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W discuss two-dimensional massive quantum electrodynamics both as a
superrenormalizable and a renormalizable theory, showing their equiva-
lente up to a renormalization. The Green's functions are explicitly

constructed in the zero fermion mass limit.

Discutimos eletrodindmica quantica massiva em duas dimensdes tanto co-
mo uma teoria superrenormalizavel como uma teoria renormal izavel. Mos-
tramos sua equivaléncia a menos de uma renormal izagao: As fungdes de
Green s3o construidas explicitamente no limite em que a massa do fer-

mion tende a zero.

1. INTRODUCTION

The quantum theory of gauge fields has recently received much atten-
tion in connection with the unification of electromagnetic and weak
interactions. There are also many attempts to incorporate strong inte-
ractions in this scheme, the concept of "“asymptotic freedom’ having
played a central role in their endeavour'. It is, therefore, convenient
to have a theoretical laboratory at one’s disposal in order to study
problems connected with gauge invariance. With this idea in mind,we
discuss 2-dimensional electrodynamics (QED)}2’? both as a superrenorma=
lizable and a renormalizable theory. Although this is only an abelian
model, we think it is worthwhile to discuss it mainly for pedagogical

reasons.

* postal address: Caixa Postal 20,516, 01000-Sao Paulo SP.
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Ore of the peculiar features of 2-dimensional QED is that, due to the
fact that the phase space d’%k increases only as k2, for targe k, the
theory is renormalizable in the so-called unitary gauge and superre~
normalizable in the gauge which, in the h-dimensional world, is called
renorma'izable. The equivalence of these two formulations can be ex-
plicitly studied. Another advantage is, of course, the exact solubili~-

ty of the theory, in the zero fermion mass limit.

W introduce the usual paraphernalia of Bogoliubov-Parasiuk-Hepp= Zim~

425 in the above mentioned two gau-

-mermann (BPHZ) perturbation theory
ges, in Sects. 2 and 3. They include the discussion of Ward identi-~
ties, equations of motion, and the zero mass limit. In Sect.4, we show
the equivalence of the unitary and renormalizable gauges, and in Sect.
S we make contact with the soluble zero mass limit. The conclusions

are contained in Sect.6.

2. THE UNITARY GAUGE

Let us consider the 2-dimensional theory specified by the effective

Lagrange density which follows:

=_§_$a/¢_ M‘w - lF' priv +-%m2.4'2+ e TAY + %@-,Yuw)z

eff L uv

=L +L , (2.1)

where

- ' = roo '
Ly = P4y + %(WYU‘D)Z »o R =AY T AATY
a Lagrangian which, up to the four-fermion interaction, corresponds to
massive QED in the so-called unitary gauge. The free meson propagator
reads
k k
R B B
D [gu\) ] (2.2)

\V
H - m?
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v’ Eq. (2.1) describes in four

dimensions a nonrenormalizable theory. In two dimensions, however

Due to the bad asymptotic behaviour of Du
(tTryuw)A'u is a super-renormalirable interaction (it has a dimnsion d=
1 < 2), and the power counting for a proper graph, y, constructed from
(2.1) and (2.2), gives

dly) = z-f-a, (2.3)

{(F = No. of external fermion lines of y; B = No. of external boson li-
nes of y ), for the degree function, d(y), which measures the superfi-
cial divergence of y. The reason for having included the Thirring inte-
raction®, @yuw) (U—IYutb), in (2.1), is that one needs it in order to ha-
ve a renormalizable theory. 'f not present in zeroth order, this cou-
pling would be induced in order e'?. Thus the theory turns out to be
renormalizable, the divergencies of our graphs being either zero or
one.

8

The renormalization scheme we will adopt is a soft version’’ of the

BPHZ subtraction procedure. Since it involves changes in the mass pa-

rameter, M it will be convenient to use the following variables®:
A =md' ,e=m'e". (2.4)

u H

With definition (2.4), we can rewrite (2.1) and (2.2) as

. : 1
o ET R - W - w 1,2
Lege =5 VAV - MY - o F F o+ o4

w72
«eT Ay +% @2, (2.5)
_ .z 2 - : .
Du\) = " (mvgw) kuk\))' (2.6)

The Green's functions of the theory are calculated as a finite part of
the Gell-Mann and Low formula:
N

N L
By Y s e esYyiBrseesd )T T plz.) TYP(y) I
s I N K] 2% i=1 1 J‘=1 J k=1

G(ZN’L) (xl-“ Auk(zk)>
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(o) ¥ (o) N _ L (o) ()
= finite part of <0[T.II P (xq.) i w(o)(y g I A()(zk)expifdszl (z)]o >,
=1 T g=1 I k=1 Yk

(2.7)
where the superscript (°) indicates the free fields as specified by

L. The finite part prescription consists in the application of Zimmer-

mann's forest formula with two generalized Taylor operators®, T(o) and

(1),

(o) _
T Flp,mM) = F(O,u,1), for logarithmically

p= (pl,pz,...,pn) divergence graphs

(2.8)

(1) -
v Flp,mM) = F(0,0,0) + for linearly divergent

U |oF oF graphs .
o (),
7 Bp}z p=0 yj p=0

m=M=p m=M=)
The scheme above is adequate for the derivation of homogeneous parame-
tric differential equations, and has the advantage that the M, and m
dependences of the subtraction temms are trivial, and zero mass limits
can be most easily taken. Since we are interested in the soluble ¥~>0

limit, this subtraction scheme is a very convenient one.

Due to our subtraction scheme (2.8), the vertex functions of this mo-
del, I‘(ZN’L) (p<;qj;m2,M,u), where p; and qj stand for fermion and me-

son momenta, respectively , satisfy the following normalization condi-

tions:
2.0

T( ’ )(0; 0; 0, Da U) = 0’ (2-9)
(2,0)

-§—M T (O;O;UZ,M,u)I =~ (2.10)

M=u

(2,0) )

B—EF {p ;O;UZ,U,U)‘ = 1y (2z.11)

Bp u p:O U
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(450)

r (O;O;ﬁ,u,u)dalazaaau =+ (2.12)
(0,2) 2
r (0;0;u%,u,u) =0, (2.13)
where
8 1 u _WH
00,040, = 7F (Yala,,Yuazua YO‘,%YU%%)
Observe that the parameters m, and M, are not the vector-meson, and

fermion physical masses. The fermion physical mass, however, goes to
zero as M > 0.

As we see from (2.3), the two-point function of the meson field isonly

logarithmically divergent. The meson wave function renormalization is,

therefore, finite, and accordingly we have not included a counter term
HV

of the type Fqu .

Normal products up to degree 6=2 are here defined in the usual way”.
If 0, denotes any combination of the basic fields, and its derivatives,
of canonical dimension less or equal to two, then the normal product
Ns(d] is defined by

<TN6[OJX> = finite part of (o)<0|T:0(°):X(o)expijdzxL(o)(x)]0>(°),

N 7
V) T vy m oA (2), (2.14)
Oy P gy Ty K

with a degree function,

§(y) =86 -5-8B, (2.15)

Noftzy
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for proper subgraphs containing the special vertex N6[0]. As we make
our subtractions at zero momenta, these normal products satisfy the

differentiation formula

3u<TN6[0} (x)X> = <TN6+'[BUO] (z)> . (2.16)

2a. EQUATIONS OF MOTION AND WARD IDENTITIES

Equations of motion for the fermion and meson fields, and Ward identi-

ties, can be derived in the standard way®>. One finds, for example,

N
u _ _ e
3 <Au(x)X> =] 3, 6 (= zi) TX,>+e § (6 (x xj) 8(x-y .)) <TX>
T | i - J
1=1 Jg=1
(2.17)
where
N N
X = Tylx.) T YA (z)...4 (z )4 (2. )...4. (2.).
R T L A R T T R A

Equation (2.17) can be derived by noting that the line corresponding

to the Ail field can be linked either directly to another meson field
nd

(lSt terrn) or toa current vertex (2 term). In the latter case, one

uses current conservation which is expressed by

v
8“<TN1(II—IYUUJ) (@) x> =1 [8le-z,)-8(a-y,)]<T> (2.18)

=1

Equation (2.17) is represented graphically in Fig.1. W sketch deri-

vation of (2.18). First, because of (2.16), we have

au<TN1(W‘w) () x> = <TN2(au(xFy“w))(:c) X> . (2.19)
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Using now the graphical representation for (2.19), in momentum space,

we have

kAaktp e N
ﬁb s - +
Py Py G K Ky PR 9Kk,

where we used

But

= + +
[N R L3N S % [ NINED
'l "Izl 2|.'.I 'I ’l ’lrl t..l k!—l ’l ’tz| 2‘1:". ’l ’l&l sl.'.l ‘l
and

and (2.18) follows.

Besides (2.18), we will need the Ward-Takahashi identity for the

current N . (WYUYSID) :

(2.20)

2.21)

(2.22)

axial

3N



L &A*.

Fig.l - The auA“ line can be attached only to the longitudinal part of

—

=2

the meson line, or to an entering (or leaving) fermion line.

(a) : (b) (c)

Fig.2 - Graphs a, b, c contributing to anisotropies and graph d, which

appears in the iteration of the equation of motion for (Bu,qu)2 .
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o¥<TN [Ty v 0] (@) 1> = 20<TN [M@*)] () -

v T
'21 [a(x-xj)y;_ + é(x-yj)yzj.] <0|TX]0 > , (2.23)

J= Jd d

which can be shown to be true, by following the same steps that led to
Eq. (2.18). (This time however one uses ¥Y> = (K+g-M)yS+y5 (K-M)+2My> ).
W now consider Zimmermann's identity:

N (BY®9) = N (MBY*y) + ¥4 + sNz[au@y“ysw)] . (2.24)

where 3 = e“\’au , and

t=1- -;-{ TryS g_M <0|TN1 EFYS"’-’J (0){’:(0)]"’:}(0)>|pr0p ’ )
M=m=)

r = iu2— <o [FySy] (0)4_(%)]0> |Prop (2.25)

ak ! e k=O

M=m=p
) ~ Prop
. a 5! Y :‘ o
s yuys = - {u -8? <U|TN1[1T;Y51P] (O)w(gz-)w(%)lw -
M=m=n

This equation can be derived by noting that the difference among vertex
functions, containing MNl(vTryslp) and Nz(lﬁysw), comes from subtractions
for proper graphs which contain these special vertices. For example,
graphs with two external fermion lines will require either the applica-
tion of T(°), or T(l), according to whether they contain the degree, gneg,

or the degree two, normal product. This produces an expression, of the

type

3 F(O,u,M)

M oM M=y

3 F(p,u,u)‘
+p 3 p=0 | ’
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times the amplitude for the reduced diagram. Since the reduced diagram
will have a special vertex, with two fermion fields, this will give a
contribution to the IS'c and 3rd terms on the r.h.s. of (2.24). ( Charge
conjugation properties have already been applied in order to exclude the
vertex Tp'yuys?“w from (2.24)). The second term, on the r.h.s.of (2.24),

can be explained by a similar reasoning.

Observe the absence of a four fermion vertex on the r.h.s. of (2.24); as
is well known, this results from Fermi statistics, and from specific
properties of the two dimensional Dirac matrices, as well. With the in-
formation contained in (2.24), and (2.23), we rewrite the axial vector

Ward identity as

(1-n) 3, <TN1|'_$y“y5¢] () x> = _Zl‘zf‘b_ <TN1WY5¢] (x)x>
~ N T
+R<T8uAu(x)X> -z [(S(x-ac.)y; + 8(x-y . )ys J<Tx> (2.26)
J=1 I 7y,
J
with
' _ 2 _ 2r
h =32, R= 73 . (2.27)

Note that both h and R are mass independent, due to (2.24) and (2.25).

2b. HOMOGENEOUS PARAMETRIC EQUATIONS

The derivation of homogeneous parametric equations is greatly simpli-
fied by the introduction of the following differential vertex operations
(D.v.0.)11:

A = -;- fdszZ[AuA“] (=) , b, = :rl;; fdzmuz [Fu\)FuVJ (x),
s, = [ (@) b, -5 |Ea e
b, = [ [T @) b, =% [E [0

(2.28)
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With this notation, the Lagrangian (2.5) can be rewritten as

7L =A -A +A +A +eh +gh . : (2.29)
f 4 3 2 1 5 6

ef

Notice that FuVF w is a soft!? operator, since it cancels out the lon-
gitudinal part of the vector meson propagator (2.6) . V¢ have, therefore,

two soft insertions:

A, =% szleWlP] (x) , A= ;""7 fdzxno[pwp“"] (z).  (2.30)

Due to our subtraction scheme, (2.9), it is easy to derive the following

relations for the vertex functions T 2 B,1).
m O r(ZN,L)= - A 1,(zzv,L), (2.31)
am? 0
(2v,L)
9 T (2w,L)
M =-4 T , (2.32)
: N
m D) g ar@RD (2.33)
o . 7 s = ,
=1 2
6
0 S, i Lt o= 1.

=1

The peculiar form of (2.31)isadirect consequence of our change of va-

(2w,L)

riables, (2.4). The u-dependence of T is given by

L8 g

(2w,L)
e , (2.35)

7
L a.A.T
21 2t

1=1
where the coefficients ozi are mass independent. They can be determined
directly by observing that u enters only via the subtraction terms. For

example,
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- H 3 o3 (2,0), |
“»'107” Bu{y Bpar p,-p) p=0 b

m=M=
(2.36)

S TR Y IV N C S }
o =q7 Tr 5 {v T, {0,0,0) =

The counting identities

IVI"(ZN’L) = (-2A3 + ZAl+ + 22A5 + ’-lgAG)F(ZN’L) ,

p(2,1)

r@E) (20 + 20 +eb) (2.37)

can be derived by integrating the equations of motion

<N [DCEA-MY] (@) x> = = <TN [ebay + g (v, 9)°] (=) x>

N
+ I G(x-yl'()<TX> , (2.38)
k=1

ata¥ 1 Vo o L
<IN [A, == A4 - —A43%4" - 4%](x)x> = -2 T &(x-2,)<TH>,
27V 2 U e Y k=1 k

Making use of Egs.(2.31-37), and (2.39) which follows,

5 £(2.0)

3 - r(20,1) ’
og 6

(20,1)
=T —a (@0, (2.39)
5

one can establish a homogeneous parametric differential equation of the

Weinberg!® type
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3 2 9 3 9
R T LA T
3 ~ (28,1) _

+8, 55 -y - Ly, Ir =0. (2.40)

The proof of (2.40) is standard®. One substitutes the above equations

into (2.35), and equates to zero the coefficient of each D.V.O, b, s
1 =12,...,7. This gives the following system of equations for the

p’s, y’s, and B’s:

a - pxt1 - P8 - 2Y2 =0, (2.47)

3 + ZYz =0, (2.42)

@ -pt -ps -2 =0, (2.43)

a + pltu =P8, 2y =0 |, (2.44)

o, - Pt -0 +B -2re-ye=0, (2.45)
a - plts - ngs + 61 - l4g'yl =0 . (2.46)

This system always has a solution in perturbation theory, since its de-

terminant is non vanishing in zeroth order.

From the equations above, we have

B, = ev, . (2.47)
To see that, one uses the Ward identity

r(&8) g, ps0) =ea_ur(2’o)(p,-p), (2.48)

H 3
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which follows directly from (2.18). Equation (2.48) implies that

a, = e, , 35 = €s,, t5 = et“, and thus, using (2.44) and (2.45) , we

obtain (2.47).

V¢ can now show that several parameters, occurring in {2.40), do vanish,

namely,
B =0 = B =Y = 0. (2'1*9)

In order to show that Yz = 0, we use that

[p- 2wy, - Dy + 2v,] A;I‘(ZN’L)= 0, (2.50)
where
_ 9 2 3 3 3 5
Deugprem e, Mgt higtfe. (25D

which is easily derived, since A; is an integrated zeroth order normal

product. Now, the derivative of (2.48), with respect to m? gives

23 pamr)_
am?

[D- 2wy - Lyz] m . (2.52)

Thus, comparing (2.51) with (2.52), it follows that Y,=0. From (2.42)
and (2.47), we have, then, p,=8,=0.

To show that 8,=0, we follow the recipe of Ref.lh., Here, the following
notation, for proper functions, containing only one normal product ver-

tex, will be used:

Normal product Notation

v [ Tfyu\b"](x) T,

v, [ W%y )(x) r, (2.53)
Tr 5

w [ A ¥](x) FUS
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Then following the same steps as above we can derive

(20,1) _

u 0, (2.54)

[D- 2wy, - Iy, + zYI]r

(2w,1)
5

[p- Wy - Iy, + 2y + w]T =0 (2.55)

Note the additional term in Eq.(2.55). |If the B’s are zero, it is re-
lated to the so called binding dimension, which is a contribution to
the anomalous dimension of the N1 [mst] field, produced in the process
of joining ¥(x)y®, and Y(y), to form the composite object. Because of
current conservation, the corresponding term is absent from (2.54) . Ve
now apply the operator D to the Egs. (2.18) and (2.23), and use (2.54)
and (2.55), together with the relation yWy® = auvy\), to obtain

Dh =0, (2.56)
DR =20, (2.57)
M M

D%)=u;. (2.58)

As we have seen, h does not depend on the masses. Thus, from (2.57),

we have

g =— =0, {2.59)
oh . .
But a_g # 0, as a simple calculation shows. Hence,
Bl =0 . (2.60)

W can understand these results, perhaps more easily, by using the in-
finite counter term approachls. In that language, the p’s, B’s and ¥’s
are associated with infinite mass, coupling and wave function renorma-
lization, respectively. y , for example, is zero, because the meson
two-point function is only logarithmically divergent, implying the ab-

sence of infinite wave funtion renormalization for Au.

In computing this logarithmic divergence, of the vector-meson propaga-
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tor, one can set M=0, since terms proportional to M are already finite.
But because of the property of the two-dimensional Dirac algebra,

v, =0, (2.61)

and symmetric integration, the vector-meson mass renormalization is fi-
nite, implying the vanishing of p, . Since in gauge theories, Bz =evy,,
it follows that 82=0. That B1=0 is, finally, a consequence of the fact
that the interaction, as M+, is of the form :juju: , With ju divergen-
celess, and a combination of free fields, as it will be shown later

(Sect.5).

3. THE SUPERRENORMALIZABLE GAUGE

In four dimensions, the nonrenormalizability of the model, of the pre-
vious Section, is solved by a gauge principle: instead of (2.5), one
considers a new Lagrangian

L' = (4d)i B2 - ey - (-c)ify - Lo 5 P
: um? MY

1 (3.1)

1,2 1 = Wova _ b Uy 2
+3 A+ 3 (g+F) Wy"y) - (auA )
0

where the finite counterterms will be fixed below and the addition of
the term (B\/Au)2 has the effect of improving the ultraviolet behaviour

of the vector-meson propagator. V¢ have

D' = .—.1:._ g - kuk\)
Hv k2om? [\Y %2

= kuk\)
], mz +—-;——2'- ——;mﬁ . (3.2)
k*-m; k

With m, finite, (3.2 is a meson propagator in an indefinite metric
Hilbert space. As, in four dimensions, only gauge invariant (i.e.,
0

independent) objects can have physical relevance.

The power counting adequate for (3.1) gives

8(y) =2 ~—;—F- N(ve), (3.3)
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where N(ve) is the number of vertices, of the type ¥ £ ¥, in y. Observe,
frorn (3.3), that the vertices, AuAu and (auA“)z, are trivial from the
renormalization point of view: either they belong to a IPR (one parti-
cle reducible) graph, or to a finite graph. Thus, in the Lagrangian
(3. 1), these vertices are well defined as ordinary products. If one uses
the renormalization scheme, (2.8). then the vertex functions of this
model will satisfy normalization conditions of the type (2.9) - (2.13),

with the additional requirement that e=0 in these formulas.

The derivation of Ward identities, and homogeneous parametric equations,
can be pursued similarly to what was done in Section 2. The gauge.cri-

teria for this model, however, deserve some comment. V¢ have

L
2 2
Iomg2, AF((L"ZL)”IO <TX\) > 4+

3 <t (z)x> = -
H gt g 4

+ Zem

N
R

: .[AF(x—xi,mﬁ) - AF(x-yi,inf)J<TX> , (3.4)

=1

which shows that 93 Au is a free field of mass My Furthermore, because

of the superrenormalizability of the interaction P4y, the discussion of

the m, independence of physical quantities is greatly simplified. ¢

0
have (for the Green's functions G(ZN.L)):

2_glamn) J &z W2 (1ed) 132 - se) v - 2 (Q-0) Ty +
m> ' am: am?

0 0

L2100 My L1 o A“){l(x) ¢2n.L) (3.5)
am? 2 om* M
0 0

where the normal product is subtracted according (3.3), By using the
equations of motion it is a simple matter to verify that

;72? fdzx 1o @ PN L p GENE) o RD) (3.6)
. m
. ]
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where A is the D.V.0. given by (4.8) and the term containing p  cones
from the graphs of Fig. (2.d) .

Using the analog of (2.37) one sees that if the counterterrns are fixed

as
(1-09 =Q0=-c) (m)?P
(1 +d) = (i -d) (m)?° (3.7)
lg+£) =(g+71) (mo)“p

o> dgs o are used to fix the fer-

mion mass-shell and the normalization condition on the four point func-

where the m, independent constants c

tion, one obtains m,-independent Green's functions for transversal meson
and on-shell fermion fields. There will be no anisotropic normal pro~-
ducts® coming up, since graphs with one internal meson line are already

convergent. By an extension, composite objects, having degree less or
equal to two, will be gauge invariant, if they satisfy both the equa-
tions (3.4) and (3.5).

4. AN EQUIVALENCE THEOREM

In the previous Sections, we have seen two formulations of the theory
of a massive vector boson interacting with a massive spinor field in
two dimensions. The possibility of a formulation, directly without
ghost fields, is a peculiarity of the two-dimensional world, and inthis
Section we want to investigate the equivalence of theories that differ
by the presence, or absence, of the ghost field. Ve will show that, for
gauge invariant quantities the theories, of Sections 2 and 3 are equi-
valent up to a renormalization. To this end, we consider the class of

theories specified by a parameter A, 0 £ A £ 1 :

L = MN[E@ - v:e/()w] + (1 -A)vfﬂ{ﬁ'(—%’ -ieﬂ)w] -

SR L I T A
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1 11 u . -
*w NZ[Af) —7m—§ NZ[(BUA )2} + {1 e)Nz{Muﬂb]+

- o (4.1)
+ idN[—Z- v Ay - deb Ay
The degree function, which determines the number of subtractions to be

made, for proper subgraphs, is given by

F -
sy) =2-5-1 (2-8), (4.2)
a
where, excepting the vertex U4 V. the degree cSa, for the normal products
of the Lagrangian (4.1}, is 2. In the case of the vertex VAU, we de-

fine 6a=1 for the corresponding normal N-product, whereas, for W[{p’/(w],

1, if Ua is an external vertex, i.e., it has
an external A attached to Nvsav],

2, otherwise.
Thus,

§(y) =2-2F -B-v, (4.3)

where
v : n? of vertices N[TA ¢]
B : n? of external Au fields attached to N[y Ay ].

Up to renormalization (two theories are equal up to renormalizations, if
they differ only by the values of their counter terms), we see that the
case A=l corresponds to the superrenormalizable theory of Section 3,
while the case A=0 corresponds, in the limit my> ® , to the theory des-
cribed in Section 2.

In order to obtain a gauge invariant S-matrix, the Green's functions
will have to satisfy!®

: - AOG(ZN’L), | (4.4)
amo
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with A some D.V.O. normalized on-mass shell. This can be established
by conveniently adjusting the counter terrns, in (4.1), as we will show

now. First, we have

g;f - if A, - gﬁ% A, + ff% A, + gﬁ% A f gig A, (4.5)
where we are employing the notation
g;%fﬁQZUQQ), %=iiﬁﬁmﬁwﬁﬁ@),
A, =t sz.'cN2 MY y](=), A == Id%NW(%?- ie AN]=),
5, = (2T (T - seh W], &, =% [Ean (Tv9) @),
s, =% [ean [0, M@ (4.6)

Now, we want to prove the identity

] 3 —
A =8, + 3} oA, +0,F (4.7)
mbo S0 gm TN

where

(2w,L) 2 2
=1 |d? - - : -
ADG g Id =l ¥ av .AF(x zi,mo) 8\) .AF(“’ z.j’mo)dx\). >

Z,J=1 3 J A
L 2 2 2
- 4 - - -y . > -
ie ) aviAF(:c-zi,mo) [AF(x xj,mo) AF(ac yJ,mo)]<TXvi
7:“7‘=1

N
. 2 2 - 2 - 2 2
-ie? ) [AF(x-xi’mo)AF(x a:j,mo) + AF(x yi,mo)AF(x-yj,mo))db
]

N
2 2 2
+e izj AF(x-xi,mo)AF(x-yj,moka} . (4.8)
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The term 0,A, is absent from the r.h.s. of Eq. (4.7), because o is gi-
ven by AI‘(°’2)(0,0). Current conservation makes AOI‘("’Z)(kl,kz) trans-

verse in its external meson lines, and it thus vanishes at k!=k2=0.

The identity (4.7) is proved by iterating the Ward identity,

Y] _ - 2 - 2
<T3 A ()x> = - ) ”'oaviAF(‘” 2;s mo)<TX8i > o+

=

iern? 2) - - L,
+ iern? i-g-l [AF(x-aci,mo) Al yi,m§)1<TX> , (4.9)
and taking into account the additional terms, coming from anisotropies
in subtractions, for the graphs in Fig. 2.a, b, c¢c and the contribution
from the graph of Fig. 2.d. Observe that these graphs must contain at

least one vertex N.

The & insertion can be eliminated from (4.7) , if one uses

G C A [gaA3 sEa 4 gsAs)G(ZN,L)’ (%.10)
where the coefficients Ei(g,e,k,u), i=1,2,3,4, are associated with sub-
tractions present in graphs containing %, but absent in those contai-
ning A.  Note that the vertex N2[A2] is absent from the r.h.s. of (4.10),
by the same reason as in Eq.(4.7). Using (4.10), Eq.(4.7) can be rew-
ritten as

. (4.11)

From (45) and (4.11), we see that in order to satisfy Eq.(4.4) the coun-
ter terms must be chosen as

b m,
—— =7 ,b=b—[ n dm’ ,
amz 2 10 112 2 0
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2 3
Bmo 2
(4.12)
2
8 oy, a=d -["0q am?,
2 u 0 ]2 4 o
o u
9 m
R A AR R -
2 5 0 Jy? 5
0
Thus we still have, at our disposal, the constants ( independent of m, )
bo, e, do, and f'o, which will be fixed by imposing the A-independence of

the S-matrix. We now have

£V + = A, +

3 _(em,r) + _ o de ad of (28,1)
G ={Au-Auna—>\—A2-ﬁA3 0+ 55 b5 |G . (4.13)

Using (4.10) , (4.13) becomes

3_ pl2mr) ={- (5 + £) 8, - 51 8

NN A 3 oA 2
G- e B -g) s, 00 (4.14)

The rernaining step is to rewrite (4.14) in terms of gauge invariant nor-

ma products NZEO:]. These are linear cornbinations of the Nz[O] normal

products
A, =% v..A, , i,fj= .
J
satisfying
ﬁ—zii(;(”’[’) = AOKiG(ZN’L) (4.16)
Bmo
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Observe that, only formally, gauge invariant products Oi can appear in
(4.15). The matrix [v]ii certainly has an inverse I:w]i'i in perturbation

theory, and, therefore, (4.14) can be expressed in terms of the Ai as

5
(2m,L) _ _de . Y %%
G = jz (ﬁ +£.) wajAj_ Y
d _ N 3f _ ~ ) _(28,1)
+ (ﬁ gh)wijj + 5% Es)wsJ.AJ. G (4.17)

The coefficients, in (4.17), must be m,-independent, since, on the fermion
(20,2) and A. are such; they can be evaluate by chmsing
v (2N,L)

mass-shell both G
me= H. Thus, imposing A-independence of G , it will result in the

following system of equations

roc

(4.18)
3b, 9e, 3d, 3f%
which can be solved perturbatively for I TN and o
This concludes the proof of
o (a2v,n) _
2.4 - 0. (4.19)
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Let us now discuss the relation, of the theories constructed in this
Section, to the ones of Sections 2 and 3. Due to (4.19), we get the sa-
ne Green's functions, for any value of A, For example, for =1, which
corresponds, up to renormalizations, to the superrenormalizable case, the
Lagrangian (4.1) contains no DVO. of the type &,. Thus, the anisotro-
pies are absent, and the counter terms b,e,d and f, are my-independent .
Since, for A=1, the number of subtractions is the same as that of the
superrenormalizable case, the limit my > ® will not exist, except for
gauge-invariant quantities on the mass shell, which are already mo—inde—
pendent . When we talk about equivalence, up to renormalizations, we

always exclude these gauge invariant objects.

Since our Green’s functions are A-independent, the limit m -+ o, cannot
either exist for A=0, for gauge-dependent objects. In this case, howe-
ver, we did make the same number of subtractions as in the renormaliza-
ble unitary gauge. Thus, now, the mo-dependent counter terms diverge in
the m0 + oo |[imit. W conclude that in this limit, in which the equiva-
lence, up to renormalizations, obviously continues to hold, one needs

an infinite renormalization to go from the theories of this Section to

the unitary gauge.

5. THE SOLUBLE ZERO MASS LIMIT

Two dimensional QED is known to be soluble, if the mass of the fermion
is zero, even when the vector field has a bare mass different from ze-
ro. Actually, this model is an example of a dynamical generation of
mass, in which the vector field gets a mass through the interaction. We
want to consider, here, the limit ¥0 of the mode! of Section 3. Due
to the presence of vertices, of the superrenormalizable type, in (3.1.),

some remarks are needed.

i. Due to the renormalization condition (2.9),with e=0, reduced graphs
with vertices with two fermion lines will have a momentum factor,
which improves the infrared convergence of the integral, in the loop
momenta of these lines (see Fig.3). This is necessary if one wants to
avoid infrared divergencies arising from the fact that, we have two

legs with zero mass in the unsubtracted integrand®” .
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ii. Increasing the number of vertices, of the type -lFYu‘l’Au, in a graph,
does not introduce infrared problems if the mass of the vector boson
is maintained different from zero. This will not be true, in general,
if m'=0. Even in the Landau gauge (mn=0),there will occur divergen-
cies associated with graphs of the type of Fig.4, and the perturbation
series in e'will not exist. However, because of the mass generation,
an exact solution will exist. To obtain this solution, one should
first take the limit M0, maintaining mo’ and m different from zero;
next, sum the perturbative series to get the exact solution, and then

discuss the other zero mass limits for gauge invariant quantities.

Let us begin discussing the M0 limit. From (3.4), the vector meson

propagator satisfies
2

9 <|.4I (x)A (y)> = - L5 (- 'mz) (5.1)
u Vv Y 12V F :L_/’ 0 ’ *
whereas for the curl of A , W\e have

X U
8u<TA (x)Av y)>

- 5VAF(x-y;m:) +e' Idzx'AF(x-xf;m'2)5)‘<Tj>‘(:c')Av(y)>

- 5\)AF(x-y§m§) - a szx'AF(x-'x';m'2)5X<TA>\(x')A\)(y)> , (5.2)
with
A (x-x';m'z) = J{;_ik(a“-x’) __L_ __42_
F k2-m*'?  (2m)?

Ju(x) = Nl[j?ﬁyuw](x) .
In obtaining (5.2), we used the axial-vector current conservation:

. N T
<To¥j (2> = - 2 <1 Ax(x)X> + B8 ) |8(x-2.)yS + S(z-y )Y3 |<TH> ,
u e X 7=1 i 7Y
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Fig.3 - The reduced vertex has a momentum factor which improves the in-

frared behaviour of this graph.

(a) (b)

Fig.4 - Graphs which diverge if m =M = 0.
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where a and 8 are known functions of the masses, and coupling constants.

Equation (5.2) can be easily integrated, yielding

N Uy __3A —y et 2
3,<TA (x)4,(y)> = - 9, F(x yim' i +a), (5.3)
which shows, explicitly, that 5uA isafreefield,ofmassm2+c(. The

generation of mass is, as we see, a direct consequence of the anomaly

in the axial vector Ward identity. Using the identity

&= - BHszyD(x-y)Bvav(y) + 5“Jd2yD(x-y)5vav(y) , (5.4)
with

[p(x) = - 8(x) ,

in (5.4) the vector a being expressed in terms of its divergence and
]18

cur , We obtain
BUB\) ‘ )
<TAu(x)A\)(y)>= - T [D(x—y) - AF(x-y;mo) ]
5 5
P [D(x—y) - AF(x—y;m‘2+a)] . (5.5)
m' 240,

Other Green's functions, with at least one vector rneson, can be obtained

inasimilar way. If
then we have, for example,

<T4, (x) 7>

N
'
=2 7 ¥ D(x-z,) - D(a-y_) + Be(xmysm)) = Bglw-a m?) | <TY>

m'? 4=1
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N
- £ )} 5“[(0(.1:-3:.) - A_{z=z.;m"24+a)YS
m'2+q  i=l 7 F i’ 0 z;
- et ST
v Oy, = ploygm g Jere> (5.6)

The above formulas indicate that A can be written as

, (5.7)
u [T U2

i = + nd = H
whit ¢1 ¢10 ¢11' a ¢2 ¢20 4’21. ¢10 and ¢2° are zero mass scalar
fields, while ¢>“ and ¢,, are scalar fields of {mass)? mg, and m'%+ a ,
respectively.

We can now integrate the Ward identities, for the vector and axia\-vec-
tor currents, to obtain

<M () 7>

N .
=- 9" izl (D(x-xi) - D(:c-yi))<TY>

N
o _ D D) - A (x~x. m' %40 }
+ — 3 1:}=:1 (( ("""”7,) F( 3 My

5 4
X,
) T
+ [(D(x-yi) - Bpla-y sm m))y;i]db
N o T
+8 ) 8"1[D(:1:-a::.)v5 + D{z~y.)y> ]<Ty> . (5.8)
J=1 J xJ. J yj

Green's functions, containing only fermion fields,

need a little bit mo-
W start from the Dirac equation

re of discussion.

LI<TY(2) ¥>

N
=i ) sleyerr, >0 - e @)
k=1 Y
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- g<TN [oayuw>y“¢](x)y >, (5.9)

3/2

19

and use the Wilson*® identity

<r:u(¢yu¢) (ote) Y0 (z) x> = a1<TN3/2 [@yuwn“w] () x>
+ a23<TW(x)X> + a3<Tw(x)X> + ah<Tl(x)¢(x)x > . (5.10)

Note that a, a and a, are independent of e', M, and M, while 3 is
linear in e'. Moreover, a3=0 because, in the zero mass limit, it is gi-

ven by
<T:N, @y"p) (0)yy(0) :§(0)>PTP . (5.11)
=0, e'=0

since it results from the first subtraction term, for linearly diver-

gent graphs. But using the normalization condition, {2.9), and

<TN3/2D(0)]@(p)>pr°p I = contribution of the trivial graph ,
1p=0

M=0
e'=0

in Eq. (5.10), we obtain the resultthat (5.11) is equal to zero. Subs-
tituting (5.10) into (5.9), it follows that

2, (e) B<Ty(z)¥> =
5 2 (DM §(amy, )<TH> - 012, (©)<TUY) () 1>
k
- 92, @ <:N, @y, ) @Y @) > (5.12)

Applying u(3/8u) to (5.11), and using (5.48), we obtain
3 9 ' 3 1 ]
b G =0, g B0, g ) s,

1
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which shows that as €0, Z2/Z1, and Z,/Z,, are finite constants, but
2.2 . . .
z,= cl(u € )Yz’ with ¢, a finite constant
Using these results, we can rewrite (5.12) as
L3<TY(z)y> =
N
. N+k
- —~1, ) <TY.
iy N § (-yyy,) Y
k=1

k> - e<T(Y) (2)Y> - g<T: (J'UYUIP) (x):y>, (5.13)

where the Zl factor has been absorbed into ¥; e = (Zz/Zl)e', 55(23/21)9.
From (5.6) and (5.8), we have?®

<T(a,9) @)T()>

- i—i [BU(AF(x'y;mz) - D(m-y)>]<Tw<xW(y)>

LA [D(x— ) - b (e -m'2+u)J STty (2)T () >
m,2+a u Y F Ys Yy Yl2s

and

<T: (jull)) (x) Y (y)> =

- 3 Dlo=y)+ 3, |pGay) = By (aysm' + ) v;Taw(x)myb

m'4q u

+ 8 5UD(x-y)Y5T<Tw ()T (y)> . (5.14)

Thus, the fermion two-point function is given by
T@T)> = & FEY ey ()3l ) 5 ), (5.15)
where

F(.’L‘,y) = e_'e_:._(lg (D((L‘-y) - A (m_y;m12+u))
m'?+a F

+ €8 (D(a-y) - b lemysm?)) - §(148) Dle-y) (5.16)
ml
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Green's functions, with more than two fermion fields, can be similarly

constructed.

From (5.5), and (5.16), we can verify Eq. (3.5). Furthermore, we can

explicitly see that the m, -dependence can be gauged away.

6. CONCLUSION

We have shown how to construct Green's functions, in gauges which
differ in the high energy behavior of the photon propagator. Yet, they
all lead to the same S-matrix, due to the presence of suitable counter
terms which, in the my = « limit, become infinite, in order to absorb
the difference between a superrenormalizable, and a renormalizable theo-

ry. Observables are, of course, m, -independent.

The considerations of this paper can be extended to four dimensions“,
where one has an infinite number of counter terms, whose presence is to
ensure that the renormalizable, and the nonrenormalizable theory, give

rise both to the same S-matrix.
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