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1. INTRODUCTION

Electrostatic electron containment was proposed, in 1963, by Herb,
Pauly and Fisher' using a device consisting essentially of a cylindri-
cal condenser, where the outer cylinder, the cathode, is grounded and
the inner cylinder, the anode, is kept at a positive potential, common-
ly of the order of 10%V. Electrons are injected, in the region between
the cylinders, by a filament geometrically arranged in such a way that
an appreciable proportion of the electrons leave the injector region,
with sufficient angular momentum to avoid hitting the anode. The fi-
lament is maintained at a positive bias for the electrons to be repel-
led by the cathode and end plates. This device was called an crbitron,
and proposed both as an ionization gauge? and an icn vacuum pump3. The
attractive feature of orbitrons is the large mean free path obtained
for the electrons: in a container of 1.2 an cathode radius, 0.08 am
anode radius and 5 am height, electron mean free paths of 10% an are

reported1 .

The advancement on the construction and performance of operational am=
plifiers and the ease of construction of conventional ionization gau-
ges have greatly contributed to diminish the concern for the orbitron
as a vacuuni gauge. On the other hand, its use as a vacuum pump has
been stablished® due toits lower power consumption and facility of its
construction as compared with conventional magnetically confining de-
vices for getter-ion pumps. As a pump, the performance of an orbitron
improves the larger as the total space charge is increased and its dis-
tribution more uniformily distributed in space. This fact leads na-
turally to the study of the space charge distribution, both from the

theoretical as well as experimental, points of view.

The earliest theoretical description of the orbitron's electron densi=-
ty was given by Hooverman® as a superposition of noninteracting charge
particle orbits in a logarithmic potential. In his description, it
was assumed that the electrons moved in plane orbits, perpendicular to
the axis of the orbitron, which slowly drifted in the axial direction.
Under these assumptions, one is able to conclude, after investigating

the geometry of the orbits, and assuming a sharp distribution in angu-
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lar momentum, that the radial distribution of the electronic chargehas
two maxima corresponding roughly to the apogees and perigees of the
plane orbits. This has been the major conclusion of Feaks et al®.

Continuing in a sornewhat similar reasoning, Deichelbohrer’ has discus-
sed the effect on the charge density of different velocity distribu-
tions after the electrons leave the injector region. He showed that
the electronic distribution is strongly dependent on assumptions made
for the axial velocity as well as for the angular momentun distributi-
ons. In particular, the introduction of a spread in the axial veloci-
ty had the effect of lowering the electronic charge distribution near
the cathode, and eventually eliminating the outer peak shown by the

previous authors®.

Direct measurement of the electronic charge distribution is a difficult
task, and so far has not been reported. Cybulska and Douglas® have
gotten evidences for the electronic charge distribution by measuring
the energy spectrum of positive ions that reach the cathode, for "lTow

pressures, and small electronic total charge.

> > .
Let us call, f(r,p), the single particle distribution function in pha-
se space, and let us suppose 7, to be the density of neutral gas insi-
de the orbitron. The yield, dI/d, of ions per unit volume, and time,

can be written as

S

> >
= eanOJ'dapovf(r,p) , (1.1)
where v is the speed of the electron and a the ionization cross sec~
tion for the neutral gas under consideration. We are assuming the gas
atoms to have negligible speed as compared with the electron speed, v.
Defining
<ov> = Jdapvcf(;,g)/fd3pf(;,g), (1.2)

and

w(r) = e #0r 3 (1.3
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where n(;) is the electron space charge distribution, we have:
dar -
- “nyn{ry<ov> . (1.4)

Fig. 1 shows schematically the arrangement of the different parts of an
orbitron. Cybulska's measurement of the ion currents were restricted
to the region of the orbitron which is distant from the filament to
diminish the effect due to the collection of primary electrons. In the
central zone, we may assume the electrostatic field to have cylindri-
cal symmetry, and ifwe further assume the ions to be produced with
negligible kinetic energy, the energy of the ion hitting the cathode
can pe equated to the electrostatic potential energy acquired py the
ion at the moment of its ionization. Therefore, the ions hitting the
cathode, with energy between E and E + dE, come from the volume df =
2nrldr of the cylindrical shell of radius r, length B,0f the central

zone, where the potential V(r) satisfies eV(r) = E W have, therefore,

ar _ dr [ZTI'I'Z] dr (1.5)

&g dlear

Using Eq. (1.4), one obtains:

yrar . dar (1.6)

n(@) = e(2nring<ov>) —
dE dr

Ore sees from Eg. (1.6) that the measurement of dI/dE is directly rela-
ted to n(r). The potential V(r) may be considered logarithmic in the
limit of very low electronic charge in the interior of the orbitron ,
and therefore known and controlled by the experimental setup. O the
other hand, <ov> is sensitive on the model assumed for the electronic
distribution in phase space. This fact makes it difficult the inter-
pretation of Cybulska's measurement as the derived space charge is mo-

del dependent.

In this paper, we will discuss the theoretical background that led to
the deterrnination of f(;,g), and we consider one model for the expli-

cit calculation of f(;,;) which differs substantially from the previous

248



considerations of Hooverman, Feaks and Deichelbohrer. This model is

applied to the interpretation of Cybulska's experiment.
2. THEORETICAL CONSIDERATIONS
Let us consider ¥ electrons interacting with an external potential

Vext(r), and among themselves by their Coulomb interactions. The N ~

particle Hamiltonian can be written as

N pz. 1 N 2
H= L (-3 - eV t(r.) t3 L2, (2.
i=1 \ 2m ext v 1,§=1 717
> 4
where rij = |1n4, - rjl'

The evolution in time of the N-particle system can be described by the
distribution function fN(gl"“’EN ’;1 ""’?N ,t ) which satisfies

Liouville's equation

Bf‘N N (3H afN oH af'N
— Z —— L i — . —_ . (2 . 2)
3t =1 Bri ap; ap; or;

The one- and two-particle distribution functions are defined as:

> = 143 3 3 3
£, (rl,pl,t) = Jd r,...d'rd p,---d pyfy »
(2.3)
>
£, (rl,gl,;z,gz,thjd%s...darNdapa...daprN .

Taking into consideration the fact that H involves only one- and two-
particle interactions, and fN is symmetric with respect to exchange of

particles, one easily obtains

3

1
-(n-1)e J dar"dap' 3— [—:—-F——) a_>f2(;, E: r', E': t) =0 . (2.4)
/%

3% U |r-r'|



V¢ now make the independent part'icle approximation, writing

> > >

F D, 0" t) = £1(50, 8 A (31,00,8), (2.5)

from where, we obtain, substituting Eqg. (2.5) into Eq. (2.4):

3y, P O 3V af,
— o — —-_—;—-8—; ——=0, (2.6)
3t m or or op
where
> >
Vi, t) = Vext(r) + fd%' o nir',t), (2.7)
|7-r'|
with
wr,t) = -e(N-1) chapfl (v, Dy t). (2.8)

W observe that n(;,t) is the electronic charge density, and V(»,t)
the self-consistent electric potential, that is, the external elec-
trostatic field Vext(?) togetherwith the fieldproduced by all the
other electrons on the electron under consideration. Eqg.(2.6) is a

particular case of Vlasov's equation for plasmas“’.

Let us define the single particle Hamiltonian by

> > 2 ->
R(zr,p,t) =B - ev(r,t). (2.9)
2m

Then, Eq.(2.6) can be written as

of, oh °f, dn of
—t—= = Tz 5= 0, (2.10)
a p or 9r  dp

which is Liouville's equation in the single particle phase space
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V¢ will now discuss the possible solutions, for Eqg.(2.10), which des-

cribes the orbitron's space charge. Let us begin observing that the
> > > >

dependence of V(r,t£), on fi{r,p,t), given by Eq.(2.8), makes Vlasov's

equation nonlinear. tf q, is the charge per unit of length in the

anode, for maintaining the electrostatic field in the absence of space

charge, and g the space charge per unit of length of the orbitron, the

dirnensionless parameter,

A = q/q, (2.11)
is a good measure for the influence of the space charge on V(r), The
charge g, is given by

qo = 21V, /1n(b/a), (2.12)

where ¥, is the anode potential, and b and a the cathode and anode ra-
dii, respectively. Assuming Cybulska's orbitron parameters: V = 8oov,
b =45 an and a = 0.08 cm, and expressing q, in units of the electron

charge we get

q, =4 x 10°%

pd
1]

Cybulska's reported value for X is 0.08, which gives

g =3x ]07e (2-13)

for the space charge per unit of length.

the low value for A, in Cybulska's experiment, justifies the linear
approximation for Vlasov's equation, what greatly simplifies the cal-

culations.

. A > > .
Let us now observe that any function of the Hamiltonian x(r,p) s a
stationary solution of Eq. (2.10), and different authors have put for-

ward models considering different choices for this function.
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Let us restrict our discussion to stationary solutions, i.e.,V{r,t) =
vV(r), and to the central zone of the orbitron, where we may assume cy-

lindrical symmetry for V(r). W write:

1 2 L2 2’
h = -— (p + — + p- ) - eV(P) ) (Z’IL‘)
2m Tt s

where 2 is the radial momentum, p, the axial momentum, and L the
axial component of the angular momentum. The coordinate r measures
the distance to the axis of symmetry. Besides the energy, both L and
P, are constants of motion, and therefore a choice for the solution
of Eq.(2.10) is

G(E L oDy 2sD, LD, ) K8 (Ey=h) § (Ly-D) 8 (po-p,) , (2.15)

where X is a normalization constant.

Due to the linearcharacterof Eq.(Z.IO), a general solution can be
constructed as a superposition of solutions of the form given by Eq.

(2.15), and we have
f(r,pr,L,pz)=deodLodpoo(Eo,Lo,po>g , (2.16)

where p(En, L , po) is an arbitrary function subject only to the nor-

malization condition,
JdEodLodpop =1.

It is quite clear, from the structure of Eq. (2.16), that p(Ey,Ly,p, )
sets the boundary conditions for the solution of Eq. (2.10), and all
the previous theoretical works done on the orbitron's space charge can
be understood as alternative choices for p(E;,L,,p,). In this sence |
we will discuss particularly Deichelbohrer's paper, not only for being
the most recent but also because he summarizes, to a great extent, the

previous results.
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Deichelbohrer relates the choice of p(Eo,Lo,po) to the injection me-
chanism as he neglects any consideration for the electron - electron
scattering.inside the orbitron. Thus, he concludes that all theelec-
trons have the same energy, E, given by the position and bias of the

filarnent. Hence,
p(EsL,.p,) =8(E - E)o' (L ,p,) . (2.17)

Next he considers the upper and lower limits for L, and p, . For the
upper limit of L,, he takes the value which corresponds to the circu-
lar orbit which passes through the filament position and the lower
limit to the orbit which grazes the anode surface. The momentum p,
varies from zero to the upper allowed value corresponding to that or-
bit which leaves the injector region in a straight axial movement .
Apart from these boundaries dictated by the conditions set by the fi-
lament, the actual shape of p'(LO,pU) in Eg. (2.17) is not deterrnined.
To proceed, Deichelbohrer makes a further sirnplification by factoring

p' (Ly,py):
p(E 5L sp,)= 8(E - E)p (Ly)p,(p,) - (2.18)

He assumed two shapes for each factor. For pl(Lo), he considered (i)
a uniforrn distribution, and (ii) sinz(nLo/Lm) where Lm is the upper
limit for L. For p,(py), he assumed (i) a sharp distribution at p,=
0, and (ii) a uniform one. These assumptions combine in four possi-
ble choices for p(E,,L,,P,), and Fig.2 exhibits the results obtained.
One observes that the charge distribution is strongly dependent on the
shape assumed for pl(Lo) and 0,(p,) and we are therefore led to won-
der if a more general principle can be invoked to restrict the possi-
ble choices of distributions. This was the approach adopted by the

12 13 \which we will consider from

works of oliveira®™ , Pato"® and Rogerio
now on. The essential point we would like to stress is the well known
result of statistical mechanics that if one rigorously carries out
the hypothesis of the absence of interaction among the electrons, any

initial distribution generates a stable distribution for the gas. As
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soon as one considers the interparticle interaction, this is no lon-
ger true, and the distribution approaches a unique stable distribu-
tion, characterized by the maximum of entropy, in a time t characte-
ristic of the relaxation of the initial distribution of the gas. If
the mean lifetime of the electron, inside the orbitron were infinite,
there would be no question that the statistical equilibrium would be
reached. Actually, the electrons remain, inside the orbitron, only
during a mean time T, and the question we pose is whether T is much
srnaller or much larger than t. Hooverman, Feaks and Deichelbohrer
assume T << ¢, and conclude that the initial distribution, dictated
by the injection conditions at the filament, prevails during the who-
le life of the electron in the orbitron. Oliveira, Pato and Rogerio
made the opposite assumption, i.e., that t << T, and therefore the
distribution is dictated by the statistical equilibrium reached by
the electrons. It is quite clear that the two choices are extreme
ones, and the actual situation is expected to be in an intermediate
one. Once the statistical equilibrium is assumed, we may conclude

that the energy distribution is canonical, and we set
o(E,,L,p,) = exp(-BE,),
which gives, from Eq.(2.16)},
fi(rsp,Lop,) = exp(-8h(r,p,,0l,p,)). (2.19)
Due to the fact that the electrons participating of the space charge
are those which do not touch the inner walls of the orbitron, we as-
sume that Eq.(2.19) is valid only in a region R of the phase space .

which excludes possible trajectories that touch the walls. Under the-

se assumptions, the charge distribution is given by
dr
n(r) =4 | do. = dp_exp(-8h) , (2.20)
o T z

and we observe that now we have only one undetermined parameter, 8 ,
(playing the role of the inverse temperature of the electron gas),be-

sides the norrnalization constant A.
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3. THE CHARGE DISTRIBUTIOQN

V¢ will determine, in this Section, the domain of integration for Eq.
(2.2) under the assumption that electrons which collide with the ano-
de or cathode of the orbitron are extracted from the space charge. As
we will be only interested in the determination of n(z_:) for the cen-
tral region of theorbitron, wewill assume as before that V(r) and
n(;) have cylindrical symmetry. Due to electron-electron collisions,
electrons at a position F may acquire enough radial momentum to be
able to collide with the anode or cathode. W& assume that whenever an
electron is energetically able to reach the walls of the orbitron, we
exclude it from the distribution. This is justified on the assumption
that the mean free path between collisions is larger than the radial
dimensions of the orbitron. This condition sets up limits for pf,and

one may verify that we have to impose the restriction

p, I? L?
A - eV, - - eV(r) (3.1
2m  2ma’® 2mr?

for the electrons not to hit the anode, of radius a, and potential V,
The similar condition for not hitting the cathode is

p2 L2 LZ

2m 2mb? 2mp?

- eV (r) . (3.2)

where b is the radius of the cathode assumed to be grounded.

W rewrite Egs.(3.1) and (3.2) in the following forms that exhibit

better the geometrical restrictions on the (pr,L) space:

1?2 p?

— - s
2

I* p

1 1

and
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L
— o+ =<1, (3.3)
2 2
L2 pZ

where
2me (v, - Ma?r?
Lz = s
1 2 2
rc-a
2 - 2me(v, = V) , (3.4)
2 =
2meVb? r?
L2 = s
p® - r?
and
pz = 2meV .

Fig.3 shows the regionsof allowedvalues, for L andp,,; indicated by
the shaded areas. Defining L, as indicated by Fig.3, we can set the

limits of integration for L and Pt

(i) for L,<|L]< Ly :

L? i
iprl<p1[;2--1] 2w (3.5)
2
(ii)for Ly<|Ll< L, :
L2 /2
lp, 1< p, [1 -;—2—] = w, ; (3.6)
2

and L, is given by the following equation:
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Lz; 1A Lg 1/2
-

which gives

2s—m8— (3.7)

In principle, we should also have set up limits for the axial' com-
ponent of the momentum. As we are interested only in the central re-
gion of the orbitron, one may imagine the orbitron to be infinitely
long, and neglect any such limitations for B,» assuming the limits
for B to be * « and - «, Finally, we arrive at the explicit expres-

sion for n(»r):

2 L3 (L)l 00
nir) = —J' dL J dp J' dp_exp(-gh)
r » 2
1 0 0
(3.8)
4 L2 W, o
+ 2 [ dr J dp J dp exp(-Bh) .
r Jy r 2

3 0 0

Let us observe that for r=q, i.e, at the anode, w;=0 and the inte-
gration over pr vanishes in the first term of the right hand side of
Eq. (3.8). The second term also vanishes at the anode due to the fact
that L, =1L, and w,=0, for r=a. Hence, n{r) is zero at the anode .
In an analogous way, one can show that n(r) is also zero at the ca-
thode, which shows that #{r), given by Eq. (3.8), is zero at the inner

surface of the orbitron.

Making explicit use of the form of h, exhibited in Eq.(2.9), and of

the normalization constant, we finally obtain:

2mrn(r) = eNdexp(-BV)g(»,V,B), (3.9)
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Fig. 1 - A schematic drawing of an orbitron; 1 - is the anode rod ;
2 - the cathode cylinder; 3 - the reflector tube; 4 - the filament
The orbitron can be thought as divided in three zones; 5 - the fila-

ment zone; 6 - the central zone, and 7 - the far zone.

Fig. 3 - The allowed region in the (pP,L) plane of the phase space, at
a given position r , indicated by the shaded areas. The values of
L, L and L, are given in the text by the Egs.(3.3), (3.4) and (3.7),
respectively.
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Fig. 2 = The four radial electrondistributionsobtained fromthe four
models described by Deichelbohrer?. Curve 1 corresponds to a uniform
distribution in angular monentum and a sharp distribution at zero
axial monentum  Curve 2-corresponds t0 the si nz(er/Lm) distri bution
in angul ar momentum and the same as curve ! for the axial nomentum
Curve 3 corresponds to a uniformdistribution for the axial and ap-
gular nomenta. Curve 4 corresponds to the sinz(wL/Ln? distribution
for angul ar momentum and uniforrn distribution in axial momentum

259



where

b
At J drexp(-8V)g(r,V,B),
a

and
L3 2 1
glr,V,B) =j dLexp[- BL }erf(wls/z)
L, Zmrz
L, 2 1
+ J dLexp{- BL- ]erf(w28 %y (3.10)
L, 2mn?

Equations (3.9) and (3.10) give n(r) explicitly as a function of V()
and the parameter 8, which can be solved by iteration with gq.(2.7),
resulting in the selfconsistent charge distribution. Due to the cy-
lindrical symmetry, Eq.(2.7) can be put in a simpler form by making

use of Gauss' theorem:

r gt r'
V(r) = Vyin(r/r,)/In(a/r,) + hn J ——J ' (2") dr", (3.11)

14
0o T 0

with the parameter r, fixed by the condition ¥(p) = 0.

4. THE RESULTS

Let us introduce the dimensionless coordinate x = »/b, where b is the

cathode radius, and let us call
Lo = a/b N ("'.])

and

Q
1

eVy/kT , (4.2)
where a is the anode radius, V| the anode potential, and we introduced
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Fig. b - The function n(x), defined by Eq.(4.3), versus the function
y{x), given by Eq.(4.5), for different values of the parameter & .
The value of z; is 0.0133.
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Fig. 5 - The same as in Fig. 4 except that x,-= 0.10.

Fig. 6 - The function <v o> plotted as function of y(x), for two
values of the threshold energy for ionization: 10eV and 30eV as indi-

cated.
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g~ = kT,

in conformity with the usual practice in statistical mechanics, where
k is the Boltzmann constant, and T the temperature of the electron gas.
With these definitions, one can easily show that 27 rn{(r} , given by Eq.
(3.9), can be written in terms of the dimensionless function n{x) ,

that is:
2nrn(r) =%n(x) R (4.3)

where q is the previously defined total space charge per unitof length,

and we are normalizing n{xz) such that

1
J n(z) de =1 . (4.1)
X

0

W further define
ylz) =1 - (Inx/Inz,), (4.5)

and we observe that y(x)=0, at the anode, and unit at the cathode, po-
sitions. As we are interested in the comparison of our results with
Cybulska's data, we will neglect the space charge contribution to the
external potential. In this case, the function n{x) depends only on
the two dimensionless parameters a and x,. Fig. L shows n(x) for dif-
ferent values of a , varying by unit from 8 to 14, with x, = 0.0133
corresponding to the geometry used in Cybulska's orbitron. Fig. 5 ,
again, shows n(x) for different values of a as indicated, but with
xz, = 0.1. In both figures, the abscissas are y{(x). We observe that ,
as already proven, n{x) vanishes at the cathode {y=!) and anode (y=0).
in all cases, the distributions present only one peak quite close to
the anode . The larger the value of a, i.e., the smaller the electron
temperature for a fixed voltage Vg, the sharper is the peak.The effect
of increasing the anode radius is to broaden the peak of the distribu-

tion.
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Fig.7 - The experimental points obtained by Cybulska® for the positive ion energy-density spectrum. The ho-

rizontal axis is the energy eV in units. The two solid curves correspond to the predictions of Pato's mo-

del for two values of the parameter o, as indicated.
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The average <v o> can be calculated by numerical integration. We appro-
ximated the empirical data on the ionization cross section, o(E), by a
step function and considered two extreme cases, where the threshold
energy in o(E) is 10eV and 30eV. Fig.6 exhibits our results. & obser-
ve that <ov> is a slowly varying function of position, and depends
weakly on the threshold energy. These results give us confidence to
interpret Cybulska's data on the ion energy spectrum. Figure 7 shows
the experimental data and our theoretical prediction for two values of
a. V¢ assumed the threshold eneray to be 20eV, and z, equal to 0.0133
corresponding to Cybulska's orbitron geometry. W should observe the
rather good agreement with the experimental data, which suggest that
our basic assumption, for the attainment of statistical equilibrium of
the electron gas, is a reasonable one. Using our result for <0 v>, we
can reduce the ion energy-density spectrum into n(x) data. This is
shown in Fig. 8, where the horizontal axis is, again, y{(x). W should
also observe that rn(r), which is proportional to n(z), has a maxi-
mum at approximately y=0.15 or r=0.12cm. Our prediction for n(r) is,

therefore, a distribution with a sharp peak very near the anode.

5. CONCLUSIONS

The models advanced, for the determination of the charge distribution
in orbitrons, can be divided into two classes: (i) those which assume
that the initial conditions, dictated by the filament environment, pre=-
vail during the whole lifetime of the electrons, and (ii) those which
assume that the electron-electron collisions are frequent enough to
establish a statistical equilibrium. These two assumptions can be un-
derstood as extreme cases, and the basic question is which of these
conditions more closely represents the real condition in the orbitron.
Cybulska and Douglas® have made comparisons of their measurements with
one of the four models calculated by Deichelbohrer, which belongs to
the first class, and their findings were that Deichelbohrer's model ?
does not predict accurately the experimental observations. W have in
this paper proposed a model based on statistical equilibrium, and the

comparison with the experimental data was very satisfactory, giving
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Fig. 8 - The electron density function n{x), defined in Eq.{(4.3), for
a = 1142 and x, = 0.0133, plotted against y{x), adjusted to give the
best fit to the positive ion energy-density spectrurn measured by
Cybulska. The verticsl scale is logarithmic. Also, the experimental
points are shown for the ion energy density spectrum reduced to n({x)

data.
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credibility to the statistical assumption. A better check, on which
class of models is closer to the prevailing situation inside the or-
bitron, would be the study of the positive ion energy density spectrum,
for different positions and geometries of the filament. An insensitivity
of the measurement, on these parameters, would verify that the initial
conditions, at the filament, are not important. Hence, the electron-
-electron collisions would be important to erase the peculiarities of
the initial conditions, at the filament, on the prevailing charge dis-
tribution. These measurements, unfortunately, have not been done so
far. From the theoretical side, the study of the space charge effect,
on the self-consistent potential, should be carried out, as the only
study done so far is the one by oliveira™  but with simplified bounda-

ry conditions.

From our point of view, it is simple to understand why an upper limit
to the number of electrons, in orbitrons, should exist. The predicted
distribution is greatly confined to a small volume around the anode.
With an increasing number of electrons, the space charge deforms the
electrostatic potential, making it practically zero for distances even
less than the filament distance to the anode. In a sense, the effect
of increasing the number of electrons is to reduce the radial dimen-
sion of the orbitron. Under these conditions, the filament would be
unable to inject more electrons into the electron cloud. This, of cour-
se, occurs intermitently. Once the filament is shielded, the space
charge starts to diminish by loosing electrons, through electron-elec-
tron collisions, and soon the filament is again able to inject more
electrons into the cloud, repeating the cycle again. This intermitent
regime is responsible for exciting acoustic waves in the electron gas,
which are observed as electromagnetic oscillations associated with the
high density regime. These oscillations have been observed by Troise

and Douglas!*,
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