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An improvement in the demonstration of a lower bound for rising bosonic

trajectories is presented.

Aperfeicoa-se a demonstracdo de un limite inferior para trajetdrias bo-

sonicas crescentes.

1 The physics of strong interactions speaks the language of analytic
functions. It is not a matter of using complex variables as a trick
just to recover real variables at the end of the calculations: in
strong interaction physics the singularities of the amplitudes that
are located at finite points have'a direct physical interpretation. in
order to get definite results, one needs still information about the
behaviour of the amplitudes at infinity, that is, about the eventual
singularities at the point at infinity. These are connected to the
short-distance behaviour of the interactions, that is, to the unknown
structure of the “elementary" particles. The trend has been to make
hypotheses about the asymptotic behaviour, in energy,of tlie amplitudes.
The weaker, the better. Recent studies of short-distance behaviour in

guantum field theories® may be important in this connection.
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In some limited domains of hadron physics, simple, and, hopefully, ge-
neral results concerning singularities at infinity have been found

among them the asymptotic behaviour of a rising bosonic Regge trajecto-
ryz. The problem is important, though the interest in Regge pole theory
seems to be dwindling these days - a Regge trajectory, describing the
rotational excitation spectrum of hadrons, speaks about their very

structure, something that cannot be old-fashioned.

The possible asymptotic behaviours of rising Regge trajectories of the
bosonic type can be found in a reasonably clean way®. At the moment,
these results interest mainly people working on dual models®, but inso-
far as predictions are made for the decay of very heavy bosons, less

formal applications can be devised.

In a recent paper, Trushevsky® makes a detailed analysis of the problem
and presents sound criticism to some previous papers. W intend here

to follow his lead into putting the main results on a safer basis.

In Section 2, our approach to the problem is reviewed, together and in
comparison with Trushevsky's. In Section 3, we present our main result:
a proof of a lower bound that is simpler and avoids most criticisms .

Trushevsky's ideas are reviewed in the Appendix.
2. To summarize our results, let us write the Regge trajectory as
als) = - 4(-8)° . (1)
It is then possible to show that
(1/2) <e <1, (2)

the extreme values being allowed provided we include logarithmic fac-
tors in (1), Ref. 6. The proof assumes that a(s) is a real analytic
function with a branch point at some positive s,, that Ima(s) >0 for
g>s, and that the width I'{s) of the resonances interpolated by the

trajectories is given by
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I'(s) = Imoals) .4
51/ 2Re o' (s)

, (3)
the prime indicating differentiation with respect to s, Ref.7. Expres=-
sion (3) is used only to get the lower bound at (2); there is no need

of it to get the upper bound.

Trushevsky® made an important progress along these lines, replacing a
somewhat formal step of our proof by a physical consideration. For the
reader's convenience, Trushevsky's paper being not yet published, we
reproduce its relevant parts in the Appendix. He derives a different

expression for the width:

=2 tanF— (l - l):l, (4)
2 ¢

S i

(cf. the Appendix),

which follows from analyticity and the explicit time dependence of the
wave function of an unstable state. Here M is the mass of the resonan-
ce. Both expressions (3) and (4) tend to the same limit E >~ 1,but they
are otherwise different. Expression (3) depends strongly on the reso-
nance being narrow, whereas, for expression (4) this requirement is
only necessary insofar as the position of the resonance must be somehow
identifiable. As a consequence, expression (3) should only be used
for e near 1 (T/M small), while, Trushevsky claims, expression (4), can
be used for any E. In our papers, (3) is used, as mentioned above, only
to get the lower bound at (2), so that the criticism of Trushevsky
(concerning the use of (3) for e far from 1) does not affect our proof
of the upper bound; as for the lower bound, we concede that we offered

no rigorous a proof.

Trushevsky gets the lower bound imposing the condition that ¥ 2 0. Con-
sider, however, his expression (4). As E > (1/2}, we have I'/M +

the mass is totally undefined, and so its positiveness has no clear
meaning. In fact, the very concept of resonance has no meaning in this

limit.
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3. In order to prove the lower bound at (2), for rising trajectories ,
without the wuse of quantities related to resonances we proceed as
follows: assume a(s) to be real analytic on the s-plane, except for the
cut starting at s, not to grow, at infinity, as fast as an exponential,
and to be such that

lim ale)

§r= (_s)e = —A ) (5)

Then, using the Phragmén-Lindel8f® theorem, the limit at (5) is the sa-

me along every direction, and in particular,

Re als) ~ =4 cos (m g)s®, (6)
Femad

ima(s) ~ 4 sin (me)s® . (7)
8

It is by requiring Im o(s) to be positjve (a consequence of unitarity )

that we get E < 1.

Now, if the trajectory is rising, that is, if Rea(s) is a monotonic
increasing function of s, as s grows along the real axis, and if at
least one resonance seats on the trajectory, (so that we can say that,
for some real value of the variable, Rea{s)>0), we must have Rea(s) po-

sitive in (6). Combining both positivities it follows that
- tan(e ©) > 0,

wherefrom the condition > 1/2 follows.

Some comments are in order. First, one could think that the hypothesis
that, at least one resonance seats on the trajectory, makesthe result
less general than the previous ones. As a matter of fact, this hi-
pothesis was implicit in the previous treatment, as the positivity of
the mass or of the width of a resonance, on the trajectory, was requi-
red. Second, rising trajectories are'suggested by dual modelsg, and by
constructions such as Van Hove's model“’, so that this restriction,

though strong, is not ad hoc.
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APPENDIX

This is a brief summary of the parts of Trushevsky's work that are re-

levant to us. He writes the trajectory as

als) = - 4(-8)%, (A1)
and , calling ¢ the argument of s, is led to

a(s) = Als|E exp 7 [m-(m-9)e] , . (A2)

the argument ¢ being zero at the upper edge of the cut. The trajectory
can take positive integral values along the ray defined by the condi-
tion

m=- (m¢) e=0, (A3)
that is, at

o =7 (1-1/¢). (Al)
The requirement that this ray be on the second sheet leads to E < 1 .
Consider now a resonance located on the trajectory. The time depen-
dente of its wave function is

Y(t) v exp~i[M-(I/2)]t. (A5)

It is natural to impose the condition #>0. From (A4), we have

N e

=2 (1-2),
2

/2

and this is the argument of s''2 = ¥=2(T/2). Hence, ¥>0 implies

$/2 >-m/2, i.e.,
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Also, from (A4) and (A5), it follows that
o]
— = (— =1
F/M—Ztan[z(a )],

I' being, of course, the width of the resonance.
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