,3, whereas Greek

indices represent values 1,2,3. W call, in this Section,
Ioo = -n~? . (2.1)
It will be assumed that the metric, in Egs. (1.2) or (1.3), is static.
Then, the Christoffel symbols, appropriate to Eq. (1.3), that are not
zero, are
™.,

oB

™Mo = - vV n2 &1y, (2.2)
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Light will be supposed to be moving along some path described by a
spatial parameter q, in the space of Eq.(1.3), or by the distance ¢ |,

where
do? = v dx” dx’ (2.3)

is the space part of Egs. (1.3) or (1.2). It is assumed that a func-

tional relationship exists, namely,

q=qlo) (2.4)
(See Section 5 for this function.).
if I‘i.

Jk
then an absolute derivative, along q, is

represents the Christoffel symbols in the k-space of Eq.(1.3),

Clat e gaf -
—%— +FJkdj£_’ (2.5)

57,

whereas a 3-space absolute derivative, described by o, is
3,1 M : B
D_a_=%_ +TH g d (2.6)

If for '"2", in Eq.(2.5), we use a space index, say 1, or M, the result

will not be the same as in Eq. (2.6), since there exist non zero I‘l(',lo's:

D‘ip ~ 30111 u o d 0

_E = i + T 00 a 36_— (2-7)
Do’ _ da° o['odr“ udx°]

3 = %— + FOU a ) + a %"‘ . (2.8)

For the gradient, curl and Laplacian, in 3-space, we have in mind the

usual weight zero formulation appropriate to general curvilinear coor=

433



dinates. In what follows, YIN could represent a space that is already

curved.

3. CLASSICAL EIKONAL THEORY

Ve follow here the discussion of Born and Wolf®. In an isotropic die-

lectric medium, with 0 = €¢£, B = A, and
n? = ey , (3.1)

and in a space of the type in Eq, (1.1), the electric field satisfies

2 n2
Vg - n—zé—z-f + (Vinp) x (V x E) + V[_f -Vlne] =0 . (3.2)
ec® a9t

Solving, the lowest order eikonal approximation, consists in the ex-

pansion in k™! of the assurned form

B -2 otkoS(0) pmiwt (3.3)
where S is the eikonal scalar, and k, = w/¢ . Eq.(3.3) in (3.2) gives
K+ 7GRk )+ Bk )?= 0 (3.4)

> > > .
where K, L and M are independent of k.

The eikonal approximation, in lowest order, sets Z =0, then IT=0:
¥ =2 - ()72 =0, (3.5)
2 = [Vs -Vinu - v25]e - 2(2 + Vinn)VS - 2(VS -V)e = 0.  (3.6)

S is regarded as a wave front, with its normals representating rays

Thus, from Eg. (3.5), the identification

u
de_ w35 (3.7)

n
o] v

ox
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is made. Squaring both sides gives n2=(VS)2, which is Eq.(3.5).

Eq. (3.7) is the ray equation. Or, if desired, S can be eliminated, by

taking a derivative®, to obtain

3 H
D & =v“"%”;. (3.8)
X

. . . . . . o
The polarization is more complicated. However, if the unit vector u~ ,

, (3.9)

is introduced, then ua satisfies a relatively simple equation, depen-

ding only on n, derived from Eq. (3.6) (Ref.7):

3put a 3 dxu_
Do+u5;Elnn%—-0. (3]0)

Egs. (3.8) and (3.10) are the basic equations of the eikonal approxima-
tion. One can also get information about intensity, from squaring (3.3)
-5

and finding e , but that is irrelevant to this paper.

4. INTRODUCTION OF THE BARRED SPACE

As mentioned earlier, Eq.(3.8)} can be interpreted as a geodesic in the
barred space of Eq.(1.2), and Eq.(3.10) can be interpreted as parallel
propagation in the same space. In this Section, we present a simpli-
fied derivation of these results. The reduction is possible since Egs.

(3.8) and (3.10) depend only on n, and not, say, on € specifically.

First consider Eq. (3.8). A geodesic in the barred space is defined by
3 H TS o B
D dx _ d_ dx” +TH de” dem _ 4.1
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where i$  is computed from the VW , Where ?UV - nZYuv . From the de-

finition, we get

{TI:] 9 _ HA 3
¥ = Inn + 6 Inn-1v_ .Y inn . (4.2)
Tuas = ruas + O 528 B Sxa ab g
Eq. (4.1) becomes, with this,
2, M o vV s H
-d_—x+2(a—v—lnn]d”7df —]—Yw%lnn. (4.3)
da? dx ds do n? 3

But this is easily seen to be Eq. (3.8), if in the latter we write
do = do/n . Thus Eqg. (3.8) can be interpreted as a geodesic in the4

barred 3-space.

For the polarization equation, {3.10), we must take into account that
if the vector is described as ua, in the 3-space of Eq. (1.1), then the

same vector has components
- -1 .0
uw =nty : (4.4)

in the barred 3-space. The simplest way to see this is to noticethat,

in both spaces, it is the same vector and must be normalized:

I=uuu =04 =y wu =Y A'u. (4.5)

1F 2> is parallel propagated, in the barred 3-space, then

aDﬁu d U aH -0 dxe ) (’4.6)
(] (03

Using Eq. (4.2), this equation reduces to Egq. (3.10) if, from previous
work on the wave equation, the fact that ua and dxa/do are perpendicu-

lar is also used.

Thus the unit vector &> is parallel transported in the barred space.
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5. REDESCRIPTION IN TERMS OF GSPACE

Just as in the previous section, Egs. (3.8) and (3.10) were redescribed
in a simple manner, in the fictitious barred space, we wish here to show
that a similar result occurs in the G-space of Eq. (1.3). Again, the re-

duction is possible only because Egs. (3.8) and (3.10) depend only onn

W first wish to show that Eqg. (3.8) corresponds to a null geodesic in

G-space:

D ax’
Tgdg "0 &

To do this, we first must find the relation between the parameter q and

=0 . (5.1)

the path length o , in the 3-space. This can be done by letting < =0
in Eg {5.1), using Egs. (2.8) and (2.2):

d Pode,
%(n—zaq—-)—o. (5.2)

However, if d& = 0, from Eg. (1.3) we have
Ly oy (5.3)
" o . .

The derivative of the square root of Eq. (5.3) is zero, a result incom=
patible with Eq. (5.2), unless

0
do de . (5.4)

This is the desired relation.

The remainder of the proof consists in writing down the space parts of
Eq. (5.1), using Eq. (2.7):

& o, wo de® de’
0‘%_=ﬁ( n ) +Foonaa—a'o—-=0, (5-5)

blU
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where dz"/dq has been replaced by nda" /do, according to Eq. (5.4). Using
Egs. (2.2) and (5.4), in the last term, we easily see that Eq. (5.5) re-
duces to Eq. (3.8).

The connection between the null geodesic behavior in the G-space, and
the space geodesic in the barred space, can be seen directly from the

relation d& = 0 which can be written

1/2
dt
Ty @] s (5.6)
a& uw do dg =4
If the light goes between points A and B, the time elapsed will be
o 1 (B
¢ =J—dq=—Jd6. (5.7)
AB L, el

Thus, minimizing the time, in G-space, corresponds to minimizing the
3-space distance, in B-space, This is why both spaces give geodesics

for the motion.

Ve now turn to Eq. (3.10). How is this to be described in G-space? V¢
shall argue that the equation satisfied by s the same equation that
is satisfied by the projection Wa of a l-space vector a. perpendicular
to the path o = dvcu/do, that is, by

TR

where ai is to have the following properties: it is propagated parallely
along and orthogonal to the ray in G-space, and its space parts mustnot
beparallel to v®. The latter condition is needed, for if a® - &,
then since vava =1, Eq. (5.8) gives ch = 0. In other words, the pola-
rization unit vector in 3-space, ua, propagates as a ''shodow' or''image"

of a parallely propagated vector in G-space.
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To prove that Eq. (5.8) satisfies Eq. (3.10), consider first the prop-
erties of aV. -Since it is orthogonal to the ray in G-space,

z H
ai%=n[au%+nao]=o . (5-9)

Since it is to be parallely propagated, its magnitude must be constant

(we can choose this do be 1)
a.a’ = const (+ 1), (5.10)
,[: .

and its equations of motion, from Egs. (2.7) and (2.8), are

*pat a’ w3

= ‘Y —v Inn > (5.]])
Do n dx
o
dar _g0d ny - Ay (5.12)
do do 3zt
Also
al=-n? a - (5.13)

With these properties of aI , the behavior of wa, in Eq. (5.8), can be

determined. First, we see that it is orthogonal to va:
W =0 . (5.14)

This follows immediatety from the definition in Eg. (5.8). Second, its

magnitude is aaintained at a constant value

- M - 2 = T =1
w”wu =da, - @ ) =da =i (5.15)

The squared term is evaluated using Egs. (5.9) and (5.13). Third, its
equation of motion is obtained by taking 30/Dg of Eq. (5.8):

35 H 35 M 35 .M
o e Dy (-na,) -vu%g(—nao), (5.16)

Do~ Do Do
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where, for Ve a,» e used Eq. (5.9).

For the first term, on the right in Eq. (5.16), use Eq. (5.11). For the
second,use Eq. (5.5). For the third, use Egq. (5.12). Almost everything

cancels and we are left with

37y 4
-—m—i’—=-vuw\)?-—vlnn. (5.17)
Do ox

But this is just Eq. (3.10), which was what was to be proved.

Thus, the light propagation, in terms of the fictitious G-space, isthat
its path is a null-geodesic, and the 3-space unit polarization vector

behaves as a ''shadow! of a vector parallely transported.

6. REDUCTION OF A GRAVITATIONAL CALCULATION

In this Section, we start from light propagation in a curved space
without dielectric constant or index of refraction, i.e. G-space.lnthis
space, a real field tensor, Fij’ exists related to real electric and

magnetic fields, Eu and BU , by

]
1]
2
by
1
5]
it

(6.1)

Mo 2 -1 _HoB o Y
B" = (2v¥*) ¢ FOLB Y B .
\

As indicated in these equations, the 3-vectors are considered to be true

8uoaB

vectors, in the 3-space. Here, is the alternating symbol. If, in

addition, the following fictitious quantities are defined:

Mo WY - (- 1/2500 _ ¢ v1/2 H

D" =x"7D, = =gy ) /7F (goo) /* 6.2)
Moo Voo (eg IR Ly B o (cp NP

B YU\)H ( goo) 7Y €UOLBFDL ( goo) ’BU ’
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then it is well known® that Maxwell's equations, in the curved but die-
lectrically empty G-space, have the form of Maxwell's equations in a
dielectric medium with Eq. (1.4) defining the dielectric parameters. Of
course, the 3-space curls, divergences, etc., must be defined in gene-
ralized curvilinear coordinates, corresponding to the possibly curved

Yo tensor.

What this means as far as light is concerned is that light propagation
in G-space can be redescribed by light propagation in the D-spaceof Eq.
(1.1 using 1 . In addition, since B-space is equivalent toD-space
in this respect, light can be regarded as propagated as if in the fic-

titious B-space.

For calculation purposes, it is frequently easier to compute equations
in the classical terminology. W wish to complete this Section by cal-
culating the rotation of polarization, as light bends around the sun,
using Eq. (3.10). The metric in G-space is taken to be the Schwarzchild

metric, whose space part is®

do? = n?dr? + r?(d6? + sin?6 dp?) , (6.3)
using n=? to represent 9,,°
R R I (6.4)
goo 1-2m/r

with m = GM/e?, M the mass of the sun.

The deflection of light can, without loss of generality, be considered to
take place in the plane 8 = m/2. Egs. (3.10) become,usingtheChristoffel
symbols, derived from Eq. (6.3):

r !
%:—2%%ur+rn'2%u¢, 6.5)
¢

dw’ _ (o dén' 1doyr _1dr ¢

30__( do n rdo) rdo ¥ (6.6)
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gg u’ , n! = %% (6.7)

The first two of these are coupled equations for d and u¢. The third

B e

ad
do
is an equation for ue, whose solution is irnmediate

rue = const . (6.8)

In tensor notation, a vector is written in terms of non-unit basic vec-

tors &
u

v=ure |, dr=d"e . (6.9)

e
> _u s~ ~ U
u=U b b, .b =1, b = . (6.10)
u 3 " U - ~
(eu.eu)
For the metric, in Eq. (6.3}, this means that
. 6 o
ee-rEe, U'=ru 6.11)
whence, from Eq. (6.8),
Ue = const . (6.12)

This result enables us to obtain an answer to the rotation of polariza-
. . . Q. .
tion without solving Eqgs. 6.8) and (6.9). For we know that u~ is perpendi-
cular to dxa/dc , and can therefore be resolved into components in the

56 and Ek directions, where Ek is perpendicular to both 56 and dx"/do

uuu“ = ueue + ukuk . (no sums on right) (6.13)

But the lefthand side is constant along the trajectory (see Eqg. (3.9)) ,
and the first term on the right is constant (see Eq. (6.15) or (6.8))
Hence, the other term must be constant.”™ This means that the ratio,

UG/U'Z< , evaluated at an infinite distance, before the light passes around
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the sun, must be the same as when evaluated, at an infinite distance ,
after passage around the sun. In other words, there is no rotation of
polarization around the propagation direction. This is a rigorous con-

clusion, from the lowest order eikonal theory.

7. CONCLUSIONS

In this note, we have shown that, just as the classical propagation of
light in a dielectric medium can be interpreted simply in the fic~
titious 3-space of Eq. (1.2), so too it can be interpreted simply in
the fictitious L4-space of Eq. (1.3), where the polarization unit 3-vec-
tor propagates as a kind of ''shadow' of a parallely propagated vector

there.

Also, it was shown that calculations, involving light in a curved space,
can be treated in a routine rnanner by conversion to the equations of
classical optics by means of the well-known identification of (—goo)’l/2
with n, the dielectric constant. As an application, it was shown that
the polarization unit 3-vector will not rotate around the propagation
direction as light is bent around the sun. At least, not in the lowest
order eikonal approximation. According to the equivalence of the spaces
in Egs. (1.1), (1.2) and (i.3), in this example, the non-rotation can
be understood as parallel propagation of the unit 3-vector in the

B-space of Eq. (1.2).

One of the authors (M.B.) was on leave at the Instituto de Fisica e Qui-
mica de S&o Carlos when this work was done, and wishes to thank that
Institute, and in particular Professor Roberto Lobo, for inviting him

to their campus and making his stay a great pleasure.
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