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We perform the 'first quantization™ of the sine-Gordon TheoryWe obtain
the classical potential that describes the long distance interaction
between solitons. The ‘''first quantization™ is achieved by inserting
that potential in the Schrddinger equation. The nonrelativistic region
of the DHN spectrum is easily reproduced by using our procedure.We also
compute scattering amplitudes for non relativistic soliton ~antisoliton
and soliton-soliton scattering. W improve Faddeev's quantization rule.
That improved version leads, in the non relativistic region, to the

scattering amplitudes obtained in our approach.

Realizamos, neste trabalho, a "primeira quantizagao' da teoria sinusoi-
dal de Gordon. Obtemos, assim o potencial cldssico que descreve a
interacdo, de longo alcance, entre solitons. 0 procedimento de " pri-
meira quantizagao' é processado por insercdo do potencial classico na
equacdo de Schrddinger. A regido ndo relativistica, do espectro de Da-
shen, Hasslacher e Neveu, é facilmente reobtida fazendo-se uso de nosso
método. Calculamos, também, amplitudes de espalhamento para espalha=
mento soliton-antisoliton e soliton-soliton. Mais ainda, melhoramos a
regra de quantizagao de Fadeev. Essa nova versdo conduz, na regido néo
relativistica, as amplitudes de espalhamento obtidas utilizando nosso

método.
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1. INTRODUCTION

Recently, much attention has been drawn to semiclassical methods in
Quantum Field Theory!~®. That is the case for the WKB. approach. In
this context, we would like to mention the pioneering work of Dashen,
Hasslacher and Neveu? (DHN) which, by extending the WKB. method to
QF.T., succeeded in getting many features of the quantized sine-Gordon’
theory (SGT). Other interesting features of the quantized version of

the SGT  has been studied by other authors®~®.

Although the technique employed by DHN was an approximate one, there
exists a region in the coupling constants space (A/m?<<1) where we
would expect the method to be reliable. W will refer to that region

as the DHN region.

When applied to the SGT, the approach described in Ref.2 might allow us
to answer many questions concerning the spectrum of the theory, and
scattering of particles, without going over the intermediate step of a
"first quantization'. The 'first quantization™ or quantization a la
Schridinger , of the SGT, is what we study in this paper. This is the
kind of quantization which, as we recall, allows us to get sensible re-
sults concerning energy levels of many bound state systems - e.g., the

positronium = by using the Schr8dinger equation.

First of all, we show that, asymptotically (see below what we mean by
it), the classical interaction between a nonrelativistic soliton -anti-
soliton (SA) pair, in the S.G.T. is well described by a classical po-
tential of the form

-m|x|’

VSA(.'L‘) = -g Mce (1.1)
where |z| is the distance between soliton and the antisoliton; m, the
mass of the elementary meson, whereas Mc is the classical soliton mass;

and g, a dimensionless constant of order of magnitude one.

When we mentioned that the potential description works asymptotically ,
we meant that expression (1.1) describes the classical interaction bet-

ween SA pairs, whenever
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lz] >> 1/m (1.2a)

or
t] >> 1/m v, (1.2b)

v_ being the modulus of the interacting soliton velocity for much
earlier and later times (¢t + % ®). Ve say that we have the nonrelati-
vistic domain of a given process when vf << 1, for all particles invol-

ved (U: stands for the asymptotic velocity of the i-th particie).

It can be verified that the soliton-soliton (SS) potential Vss(x) is,in

the Asymptotic Region, given by
Vg (#) = = Vg, lx). (1.3)

Such a property confirms what one would expect from an intuitive rea-

soning.

The classical ‘'size" of the soliton is of the order (1/m). Then, in the
Asymptotic Region, we can consider the soliton as a point- like parti-
cle. W point out that a similar approximation is also employed in the
treatment of the Hydrogen Atom by a Coulomb potential, where we consi-
der the proton as point-like. W justify this by arguing that the pro-

ton radius is much smaller than the Bohr radius.

It is known? that, in the DHN Region, the meson, of mass m has a
twofold role: it is the fundamental meson of SGIT and the lower bound
state of the SA system, as well. W note that the potential given by
(1-1) is a one-dimensional Yukawa potential associated with that rneson.
In this way, we conclude that this parti'cle becomes the one which me-

diates the interaction between solitons at large distances.

Once we have established that the classical interaction between soli-
tons is deterrnined, in the Asymptotic Region, by potential (1.1), we
proceed to the non relativistic quantization. That quantization amounts
to inserting the potential into the Schrddinger Equation. Fortunately,

the Schrldinger equation, for the potential (1.1), is soluble, and as a
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consequence it is straightforward to get the binding energies, and

scattering amplitudes, of the SA and SS systems.

Before proceeding, we would like to discuss the conditions under which
we shall expect the method employed here to be a reliable one. Conser-
ning the non relativistic approximation, we feel tempted to say that

this approach is valid whenever

|E|<< M, (1.4a)

and

[Vie)| << M, (1.4b)

where E is the energy of the state under consideration.Condition (1.kb)
seems to be much too strong. If it were always necessary, we would not
be able to understand the successful nonrelativistic description of
the Hidrogen Atom. That is why we will addopt a weaker and more prag-

matic condition

[<v@)>] << M. (1.5)

Another aspect of our approach which we would like to comment about re-
fers to taking only the long range tail of the potential. As is well
known, states corresponding to large wave lengths are not sensitive to
the behavior of the potential at short distances. Such a wavelength
can be obtained once we know the wave function of each state. Then, by
computing the wave function, the energy and <V>, we will be able to
check a posteriori the validity of the simplifications introduced in

our scheme.

After elucidating these points, we will also understand in which region,
in the DN spectrum, we should look in order to compare with our re-
sults. That region will be the nonrelativistic limit of the DN region.
As expected, we achieved, in this part of the spectrum, a perfect agre-

ement.

With regard to the scattering region, our results differs from those
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obtained by Jackiw and Woo®. One reason for such a discrepancy is that
the approach used by those authors does not work in the neighborhood of
the threshold, which is just the nonrelativistic region where our me-

thod is reliable.

Still concerning the scattering of solitons, we would like to mention
that Faddeev's® rule for “'quantizing' the S-matrix exhibits a small
flaw. The S-matrix obtained by that procedure does not discriminate
between even and odd parity states. In spite of that, such a rule can
be improved in order to take into account parity. The scattering
lengths, obtained by such an improved version, agree with the ones com-

puted by us, in the DHN region.

This paper is organized as follows: the classical SGT is presented in
Section 2, whereas some of the DHN results are presented in Section 3.
In Section 4, we obtain the asymptotic potential. Section 5 is devoted
to the calculation of bound state energies and scattering amplitudes .
W conclude this paper with a section reserved to conclusions, and two

appendices which complement some parts of the text.

2. CLASSICAL SINE-GORDON THEORY

V¢ shall present in this Section a summary of the classical SGT7. This

two dimensional model is described by a Lagrangian density

/2
< 1@z - @yel, m' [ 0s A y) -
Lat) =5 [@D7 - @2fs Tleos@Z0) - 1] (2.1)
By minimizing the action corresponding to (2.1}, we obtain the sine-

=Gordon Equation

2 3 1/2
- 50+ Bpsin A w) =0 (2.2)

3 2
(552

From (2.1) and (2.2), onecan easil\j see that, when A=0, the SGT is a
field theory of a free scalar meson of mass m
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Before presenting the solutions of (2.2), relevant for our considera-
tions, in this paper, it is convenient to change the variables x and t

into dimensioneless ones. That can be achieved by defining

x' = m s
tl =m t_, (2-3)
and
xx/z
o' (z',t") =———¢(x t) . (2.4)

Now we proceed exhibiting some solutions of (2.2). A whole set of so-
lutions can be obtained by making use of the " Backlund Transforma-
tion" :*|. The procedure works as follows: suppose § is a solution of
the sine-Gordon equation written in terms of light cone variables o =
{(x'+£')/2 and p = (x'-t')/2. Then, another solution ¥, can be generated

by plugging ¥, into the "Backlund Transformation"

% %5 (W1=¥o) =asin%+w°',
(2.5)
% %5 (14Po) = = sin ¥i7vo

2

The ''vacuum' yo=0 is an obvious solution of (2.2). From it, the proce-

dure sketched above leads to the socalled soliton solution:

¢'u(x’ t')= 4 tan-]exp z! = ut! (2.6)
S 3 a - u2)172 ?
where u stands for the soliton velocity. 1In Fig. (i.a), we sketch the

function that represents the soliton. Other solutions, on which we will
be interested, are the ones corresponding to the two soliton scattering.

They can be generated by making ¢, = ¢z§ . & shall get

=1sinh{ut’/(1 - u2)1/2} . (2.7
u coshiz'/(1-u 2)1/2}

bos (x',t")= 4 ta
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V¢ note that (2.7) describes the SS scattering in the frame of the
center of mass of the pair, and » is the wmodulus of the velocity of
each particle, when ]t|—>°° . The solution corresponding to SA  scatte-

ring is

" .| % sinh{x/(1-42)H2}
¢SA (x',t')= 4 tan (2.8)

cosh{u t'/(l-uz)llz}

W shall also mention the ‘''Breather' solutions. The simplest of thern i's
the doublet one, which can be obtained from (2-8) by making the substi-
tution u 1 V. The solutions so obtained correspond to an SA bound

state.

An interesting feature exhibited by these classical solutions is that
they describe extended objects. That property can be verified by look=
ing at the energy density of some solutions. Following the usual clas-
sical treatment, we can associate, to each solution ¢a, an energy den-
sity given by
8¢a ,

Hy = 7 - L (9,). (2.9)

The soliton, for instance, is a block of energy which moves with velo-

city u, without deformation {see Fig. (1.b)).The total soliton energy,

in its rest frame, will be

M o= 2T (2.10)

which is interpreted as the classical mass of the soliton.

For a free soliton, we can determine position and velocity of its cen~
ter of mass. No uncertainty at all arises from simultaneous measure~
ments of physical quantities (as expected from a classical description] .
The ' first quantization', which is performed in Section 5 should

implement the uncertainty principle.
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3. THE DHN TREATMENT

Quantum corrections to a classical theory can be obtained, within
Feynrnan's Path Integral frarnework, by expanding the action functional
around classical solutions. In particular, when we take into account
fluctuations up to quadratic terms, that procedure is equivalent to the

usual W.K.B. approach 1°2,

Dashen et al.? succeeded in applying the WKB. rnethod to the SGT. Ve

would like to exhibit some of their results.

The quantum correction to the soliton mass (represented, from now on,

as M) is the following one:

8m®

= -7 =2 .
M=y -Z+00) =50 +0()
(3.1
= §§-+ oty) ,

where Mc is the classical soliton mass, and vy is given by

A/m?
Y =—— (3.2)
1 = (A/8mm?)
The spectrum of bound states of the SA system, that was obtained from a
kind of '"Bohr-Sommerfeld quantization rule' 2, is
16m . my
E_ = — sin{=- (3.3)
¥ Y (16) ’

where n = 1, 2,...< _871\7_ . The region defined by

Lz%:%<<], {3.4)
m?
we shall refer to as the DHN Region. In there, we should expect DOHN

results to be reliable. From now on, we shall assume that the parame-

ters of the theory satisfy condition (3.4). From (3.3) and (3.4), we

98



can see that the lowest bound state energy is 2°¢
Ey =m, (3.5)

i.e., the meson of mass m is simultaneously the 'elementary particle™
of the theory, as well as the lower bound state of the SA system.

It will be convenient, for our purposes, to make an inverse ordering

of the energy levels, i.e., to start ordering from the one at the top
of the spectrum (3.3). That can be achieved in a very simple way. if
Nmax is the total number of bound states, there exists an e satisfying
0<ec<t, {3.6)
such that
m
(Nmax+ €)= i ™. (3.7)

Now we define, p, in the following way:

p=nN_ - "N. (3.8)
Then, if we obtain » in terms of p and ¢ (by means of (3.7) and (3.8)),
after substituting it into (3.3), we get the following dependence, of

the total energy, on p:

Egr;otalg M cos '}%(Hp)} . (3.9)

Now, by inspection of (3.9), we see that, by varying p, we have an or-
dering from the top of the spectrum to the bottom, or, in other words,
p=0 corresponds to the highest binding energy, p=1 is the one just
below, and so on. In the DHN Region, we can, for p small enough, p<<(%l),

expand the right hand side of (3.9), obtaining

2
Hotal = 2i - To(p+e)? . (3.10)



Expression {3.10) is a very convenient one in order to compare with
some of our results. The range of values of p, for which (3.10) is a
good approximation for the spectrum, corresponds to the non relativis-

tic domain.

4. THE POTENTIAL

In this Section, we shall study some aspects of the Soliton-Antisoliton
classical interaction. We will compute the potential, VSA(x), whic h
describes the asymptotic dynamics of the SA system for non relativis-
tic processes. The VSS(x) potential, corresponding to the interaction
between two solitons, can be computed by an analogous procedure but the
calculations will not be presented here. W would like to report our

finding which is expressed by (1.3).

W shall search for classical solutions, of the sine-Gordon equation ,
describing non relativistic SA scattering. In order to fix our conven=
tions, we shall assume that the soliton is moving in the positive di-
rection of the coordinate axis, and that the origin of the coordinate

frame coincides with the position of the center of mass of the SA pair

(see Fig.2).

The problem of determining the asymptotic potential can be solved if we
know the velocity v of the center of mass of the soliton, in the asymp-

totic region. The argument goes as follows: we can always write
v=ov o+ Ay, (&.1)

and obviously, in the asymptotic region, Av is only a small correction
to v_. On the other hand, energy conservation implies

2 _ 2
Ml = Mc(voo AT, Ty - (4.2)
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Fig. 1.(a) Free soliton; (b) Energy density associated to it. yo is
inflection point (which, here, is the center of mass); ¥ and Y2

the points where the third derivative vanishes.
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Fig.2. (a) Soliton-antisoliton pair interacting in the asymptotic

re-

gion; (b) Energy density associated to them. * Yo are the inflection

points, %y, and ty, are the points where the third derivative vanishes;

iycm are tipical candidates to centers of mass of each particle.



From what has been said above, we conclude that, for Ix!>>1/m, the po-

tential is

Veple) = = 2 M v . bv . (4.3)

Expression (4.3) indicates how the knowledge of the asymptotic velocity
leads to the asymptotic potential. With regard to that, we would like
to make some comments. Although the position and velocity of the cen-
ter of mass, of the free soliton, can be determined accurately,the same
is not true when interacting. For example,when the separation distance
|z|, between two solitons, is of the order of magnitude of the soliton
size, i.e., |x| ~ 1/m, the two particles form a single block of energy,
in such a way that it becomes impossible to say where is located the
center of mass of each of them. Each particle loses, therefore, its

identity.

n the other hand, if |xz| is large enough (when t>>1/mv_), we shall
observe two distinct blocks of energy - each of them representing a
quasi-free particle (see Fig.2). Under these circumstances, we can de-
termine, within a very good degree of accuracy, the position of the
center of mass of each particle, and, therefore, to determine also its
velocity. It is precisely for those values of J#] that we calculate the

potential.

A brief analysis of some features which characterize the free soliton ,
will shed some tight on how to proceed in order to get information con-
cerning the positions and velocities of the quasi-free solitons. Figure
(1.a) represents a solution, ¢(x,%t), corresponding to a free soliton
moving with velocity v. We shall be very much interested in three
points of the soliton which somehow characterizes its position. These
points labeled as y,, ¥, and y, are defined as solutions to the equa-

tions

32
— ¢ly,t) =0, (4.4)
at? ¥ = Yo
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and

33 33
— o(y,t) =0="— ¢(y,t) . (4.5)
at® y=y at? ¥=y2

Fig. (1.b) exhibits the behavior of the energy density associated with
the soliton. By comparison of Figs. (1.a) and (I.b), we conclude that
yo (the inflection point) gives the position of the center of mass ,
while, loosely speaking, we can say that the soliton extends from y; to

W shall note that, in the case of a free soliton, all its points

Yy
move with the same speed, V.

In Fig.2, we represent an interacting SA pair, in the asymptotic region.
From a close observation of that Figure, we can see that, when |xl>>1/m,
the center of mass Yem of the quasi-free soliton is somewhere _between
y; and y,, and, more specifically, close to the inflection point yq ,
Ref.8. From that, we should have

VY, , : (4.6-a)

and
vy SV SV, - (4.6~Db)

where v is the velocity of the center of mass of the soliton, and v, ,
v; and v, the velocities of the points y4, ¥: and y2 , respectively .

The asymptotic velocities, namely, vy, v; and v, are computed in Appen-

dix I. The results we obtain are:
- ~4ym|
vo=”w+%e2m!y°l+0 (e my"l), (k.7-a)
v, =y, + .(_3_"%1/_2_)_ e'2m|y1| +0 (e-hm|y1!)’ (4.7-b)
and
Vo, = © +-(_3—-:—2ﬂ e-zmlyzl +0 (e-hmeZI) . . : ("’-7'C)
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From expressions (4.6) and {4.7), we conclude that the velocity of the
center of mass, of the soliton, in the asymptotic region,can be written

under the form

v+ 59-— e—m|x|, (4.8)
where
g ~ 1 ] (“-9)

and we recall that |x|, in (4.8), is the distance between the centers

of mass of soliton and antisoliton, i.e., |x| =2 Yem:

By comparing (4.8) and (%.1), we infer that

b= L gl . (4.10)

o0

After substituting (4.10) into (4.3), we are led to the V¢, ()  poten-

tial. It can be written under the form:

Vea@) = -2g 1 1%L (5.11)

This potential is responsible for the SA interaction, at long distan~

ces.

We shall add here that the relevant features, of the nonrelativistic

bound state spectrum, is by no means dependent upon a specific value of

g.
5. PHASE SHIFT AND ENERGY LEVELS

The quantization of the soliton-antisoliton system will be performed in
this Section. As previously explained, that procedure is implemented,
in our approach, by substituting the potential (4.11), in the Schridin-

ger equation

L)+ 2 ey (@)= -2 v (), (5.1)
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where wE(x) is the wave function describing a stationary state of ener-

gy E.

Our primary goal will be to compute the S-matrix elements associated
with the potential (4.11). From S(E), we shall compute the scattering
amplitudes, whereas, by looking at the positions of its poles, the bound

state energies will be determined.

Since the potential (4.11) is symmetric under the transformation x + -x,
thereexist solutions of equation (5.1) withwell defined parity. This
means that, for a given energy E, we shall have an "'even'' matrix element
Seven(E), and an "odd'' one, SOdd(

totic behavior (z » + =) of the wave functions:

E)}. which are obtained from the asymp-

ipeven(m) N e—ikx + Seven(E). eikx,
xr > «©
(5.2-a)
weven(x) - eikx + Seven(E). e—ikx,
x > =
and
294 () i ootkw _ godd - tkr
] . (5.2.b)
\bOdd (x) . z -w_e_'bkm + Sodd (E). e-th s

where k is the magnitude of momentum of each particle, in the center-of-

-mass reference frame.

The SA forward scattering amplitude is

even

M (E) = 3 s & + 2% -1 (5.3)

W note that this is an invariant amplitude that can be analytically

continued to the SS channel “.

The SA backward scattering amplitude is given by
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even
m, () = = [‘9 (E)—SOdd(E)‘t. (5.4)

Denoting by SV(E) a generic matrix element, we define the. phase shift

GU(E) as

5 () = ‘_ a0 S (B) (5.5)

v 27

while the scattering lengths a,, are defined by the limit

- 1i 1 -
a, = kl:no+ . [Gv(k) 5\)(0)} . (5.6)

For the discussion which will follow, we found convenient to define a

function B8(E) as

8(®) =2 (-uE) V2, (5.7)
m
and a constant A by
A = (8g) Y2 e (5.8)
m

The meaning of all constants which appear in (5.7) and (5.8) can be un-

derstood by taking notice of (5.1).

In Appendix Il, we show that the matrix elements S\)(E) are given by
J!,(4) T(1-8) 2B
Ve E) = - B —— 7, (5.9-a)
J'g4) T(1+8)
e (a) 1(1-8)
J_p{4) T(1-8 28 -
P - B 7 (é) , (5.9-b)

Iq (4) T(1+8)

where JB is the Bessel function of order 8, and JB stands for its deri=~

vative.
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In order to obtain the bound state energies, we will study the behavior

of S(E) for E < 0. In that region, B(E) can be represented as °

B(E) [z, o(B) = 2 (u|E])V2 . (5.10)

From (5.9) and (5.10), we conclude that the binding energies will be
given by the positions of the zeros of JO'L(A) and Ju(A) . Since, in the
DHN Region, A >> 1 (because there (M/m)>>1), we can make the following

approximation:

Jra) = (%)stine(/l,a) (5.11-a)
and
g, (4) = ’(%ZZ) V2 cos8(4,0) , (5.11-b)
where 6(4,a) is defined as
0l4,0) ma - -1, (5.12)
2 4

From (5.9) and (5.11), we can see that the positions of the poles of

even ), odd

s or § (g), are approximately given by the positions of the

zeros of sinB, or cosB, respectively.

W can always write

A=T(w+n+d, (5.13)
2 2

where N is, by choice, an integer, and
0<n<1 (5.14)

By using (5.13) and (5.14), it is easy to see that, in the DHN Region,
the binding energy spectrum will be given by

2
E =

o T Pt (5.15)
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where p is an integer such that, if N is even (odd) the levels cor-

responding to p = 0, 2, 4... will have even (odd) wave functions, and
the levels corresponding top =1, 3, 5. . will have odd (even) wave
functions.

By comparing (5.15) with (3.10), and identifying n with E, (see also
(5.14) and (3.6)), we verify that, in the nonrelativistic limit of the

DHN Region, our spectrum coincides with that of DHN.

It can be explicitly verified that our results obey the criteria for
the validity of our approximations [Cf.(1.4—a) and (1.5)].

In the scattering region (E>0), R{(Z) will be a pure imaginary nurnber ,
ie °
B(E) = - ir , (5.16)
where
r=-§(1\lE’)1/2 =—2-ZE (3.17)
m m
The S-matrix elements are
even Jér(A) I (1+ir) A -2ir
s E) =" —————— (5) . (5.18-a)

g (AT (1-42)

and
J. {4) T{(14ir) .
Oy o T T a2 (5.18-b)
J_p, (AT (1~2r) 2

By using (5.5) and (5.6), it is straightforward to compute phase shifts

and scattering lengths. in the SA channel, we obtain
M_ /2
even __2 My T c -
agp == [ln(m)+ L'cotg n + 2n(2g M—) + y} (5.19-a)
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M o2 ]
odd _ _ 2 My _ T c R
ag, =" = ,Qn(m) p tg n + 9“”(29_1!7) + YJ} s (5.19-b)
where v is Euler's constant.
In an analogous way, we can compute the SS scattering lengths. If the

solitons are fermions, as suggested in the literature, Refs.2, 5, 6, 12,
Pauli's exclusion principle will imply that we need to take into account
only states described by odd wave functions. Then, the SS scattering
length will be

agcsjd = %[ﬂn(%)«‘ n(2g g?-f/i Yj! . (5.20)
In the introduction, we have mentioned that Faddeev's® rule for 'quan-
tizing" the S-matrix !° exhibits a little flaw. W will, now, clarify
this point. It is known that parity is, tipically, a quantum concept,
and, as a consequence, the classical S-matrix 10 does not discriminates
between even and odd parity states. The flaw of Faddeev's rule lies in
the fact that it extends this *blindness for parity" to the quantum

S-matrix. Fortunately, it is not difficult to remedy this problem. Re-

calling that the parity, of the wave function of the n-th, (Ref.11), SA

bound state, is given by (-1)””, we can split Faddeev's quantum S-ma-
trix into two parts: and Seven’ that contains the poles of the even
parity bound states, and an SOdd that contains the other set of poles .

Faddeev's quantum S-matrix can be written in the following form!?

s = Q (5.21)
where Qn is the factor which contains the pole of the n-th bound state.
Note that, in the scattering regions, each Qn is per se .explicitly

unitary. The above rnentioned splitting consists in defining

Seven&= H] 9, (5.22-a)
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and N
odd I
= =2 Qn . (5-22-b)
even

One observes that the improved quantization rule leads to unitary S=ma-
trix elements, whereas the spectrum remains the same as that of Ref.5.
It also leads to scattering amplitudes which agree with those obtained
by us in the nonrelativistic limit of the DN Region.[Note that, in the

DHN Region, &n(g ]ﬂéli) and y can be neglected when compared with SLn(M/m)].

6. CONCLUSION

By using a quite different approach from that employed by DHN, we suc-
ceeded in giving a nonrelativistic quantum treatment to soliton inte-
ractions, within the sine-Gordon Theory. Our method is essentially the
wellknown nonrelativistic quantum mechanical approach. In order to do
this, we had to compute, first, the potential which is responsible for
the interactions between solitons. After that, we studied the nonrela-
tivistic motion by substituting the potential into the Schr8dinger
equation. In this way, we were able to compute the soliton-antisoliton
bound states, reproducing part of the DHN spectrum, and the SA  and SS

scattering amplitudes in the nonrelativistic region.

Coleman'? has shown that the sine-Gordon Theory is equivalent to the
massive Thirring Model, strongly suggesting that the soliton is the
fermion of this model. On the other hand, it is wellknown that the

massive Thirring Model is equivalent to the two-dimensional massive

Vector Gluon Model, in the limit
y e T ®, (6.1)

whith e/u=g fixed,
where 1 is the mass of the Vector Gluon, and e is the Fermion = Vector
Gluon Coupling constant. From that equivalence, we should naively ex-

pect the fermion-fermion interaction potential be given by!3
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Vi) = :J;"j [gue'“'””I ] = 2g §(x), (6.2)

where gy exp(-ujx|), in (6.2), is the Yukawa potential associated with

the Vector Gluon.

The naive argument, presented just above cannot, of course, be true
because the correct SS potential, given by (4.11), is rather different
from (6.2). W conclude with the remark that, here, the dynamics exhi-
bits a very interesting feature, namely, the fact that the lighest
fermion-antifermion bound state happens to be the one responsible for

the interaction between fermions, at long distances.

APPENDIX |

W compute here the asymptotic velocities v In the nonrelativistic
domain, (vfo << 1), the SA solution can be approximated by the expres-

sion:

-k =1/sinh(ve mt)
¢SA(y,t) —y tan [m:l . (A1)

The positions of the inflection points yo(t) and -yo(t) are defined

implicitly as solutions of (4.4). By solving (4.4), we conclude that

- 2 1/2
cosh(myo) = f(£)|1 + =0 5 (A.2)

where
F() = 2= sinh(vgnt) . (A.3)

On the other hand, the third derivative of ¢SA vanishes at the origin
and at the points which we call y,(-y,) and y,{(-y2).Then y;( t) and
yz(t) are the solutions of equations (4.5). After plugging, into

11



(.5), ¢SA(y,t), given by (A.1), we will get

" 1/% 1/2
cosh{my,) = f(¢) [3—2/7(l+ ]%24' -8—2"“‘_) | s (A.4-a)
and
- T11/2
2 9 1/2 e
cosh(my,) = f(t)(3+2/2(1+ = + o ) (A.4=b)
o 8f

where £(t) was defined in (A.3). When t3>1/mv_, we shall have (remem-

2

ber that »° << 1)
o«

v_mt _
1 - &2, (e L’”oo’”t;l, (4.5)

a.
cosh(myi) =t
2v
@

where the coefficients a, are given by

a, =1, (A.6-a)
a, = (3 - 2/2)¥/2, (A.6-b)
a, = (3 + 2/3) 1/ . (A.6.¢)

From (A.5), we conclude that the asymptotic velocities vi of each point

y, will be given by equations (4.7).

APPENDIX Il

In this Appendix, we shall solve Schrdinger equation (5.1). Since 8
and A are given by expressions (5.7) and (5.8), respectively,that equa-

tion can be written as

2 2 _ 2
_]_ é__w +Le m‘xlw =§-\P. (A.7)
m? dx? I 4

12



We change the variable:

_m
E =4 e _2_|£L’| (A8)
In terms of 5, Eq. (A.7) becomes
2
52—y +gdy 4 (g2-p2)y = 0. (A.9)
de? d

Equation (A.9) can be easily recognized as the Bessel Equation.The even

solutions (even under the change x + -z) are given by
even _ , e _
Vg = C|:J_B(A) JB(E) JB(A)J-B(E)J , (A. 10-a)

where ‘]p is the Bessel function of order p , Jp its derivative, and C a

constant. The odd solutions can be written, for x > 0, as

odd

Vg

- ' - -
-¢c [J_B(A) 74 (8)-7, ) J-B(E)J , (A 10-b)
Since, in the limit X » «, § goes to zero, we can make use, in this |li=

mit, of the following approximation for Bessel functions!":

g ~ —— dge. (A 11)

O g0 T(14p) 2

From (A.10) and (A.11), it follows that, when x =+ %, we have

J!I(4) Bmx ‘ J! (4) -g mx
wgven . B (é)-B e 3 - _"B__(%)S 682_ s (A.12-a)
o [T(1-8) 2 T (148)
and
g, (4) J_,(4) -Bmx
q;gdd « 1| B8 Br;—x - B AR, (A. 12-b)
S |T(1-8) 2 r(1+g) 2
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Recalling that, in the scattering region, B(E) is represented by (5.16),
and taking in account our definitions (5.2), we can deduce (5.9) simply

by suitably adjusting C and C'.
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