Elastic Scattering of 3He and a Particles on Sb, Sn and Te*

A. T. M. MENDES***, N. UETA and M. N. RAO
Laboratório Pelletron – Instituto de Física da USP, São Paulo S

Received on 23 de Janeiro de 1976

The angular distributions of elastic scattering of 3He and a particles of about 20 MeV from nuclei of Z approximately 50 were measured. Optical model parameters which reproduce the experimental data have been systematically determined.

Foram medidas as distribuições angulares do espalhamento elástico de 3He rtículas a de cerca de 20 MeV por núcleos com Z da ordem de 50. Foram determinados sistematicamente os paramêtros do Modelo Optico que reproduzem os dados experimentais.

1. INTRODUCTION

As part of a systematic study of 3He and a particle induced reactions in the region of Tin, Antimony and Tellurium nuclei, the angular distributions of elastically scattered 3He and a particles from these nuclei, were measured at the available incident energy of about 20 MeV. A compilation of 3He and a particle optical model parameters for nuclei throughout the periodic table has been published by Perey and Perey. More recent data and analysis for Z = 50 are available in Refs. (2) and (3). Nevertheless, at the incident energies available from the Pelletron accelerator, the data are scarce in the region of nuclei studied.

* Work submitted in partial fulfillment of the requirements for the degree of Master of Science (A.T.M.M.).

** Fellow of the FAPESP (Process 71/1435).
2. EXPERIMENTAL TECHNIQUES AND RESULTS

2.1. TARGETS AND APPARATUS

The targets of about 100 - 150 μg/cm² were prepared by vacuum evaporation of enriched material onto 20 μg/cm² carbon foils. The target materials were obtained from the Stable Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA. The enrichment factors of the samples used to prepare the targets for the present experiments are given in Table 1. The absolute cross sections were determined assuming that, at the incident energies utilized (-20 MeV), the cross section at the forward angles (≤45°) is only due to Rutherford scattering. The errors in the absolute cross sections are estimated to be 10%. A 5% error due to nonuniformity of the targets is included.

The beams of ³He and α particles, produced in an external source of the charge exchange type, were injected through a single focussing 90° magnet (ME-20) into the Pelletron 300 tandem accelerator of the University of São Paulo.

After acceleration, the beam is energy analysed in a double focussing 90° magnet (ME-200). The magnet calibration constant was obtained by measurements of (p,n) and (α,n) thresholds and the study of the resonance at 14231 keV in the ¹²C(p,p) reaction.

With the aid of a switching magnet and a quadrupole doublet, the energy analysed beam is transported to the entrance collimator of a large (φ = 1m) scattering chamber.

The scattering chamber (Fig.1) was formerly used at the University of Wisconsin to study the H(p,p)H reaction. After modifications for use with solid targets, this chamber was installed and the centering tested to a precision better than 1%.

A beam spot diameter of 4 mm could be obtained with the aid of the 105 cm long entrance collimator with defining slits of 3.5 mm diameter.
Fig. 1 - Vertical cross sectional view of the chamber. 1S and 1E defining slits of the beam entrance collimator; 2S and 2E antiscattering slits; 3. movable arm; 4. target holder; 5. defining slits of the detector collimator; 6. antiscattering slits of the detector collimator; 7. angle wheel; 8. connectors for detector signal output; 9. system for target positioning; 10. Faraday cup; 11. electric suppressor of Faraday cup; 12. detector.
The modified chamber allows for the changing of up to 4 targets without breaking the vacuum. Up to five silicon surface barrier detectors could be mounted on a movable arm and the positioning of the detectors could be read to a precision of 1'. The detector, provided with collimating and antiscattering slits, subtended a solid angle of -4×10^{-4} steradian and had an angular resolution of $\pm 1.4^{\circ}$.

The beam current collected in a Faraday cup, which had geometrical and electrical suppression, was integrated to within a precision of 2%. A monitor detector, positioned at 45° to the beam, provided a constant check on the measurements.

Data were accumulated in a Honeywell DDP 516 Computer used in the multichannel mode and later transferred to a magnetic tape through an IBM / 360-44 Computer10.

2.2. THE ELASTIC SCATTERING ANGULAR DISTRIBUTIONS

The angular distributions were measured from 10° to 145° in 5° steps for the following cases:

\[
\begin{align*}
^{124}\text{Sn} \ (^{3}\text{He}, \ ^{3}\text{He})^{124}\text{Sn}, & \quad 22.35 \ \text{MeV}, \\
^{123}\text{Sb} \ (a, \ a)^{123}\text{Sb}, & \quad 19.95 \ \text{MeV}, \\
^{124}\text{Te} \ (a, \ a)^{124}\text{Te}, & \quad 19.3 \ \text{MeV}, \\
^{124}\text{Sn} \ (a, \ a)^{124}\text{Sn}, & \quad 19.5 \ \text{MeV}, \\
^{123}\text{Sb} \ (^{3}\text{He}, \ ^{3}\text{He})^{123}\text{Sb}, & \quad 19.5 \ \text{MeV}, \\
^{124}\text{Te} \ (^{3}\text{He}, \ ^{3}\text{He})^{124}\text{Te}, & \quad 19.52 \ \text{MeV}, \\
^{122}\text{Te} \ (^{3}\text{He}, \ ^{3}\text{He})^{122}\text{Te}, & \quad 19.52 \ \text{MeV}.
\end{align*}
\]

The statistical uncertainties varied from less than 1% in the forward angles to about 3% in the backward angles. In the case of $^{124}\text{Sn} + ^{3}\text{He}$ angular distribution, some of the backward angle data could not be obtained with statistical accuracy better than 14%.

142
Fig. 2 - Typical spectrum of elastic scattering of \(^{123}\text{Sb}(^{3}\text{He},^{3}\text{He})^{123}\text{Sb}\).
The energy resolution varied from 30 to 70 keV due to the energy loss of the beam in the target, kinematical broadening, and detector resolution. An improvement of the energy resolution was obtained when a positive bias of 5 kV was applied to the target holder.

Particle identification was not considered necessary as the other reactions were of negligible cross section or were kinematically well separated from the elastic events.

Typical spectra for 3He on 123Sb and a on 124Te are shown in Figs. 2 and 3. On account of the rather low incident energy, the angular distributions do not show any diffraction structure, but are rather smooth. The data reduced to the center of mass system are shown in Table 2.

3. OPTICAL MODEL ANALYSIS

3.1. FORM OF THE OPTICAL POTENTIAL

The analyses of the experimental elastic angular distributions were performed with the aid of an optical model search code MODOPT11 which could be run on both the IBM/360-44 and the B-6700 computers. The potential used was of the form:

$$U(r) = V_C(r) - \{V_0 \hat{f}(r, r_0, a_0) + i \hat{g}(r, r_0, a_0) + V_C(r, r_0, a_0)\} +$$

$$+ \left(\frac{R}{n_{\pi n}} \right)^2 \left\{ V_{SO} \frac{1}{r} \frac{d}{dr} \hat{f}(r, r_0, s_0, s_0) + i \hat{g}(r, r_0, s_0, s_0) \right\} + \hat{I}$$

with

$$f(r, r_0, a_0) = \left[1 + \exp \left(\frac{r - r_0}{a_x} \right) \right]^{1/2} \quad \text{(Woods-Saxon)},$$

$$g(r, r_0, a_0) = \exp \left\{ - \left(\frac{r - r_0}{a_x} \right)^{1/3} \right\} \quad \text{(Gaussian)},$$

144
\[g(r, r', a_x) = 4 \, a_x \, \frac{d}{dr} f(r, r', a_x) \] (Woods-Saxon derivative)

and

\[V_C(r) = \frac{Z_1 Z_T \epsilon^2}{2 R_c^2} \left(3 - \frac{r^2}{R_c^2} \right), \text{ for } r < R_C, \]

\[\frac{Z_1 Z_T \epsilon^2}{r} \text{ for } r > R_C, \]

where \(Z_1 \) and \(Z_T \) are the atomic number of the incident particle and target respectively and

\[R_c = \frac{r_c}{A^{1/3}}. \]

17 partial waves were necessary in the calculations. The Coulomb radius, \(r_c \), was fixed at 1.25 as suggested by Luetzelschwab et al.12.

3.2. - FOUR PARAMETER GRID SEARCH

In general, the optical potentials are determined with ambiguities. Both discrete and continuous ambiguities of the real potential are discussed by several authors13-16.

There exist discrete values of the real well depth for a fixed radius which give almost the same fit (discrete ambiguity). The real potentials determined in the discrete ambiguity have the same depth at the radius of strongest absorption \(R_A \), which is related to the preferential partial wave by the relation:

\[R_A = \frac{n + \left(\frac{n^2 + l (l+1)}{k} \right)^{1/2}}{k}, \]

where \(n \) is the Coulomb constant, \(k \), the wave number and \(R \) is chosen so that \(\text{Re}(S_R) = 0.5 \) (Ref.17), \(S \) being the scattering matrix.
Fig. 3 - Typical spectrum of elastic scattering of $^{124}\text{Te}(\alpha,\alpha)^{124}\text{Te}$.

Fig. 4 - χ^2 plot obtained in the grid search as a function of V_0 for a) ^3He on ^{123}Sb, b) α on ^{123}Sb.
Although the depths are completely different, for \(r > R_A \), all potentials have the same trend and similar fits to the elastic scattering data are obtained\(^{14,18,19}\). The discrete ambiguity corresponds to the inclusion of an additional half wave length of the wave function of the most significant partial wave into the potential well\(^{15}\).

The continuous ambiguity occurs for values of \(r_0 \) and \(V_0 \) such that the product \(V_0 r_0^N \) is constant.

Two new parameters were introduced by Greenlees et al\(^{20}\) to characterize the different potential families: \(J_0 \), the volume integral per pair of particles, \(<r_0^2>^{1/2} \), the root mean square radius.

For the Woods-Saxon form factor,

\[
J = \frac{4\pi}{3} V_0 r_0^3 \left[1 + \left(\frac{\pi a_0}{R_0} \right)^2 \right]
\]

with \(R_0 = r_0 A^{1/3} \) and \(J_0 = J/(A_I A_T) \), \(A_I \) and \(A_T \) are the mass numbers of the incident particle and of the target respectively. \(J_0 \) varies in discrete steps of 100 MeV.F\(^3\) for the different families\(^{19}\).

The root mean square radius for the Woods-Saxon form factor is given by,

\[
<r_0^2>^{1/2} = \left(\frac{3}{5} R_0^2 \left[1 + \frac{7}{5} \left(\frac{\pi a_0}{R_0} \right)^2 \right] \right)^{1/2}
\]

and should be constant as a function of \(V \) within one family.

Based on a procedure suggested by Baugh\(^{15}\), a grid search on the parameters \(V \) and \(r \), was performed with the \(^{123}\)Sb + \(\alpha \) data. Volume absorption was used in this procedure. No spin-orbit term was included. \(V \) was varied from 40 to 240 MeV in steps of 20 MeV and \(r_0 \) from 1.15 to 1.4 F in steps of 0.05 F. For each \((V_0,r_0)\) selected pair, a simultaneous search was performed on the four parameters \(a_0, \tilde{W}_y, r_y \) and \(a_y \).
Fig. 5 - Variation of the optical model parameters as a function of V_0

a) for $^{123}\text{Sb} + ^3\text{He}$,
b) for $^{123}\text{Sb} + \alpha$.
The minimum χ^2 values were obtained with $r_0 = 1.4$ F for values of V_0 at intervals of -80 MeV. For $r_0 = 1.2$ F, even though the χ^2 minima were slightly worse, a spacing of -40 MeV between the minima was found. No visual distinction could be made between the fits obtained with $r_0 = 1.2$ F and $r_0 = 1.4$ F.

A four parameters grid search was also performed with the $^{123}\text{Sb} + ^3\text{He}$ data, for $r_0 = 1.2$ F and 1.4 F. For $r_0 = 1.2$ F, a V spacing of -40 MeV between the χ^2 minima was obtained. However, for $r_0 = 1.4$ F, only one minimum with $V_0 = 40$ MeV was found.

These results are summarized in Fig.4, while the variation of the individual parameters as a function of the real depth V_0 for $r_0 = 1.2$ F, is presented in Fig.5. Starting from the parameters which gave minima for $r_0 = 1.2$ F and 1.4 F in $^{123}\text{Sb}(\alpha,\alpha)^{123}\text{Sb}$ analysis, and for $r_0 = 1.2$ F in $^{123}\text{Sb}(^3\text{He},^3\text{He})$ Sb analysis, a five parameter search was performed. The resulting parameters, together with the J_0 and $<r_0^2>^{1/2}$ values are shown in Tables 3 and 4, for α particles and ^3He respectively. The parameters marked with (*) in Table 3 and Table 4 were used as starting parameters for the other angular distributions. It is known that the best fits are obtained when the potential depth is 120-180 MeV for ^3He and 160-240 MeV for α particles. With this criterion, the parameters given in Table 5 were chosen as the most adequate and the corresponding fits are shown in Fig.6.

3.3.- THE IMAGINARY PART OF THE OPTICAL POTENTIAL

Maintaining the parameters of the real potentials listed in Table 5, attempts were made to determine the surface absorption potentials (Woods-Saxon derivative form factor) for the Sn and Te angular distributions. In the case of Sb, a more detailed study was performed. The results are included in Table 3 and Table 4. No essential differences in the quality of the fits were observed between volume and surface absorption potentials, as expected, since the angular distributions are rather smooth14,18,19
Fig. 6 - Ratio of the experimental cross section to Rutherford cross section for elastic scattering of ^3He and α particles. The curves are calculated with the best fit parameters of Table 5. The error bars are shown when larger than the size of the point.
In the case of angular distributions with a marked diffraction pattern, a surface imaginary term gives, in general, a better fit than a volume term21.

3.4. - THE SPIN-ORBIT TERM

A spin orbit term of -2 MeV, as suggested by Luetzelschwab et al.12, Urone et al.14 and by Cage et al.19, was included in the analysis without any significant improvement in the fit, as was expected for a structureless angular distribution. As no polarization data pertinent to the present results were available, the spin-orbit term was not included in the final fit.

4. DISCUSSION AND CONCLUSIONS

An examination of Table 4 shows that the variation of the parameters follows the systematic behavior observed by Cage et al.19 and by Baugh15, namely: a, and r_v decrease whereas v_σ or w_ν and α_ν increase for increasing V_0.

The radius of strongest absorption of the potentials (Table 4) which fit the 3He scattering on Sb is 9.9 F and corresponds to $R = 7$, whereas for α scattering on Sb (Table 3), $R_\alpha = 10.3$ F which corresponds to $R = 9$ (Fig.7). These values are in agreement with Cage et al.16 and Weisser et al.18 although the corresponding R values differ slightly from those calculated imposing the condition that $\text{Re}(S_R) = 0.5$ (Ref.17).

The values of V_0 obtained in the grid search of $^{12}3\text{Sb}(\alpha,\alpha)^{12}3\text{Sb}$ are plotted as a function of r, in Fig.8. The mean value of J_0 varies by about 100 MeV F for adjacent families.

For some families, the values of $\langle r_0^2 \rangle^{1/2}$ were calculated for different values of r_α. These results are shown in Fig.9. A slight variation of the root mean square radius, as a function of r_α, is observed in agreement with Cage et al.19, although it had been introduced as a constant within one family.
No preference for a surface or volume imaginary form factor was detected.

As a spin-orbit term was not necessary, effects due to the target spins were not looked for.

As can be seen in Fig. 6, all the a particle angular distributions (19.3 - 19.9 MeV) have the same overall trend. A similar behaviour is also observed for 3He, except in the case of 124Sn measured at a slightly higher energy (22.3 MeV). The comparison between a particle and 3He angular distributions measured at the same energy shows a larger diffuseness for a particle than for 3He. Bock et al. have observed a larger diffuseness for 3He than for a particle with data obtained at equal momenta.

Systematic measurements at higher energies are needed to observe the dependence of optical model potential on more complicated effects such as mass number of targets, spin-spin interactions and isotopic spin.

We would like to thank Prof. O. Sala for his constant interest in this work. The assistance of Dr. T. Polga and Mr. A. Szanto de Toledo in the operation of the machine is gratefully acknowledged. We also express our thanks to Mr. M. Cappello and the staff of the workshop for their help during the modification and installation of the scattering chamber; to Mr. M. Ferrareto, Mr. A. Telles and the computer staff for assistance in the acquisition of data. We are greatly indebted to the University of Wisconsin for providing us the scattering chamber.

<table>
<thead>
<tr>
<th>Target</th>
<th>Chemical Composition</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>122Te</td>
<td>metallic</td>
<td>96.21</td>
</tr>
<tr>
<td>124Te</td>
<td>metallic</td>
<td>96.21</td>
</tr>
<tr>
<td>124Sn</td>
<td>SnO$_2$</td>
<td>94.74</td>
</tr>
<tr>
<td>123Sb</td>
<td>SbO$_2$</td>
<td>99.05</td>
</tr>
</tbody>
</table>

Table 1 - Enrichment factors of the targets studied.
Fig. 7 - Plots of the depth of real optical potentials of Tables 3 and 4 as a function of the real radius R.
Fig. 8 - Variation of potential V as a function of r_0 obtained in the search for $^{123}\text{Sb}(\alpha,\alpha)^{123}\text{Sb}$. The corresponding \overline{J}_0 values of each family are also shown.

Fig. 9 - Variation of $\langle r_0^2 \rangle^{1/2}$ as a function of r. The open circles correspond to the family with $\overline{J}_0 = 260 \text{ MeV.F}^3$ and the crosses to $\overline{J}_0 = 380 \text{ MeV.F}^3$.
Table 2 - Ratio of the measured elastic cross section to the Rutherford cross section and the corresponding absolute error.
Table 2 - (Continued)
Table 3 - Potential families obtained for α particles.
<table>
<thead>
<tr>
<th>Energy (MeV)</th>
<th>Element</th>
<th>V_0 (MeV)</th>
<th>α_0 (F)</th>
<th>W_0 (MeV)</th>
<th>r_0 (F)</th>
<th>a_0 (F)</th>
<th>W_0 (MeV)</th>
<th>r_0 (F)</th>
<th>a_0 (F)</th>
<th>χ^2</th>
<th>J_0 (MeV.F3)</th>
<th>$\langle \chi^2 \rangle^{1/2}$ (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5</td>
<td>123Sb</td>
<td>83.48*</td>
<td>0.744</td>
<td>10.87</td>
<td>1.619</td>
<td>0.735</td>
<td>0.24</td>
<td>232</td>
<td>5.386</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>134.47*</td>
<td>0.686</td>
<td>13.01</td>
<td>1.561</td>
<td>0.760</td>
<td>0.24</td>
<td>367</td>
<td>5.276</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>196.24*</td>
<td>0.644</td>
<td>19.10</td>
<td>1.462</td>
<td>0.799</td>
<td>0.24</td>
<td>528</td>
<td>5.203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>233.47*</td>
<td>0.617</td>
<td>22.15</td>
<td>1.421</td>
<td>0.816</td>
<td>0.24</td>
<td>623</td>
<td>5.157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>84.51</td>
<td>0.747</td>
<td>17.21</td>
<td>1.260</td>
<td>0.809</td>
<td>0.25</td>
<td>528</td>
<td>5.203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>134.11</td>
<td>0.688</td>
<td>25.11</td>
<td>1.182</td>
<td>0.816</td>
<td>0.25</td>
<td>623</td>
<td>5.157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>194.85</td>
<td>0.630</td>
<td>26.02</td>
<td>1.108</td>
<td>0.881</td>
<td>0.25</td>
<td>623</td>
<td>5.157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>232.94</td>
<td>0.626</td>
<td>39.57</td>
<td>1.065</td>
<td>0.842</td>
<td>0.25</td>
<td>623</td>
<td>5.157</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.55</td>
<td>124Sn</td>
<td>94.02</td>
<td>0.759</td>
<td>14.22</td>
<td>1.567</td>
<td>0.683</td>
<td>0.77</td>
<td>262</td>
<td>5.412</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>184.12</td>
<td>0.673</td>
<td>21.64</td>
<td>1.476</td>
<td>0.706</td>
<td>0.76</td>
<td>499</td>
<td>5.253</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>220.72</td>
<td>0.653</td>
<td>24.78</td>
<td>1.446</td>
<td>0.714</td>
<td>0.76</td>
<td>593</td>
<td>5.218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>180.77</td>
<td>0.480</td>
<td>41.75</td>
<td>1.172</td>
<td>0.715</td>
<td>0.77</td>
<td>593</td>
<td>5.218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>124Te</td>
<td>66.45</td>
<td>0.734</td>
<td>7.53</td>
<td>1.716</td>
<td>0.762</td>
<td>0.67</td>
<td>183</td>
<td>5.364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>142.74</td>
<td>0.551</td>
<td>7.50</td>
<td>1.502</td>
<td>1.154</td>
<td>0.64</td>
<td>372</td>
<td>5.054</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>205.15</td>
<td>0.557</td>
<td>12.48</td>
<td>1.340</td>
<td>1.174</td>
<td>0.64</td>
<td>536</td>
<td>5.063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>172.02</td>
<td>0.624</td>
<td>20.03</td>
<td>1.070</td>
<td>1.002</td>
<td>0.79</td>
<td>536</td>
<td>5.063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.5</td>
<td>122Te</td>
<td>87.92</td>
<td>0.754</td>
<td>8.08</td>
<td>1.684</td>
<td>0.735</td>
<td>0.70</td>
<td>245</td>
<td>5.414</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>136.39</td>
<td>0.695</td>
<td>8.29</td>
<td>1.668</td>
<td>0.760</td>
<td>0.69</td>
<td>372</td>
<td>5.304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>198.77</td>
<td>0.660</td>
<td>11.74</td>
<td>1.568</td>
<td>0.799</td>
<td>0.69</td>
<td>536</td>
<td>5.242</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>235.30</td>
<td>0.644</td>
<td>13.39</td>
<td>1.530</td>
<td>0.816</td>
<td>0.66</td>
<td>631</td>
<td>5.214</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>146.88</td>
<td>0.567</td>
<td>12.73</td>
<td>0.481</td>
<td>1.062</td>
<td>0.58</td>
<td>631</td>
<td>5.214</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 - Potential families obtained for 3He.
<table>
<thead>
<tr>
<th>REACTION</th>
<th>E_{lab} (MeV)</th>
<th>V_o (MeV)</th>
<th>r_o (F)</th>
<th>a_o (F)</th>
<th>W_v (MeV)</th>
<th>r_v (F)</th>
<th>a_v (F)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{124}\text{Sn}(^{3}\text{He},^{3}\text{He})^{124}\text{Sn}$</td>
<td>22.35</td>
<td>184.12</td>
<td>1.2</td>
<td>0.673</td>
<td>21.54</td>
<td>1.475</td>
<td>0.706</td>
<td>0.76</td>
</tr>
<tr>
<td>$^{124}\text{Sn}(^{\alpha},^{\alpha})^{124}\text{Sn}$</td>
<td>19.5</td>
<td>185.05</td>
<td>1.2</td>
<td>0.720</td>
<td>12.87</td>
<td>1.552</td>
<td>0.666</td>
<td>0.30</td>
</tr>
<tr>
<td>$^{123}\text{Sb}(^{3}\text{He},^{3}\text{He})^{123}\text{Sb}$</td>
<td>19.5</td>
<td>134.47</td>
<td>1.2</td>
<td>0.686</td>
<td>13.01</td>
<td>1.561</td>
<td>0.760</td>
<td>0.24</td>
</tr>
<tr>
<td>$^{123}\text{Sb}(^{\alpha},^{\alpha})^{123}\text{Sb}$</td>
<td>19.95</td>
<td>176.29</td>
<td>1.2</td>
<td>0.737</td>
<td>9.39</td>
<td>1.676</td>
<td>0.506</td>
<td>1.31</td>
</tr>
<tr>
<td>$^{124}\text{Te}(^{3}\text{He},^{3}\text{He})^{124}\text{Te}$</td>
<td>19.52</td>
<td>142.74</td>
<td>1.2</td>
<td>0.551</td>
<td>7.51</td>
<td>1.502</td>
<td>1.154</td>
<td>0.64</td>
</tr>
<tr>
<td>$^{124}\text{Te}(^{\alpha},^{\alpha})^{124}\text{Te}$</td>
<td>19.3</td>
<td>178.94</td>
<td>1.2</td>
<td>0.672</td>
<td>14.24</td>
<td>1.415</td>
<td>0.892</td>
<td>0.71</td>
</tr>
<tr>
<td>$^{122}\text{Te}(^{3}\text{He},^{3}\text{He})^{122}\text{Te}$</td>
<td>19.52</td>
<td>136.39</td>
<td>1.2</td>
<td>0.695</td>
<td>8.29</td>
<td>1.663</td>
<td>0.760</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Table 5 - Best fit parameters.
REFERENCES

1. C.M. Perey and F.G. Perey, Nuclear Data Tables 10, 539 (1972).