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VW investigate the relationship between the Johnson-Baranger time-de-
pendent folded diagram (JBFD) expansion, and the time independent
methods of perturbation theory. In the nondegenerate case, we  show
that the JBFD expansion and the Rayleigh-Schrddinger perturbation ex-
pansion, for the ground state energy, are identical. On the other hand,
we show, in the degenerate case, that, for the nonhermitian effective
interaction considered in this paper, the JBFD expansion, of the
effective interaction, is equal to the perturbative expansion of the
effective interaction of the nonhermitian eigenvalue problem of Bloch
and Brandow-Des Cloizeaux. For the two hermitian effective interac-
tions, considered in this paper, the JBFD expansion of the effective
interaction differs from the perturbation expansion of the effective

interaction of the hermitian eigenvalue problem of Des Cloizeaux.

Neste trabalho, investigamos a conexdo entre a expansdo em '‘diagramas
dobrados'* de Johnson e Baranger (JBFD) e os métodos de teoria de per-
turbacdo independente do tempo. No caso ndo degenerado, mostramos que,
a expansdo de Rayleigh-Schrddinger e de JBFD sdo idénticas. No caso
degenerado, mostramos que, para a interacdo efetiva n&8o hermitiana,
considerada neste trabalho, a expansdo da interacdo efetiva em JBFD é
idéntica d expansdo da interacdo efetiva da equagdo de autovalores néo

hermitiana de Bloch e Brandow-Des Cloizeaux. Para as duas interacgfes

* pPostal address: CP. 20516, 01000-Sdo Paulo SP.
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efetivas hermitianas, consideradas neste trabalho, a expansdo da inte-
racdo efetiva em JBFD difere da expansdo da interacado efetiva da equa-
cado de autovalores hermitiana de Des Cloize atax3 $ti.iz112,ib6 2 oii
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In Refs.2, 3 and 4, the eigenvalue profilem (1.3), which is defined in
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whefe'H is the model Hamrl&g[}aan, and is the energy independent
effective interaction. This replacement is made only for the D eigen-
functions in R. In the Bloch equation?, the eigenV4108¥jRokiem’ {190y

is written as:

(gr.1) ,{Nu‘...,gu”u L3 g =
(eP +WB-E)I¢ (1.5)
% ':ei {Nu(...‘guelg,g? brs
where |¢, > is the projection of v > on Q
PV 2 () e g T e
g 19, 5P [T ‘ (1.6)

st
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WS =PVU, .7
and U is

U =P, + (Q/a) (VU - UVU),

(1.8)
UQO=0’ a=€°—H°.
The equation of Brandow" and Des Cloizeaux® reads
-DC _ _
(e, B, + W )8, >= 0, (1.9)
where W20C is given by
B0C _ ar B-DC \n
= o Py (———k(e)) (W )T (1.10)
O de®
K(eo) being the reaction matrix®
Ke, = VP, + V(g,/a)K(e,) . (.1
The perturbation expansion of (1.10) is given in Ref.3:
B-DC -
W - = o W s (‘.‘2)
n=0 "
where Wn is given by
L uf...un TN TPPRRIN T (1.13)
and {ul,uz,...,un} is?
My M,
ot et L ge) . p, & K(e ). ..
1 2 n u _uz U 0 9 0 W fi]
1 n de M de M2
0 0
U
an
. Py K(eo) P, (1.14)
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"
d k(e,) denoting the uth derivative of the reaction matrix.
de

]
The u's above are positive integers satisfying the relations

ul + u2 AEEERL I = n-1,

(1.15)
My Uyt >p-1, V Sp <o,

The perturbation expansion (1.12) gives rise to the folded diagram ex-
pansion of Brandow.

B_DC= WB . Besides, the proof gj-
ven in Ref.6 is based on Egs. (1.7) and (1.8).

In Refs. 3 and 6, it is shown that ¥

in order to transform the nonhermitian eigenvalue problem, (1.5), into

a hermitian one, Des Cloizeaux rewrites Eq.{1.5) in the following

form2?3:

(Be, +A-BE) | § >=0, (1.16)

A and B being hermitian operators, and

wB= 4571 . (1.17)

The states {]5{7 >} are the stater biorthogonal to the states {Id)a >} .
0 0
The operator B is a positive definite operator? ®** which transforrns

the states {|$a >} into the states {|¢a >}, namely,
0 0

BI§ >=1¢,>. (1.18)

Considered as an operator acting in £, B has an inverse?'3’%;

T = g1
9, > =5 "4, >~ (1.19)

Bl/z

Uefining the square root operator, ,» Which is herrnitian and posi-
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tive definite, Eq.{(1.16) can be written as

R T TP TC R B I , e “ wopt - isb ~
(B2 72 2 E-r ) > =0 (1.20)
a .
BRI privteiiec fvenasi i} Sl
where lq> - g/2 ]¢ > are the so-called half-way bases states®
)

o
The operator

is the hermitian effective interaction of Des Cloizeigﬂkis. )

224
I the’ approach of) Johnson and Baranger , the effectwe mteractlon is
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In the case of nondegenera-te perturbation theory, we compare the JBFD

é'xzp'an':sion with the I;{aﬂej.i;ﬁh-‘Scherd”iﬁpe-r e;pansions.

For the degenerate perturbation tieory we compare 'the perturbat ion ex-
pansion of Bloch's nonhermitian effective interaction, Eq. (1.5), with
the JBFD expansion of the effective interaction, when the last time of
the "box" is chosen as its time base. In the hermitian case, we com-
pare the perturbation expansioh of the effective intéraction of Des
Cloizeaux, Eq. (1.20), to the JBFD expansion of the effective interac-
tion for the two simpltest symmetrical choicec of the ''box" time base

an average of the first and last times of each box, and a linear com-

Bindtion of the first and last times of each box.

i

2. OUTLINE OF THE JOHNSON-BARANGER FOLDED DIAGRAM EXPANSION
o,
The basic point, in the Johnson-Baranger derivation of the folded dia-

gram expansion of the effective interaction, is the exact replacement
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of the matrix elements of the time-evolution operator T{+w,-®), between
states in the model space, by a model time evolution operator T (+o,-w),
The intermediate states of the model time evolution operator are acti-
ve states only. The active states are connected by the effective in-
teraction H—1 It is shown, in Ref.l, that the eigenvalues of the model
Hamiltonian, H, H = PoHo+f_1—1, are equal to the true eigenvalues, E_. V¢

give below an outline of the Johnson-Baranger derivation.

Consider the matrix elements of T(#,%') between states in the model
space, as shown in Fig. 1. The perturbation expansion of T(t,¢") is
calculated according to the usual Feynman rules. In the evolution of
the system, the intermediate states can be active or passive states

However, the matrix elements shown in Fig.} can be written in such a
way that the intermediate states are active states only, as shown in
Fig.2. The active states are connected by a '"box'", whose Fourier
transform is the reaction matrix, Eq.(l.ll). The reaction matrix is
not instantaneous; it has an extent in time. The next step is to re-
place, everywhere, the 'box' by an instantaneous interaction, as shown
in Fiy.3. The time at which the instantaneous interaction will act ,
the '"box'' time base, is completely arbitrary. However, the instanta-
neous interaction is hermitian only if the choice of the time base

preserves the symmetry between past and future.

In the above replacement, we have to make sure that the model descrip-
tion is equivalent to the true description. This is easily seen not
to be the case, since in the model description the "boxes™ can overlap,

and this does not occur in the true description.

As an example, consider the model diagram shown in Fig.4. This diagram
does not occur in the true description, so it has to be removed. To do
so, we define an instantaneous interaction, the double box diagram
shown in Fig.5. It is easily seen that, in general, we can have, in
the model description, »n overlapping "boxes’, whose removal gives rise
to the nth "box" folded diagram. These diagrams are calculated accor-
ding to the usual Feynman rules. Therefore, the perturbation expansion

of the effective interaction is



Fig.4 - A model diagram which does not occur in the full description.

Fig. 5 = A double box diagram;
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H =1 & (2.1)

th

where ﬁl is the n box folded diagram.

n
In the case of degenerate perturbation theory, the term having n over-
lapping ""boxes'" has a very simple expression for the specific choices
of the "box" time base considered in this paper, which can easily be
derived using the rules given in Ref.l. Doing so, ﬁ‘n is seen to be

equal to

A= ()0

. P K(T )P K(T)P ..

~1

J dr dT ...dT

1 3 2n
n 0
(2.2)

P K(T, P explie (T +T +. ..+ Tm_l)}jdtzdtu...dtm_z.
r

The difference between the various prescriptions for the ''box" time

base is only in the region of integration I'. iIn what follows, we will

calculate the perturbation expansion of the effective interaction for

specific choices of the 'box'" time base.

(i) Perturbation Expansion of the Effective Interaction <n the
Nonhermitian Case

In this case, the time base of the various "boxes'™ is'the last time of

the diagrams.
The value of #; up to the triple box diagram is given by
H, = {0} + {10} + {110} + {200} +... . (2.3)

The region of integration is given below, and again-this is a straight-
forward application of the rules given in Ref.1 (in all cases Tl’Ta""’
Tzn—l > 0).

1.1) T1 > 0, for the single-box diagram;
1.2)-T1 < '.7‘2 < 0 for the double-box diagram;

190



1.3) a) -7, < T, <0 , b) -7, < T, <0,

-7, < T, <0 , -(T1+T2+T3) < T» < —T3 ,
for the triple-box diagram.

The calculation of the higher order folded diagrams is straightforward
but lengthy. However, the following rule emerges from an order by

order calculation which has been checked up tp n=5.

Consider n overlapping boxes:

1) Draw all the overlapping boxes;

2) Consider all permutations of the relative order of the '"boxes™ time
base (the last time of the '"box''}) keeping the time base of the first
"box'' (froni left to right) as the latest time. Therefore, if we have n
boxes, there are (n-1)! possibilities.

3) Draw horizontal lines from right to left, leaving the "boxes™ time
base, and finishing when a '"box'' is reached. Let My be the number of
lines reaching the ith "box''. Consider together all permutations lea-
ding to the same set of numbers U, Hysunny un. The sum of the contri-
butions of all these diagrains, calculated according to the usual Feyn-

man rules, is {ul,uz,...,un} .

V¢ have not analyzed the Kuo et al.” folded diagram expansion; however,
it seems that the rule given in Ref.7 is identical to the rule given

above.

Therefore, H,  becomes
n

&
1

1 z ' {u15u25‘5°'au } . (2.“)

n
ul’“Z"""“n

’

Considering the rule given above, it is easily seen that the wu’s sa-

tisfy any of the following relations

+ +...0H = n-lI,
U1 uz Yy

W+ Wyt >p-1, 1%, (2.5)
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U+ u2+...+un =n-1,

w<mn-p, l<p<n . (2.6)

(ii) Perturbation Expansion of the Effective Interaction <n the Her-

mitian Case: the time base s the average of the first and Zast times

of each boz.

The value of #,, up to the triple box diagram, is given by

Hy = {0}+1/2{10}+1/2{01}+1/8{200}+1/8{002}+3/4{020}+3/8{011}+3/8{110}+
+1/68{101 4., . (2.7)

The region of integration is given by

2.1) 7, > 0, for the single-box diagram;

2.2) —(T1+T3)/2 < T, <0, for the double-box diagrarn;
2.3) a) ~(T,+T,)/2 < T, <0,
-(T,+T)/2 < T, < 0;

b) -(Ty+T)/2 < T, < 0,
(T, /243 T, /b T /b T,/2) < Ty < =(T347)/2;

c) -(T,+#T,))/2 < T, <0,
(T, /b+T, /2437, /h+T /2) < T, < =(T,+T)/2, for the tri ple-box

diagram.

(iii) Perturbation Expansion of the Effective Interaction in Hermitian
Case: the time base as a linear combination of the first and Zast ti-
mes of the "bozx'.

The val ue of 771, up to the triple box diagram,is given by

A, = {0}+1/72{10}+1/2{01}+1/4{200}+1/4{002}+1/2{020}+3/8{011}+3/8{110}+

+1/5{101} +... . (2.8)
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The region of integration is as follows:
3.1) T, > 0, forthesingle-boxdiagram;

3.2) a) -7, < T, < 03
b) -(T1+T3) <T, <0;
c) -T, <71, <0,

for the double-box diagram.

In this case there is a factor 1/2 multiplying each contribution.

3.3) a) -T, <7, <0,
-Ty <7, < 03

b)"T3<T2<0’
< T, < 0;

¢) -7, <7, <0,
'(T3+T5) < T[‘ < 0;

d) -(T;+7;) < T, <0,
-Ts < T, < 03

e) -(T+T47.) < T, <0,
(T 4T 47 4T,) < T, < 0;

f) -(T,+7,) < T, <
-(T,+T 47) < T,

o
-

A
[

g) ~{T,+1,) < T, <0,
-(T1+T2+T3) <T, <0

h) -T,< r, <0,
-(T,4T,) < T, < O
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There is a factor 1/16 multiplying the first four contributions, and

one of 1/8 multiplying the last four.

It is worth mentioning that we have many more possibilities for choice
No.2 than for choice No.3. As an example, we note that we have, for the
triple-box diagram, three possibilities in case No.2, and twenty four
in case No.3. So, between the two hermitian prescriptions, the easiest

to calculate is case No.2.

in what follows we will compare the perturbation expansion, Egs.{(2.4),
(2.7) and (2.8), to the perturbation expansion of the effective inte-

raction of Bloch, Eq.(1.12), and Des Cloizeaux, Eg. (1.21).

3. NONDEGENERATE PERTURBATION THEORY

In the case of nondegenerate perturbation theory, the model space has

only one dimension, so the projection operator P, is, simply,
P, = |o><0] .
The eigenvalue is given by

B, =¢, + <0|H Jo> . (3.1)

In the nonhermitian case H: is given by Eg. (4.1) of next Section.

For a single dimension, EQ. (4.1) reduces to

R L

wlm o = 2 L@

<0|k(e,)]0>) (<0|7,|0>)" (3.2)
n=0 de :

Using (3.1) and (3.2), the energy E, is given by

AE

L
s}
o
]

&

1 (dn
i
n=0 de?

<o0lx(e)]0x) @B, (3.3)

i
|l ™18
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Using a formula by Lagrange, given in Refs. 3 and 5, Eq. (3.3) reduces
to
[+ dn-l

AE = % -:;L-, P}
n=1 T dg,

(<0]x(e ) [0>)", (3.4)

which is equivalent to the Rayleigh-SchrHdinger perturbation series®.

In the hermitian case, ?1'1 is given, up to the triple-box diagram, by
Egs.(2.7) and (2.8). In both cases, the expectation value of ﬁx is
given by Eq. {(3.2), to the order considered. So, to this order, they
are equivalent to the Rayleigh-SchrHdinger perturbation series. It is

certainly plausible that the equality persists to higher orders.

4. DEGENERATE PERTURBATION THEORY: NONHERMITIAN CASE

The effective interaction, when the last time of the diagram is chosen
as its time base, is given, to all orders of perturbation theory, by
Egs.(2.1), (2.4) and (2.5). This coincides with the perturbation ex-
pansion of WB—DC, given by Egs.(1.12), (1.13) and (1.15). Therefore,

o]
b
n=0

X
1

at —
1 7 (d—nK(so)) @)" . (4.1)

€0

So, when we choose the last time of the diagram as its time base, the
JBFD expansion of the effective interaction is identical, order by or-
der, to the Brandow-Des Cloizeaux effective interaction, and to the

Bloch effective interaction as well, since the last two do coincide®’$

The conclusion is, therefore, that the Johnson-Baranger folded diagram

expansion is identical to the corresponding one by Brandow, for the

effective interaction.

5. DEGENERATE PERTURBATION THEORY: HERMITIAN CASE

The perturbation expansion of the Des Cloizeaux hermitian effective in-

teraction is?
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PC o (0341720103 +1/2{01}+3/8{110}+3/8{011}+1/4{101}+1/2{200}+
+1/2{002}+ ... . (5.1)

If we compare (5.1) to Egs. (2.7) and (2.8), we see that they are all
different. This tells us that WDC does not coincide with the JBFD ex-
pansion of the effective interaction for the two symmetrical choices
of the '"box'" time base considered in this paper. The three effective
interactions, Egs. (2.7}, (2.8) and (5.1), are related by an unitary

transformation in the model space R.

W did not attempt to find which symmetrical choice for the box time
base gives rise to the Des Cloizeaux effective interaction. |t is in-
teresting to notice that when comparing the different herrnitian pres-
criptions, we should consider at least the triple-box 'diagram, since
the prescription, for making the double box diagram hermitian, is uni-

que.

6. CONCLUSIONS

In this paper we have shown that in the case of ordinary {(non-many-bo-
dy) quantum systems, the perturbation expansion of the Bloch effective
interaction coincides, order by order, to the JBFD expansion of the
effective interaction, when the last time of the "box! is chosen as
its time base. 1in the hermitian case, the perturbation expansion of
Des Cloizeaux's effective interaction differs from the JBFD expansion

for the two symmetrical choices of the ''box'"' time base made here.
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