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Calculation of Magnetic Hyperfine Constants: Integration Method
for the Dipolar Term*
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The Gauss-Legendre nmethod of integration is applied to calculate the
hyperfine magnetic dipolar termfor the F; mol ecul e-ion. The difficul-
ties appearing in the numerical calculations and the proper manner of
avoid them are discussed in detail.

Aplica-se o método de Gauss-Legendre ao célculo do terno de estrutura
hi perfina dipolar magnética, para o caso do ion nolecular Fz . Discu-
temse em detal he as dificul dades que surgem nos cdl cul os nunéricos ,
assimconp maneira de evita-|Ias.

1. INTRODUCTION

The basic understanding for any phenonenol ogi cal calculation of Vk and
H centers in ionic crystals is intrinsically related to the F; molecu-
le-ion, as indicated by Electron Spin Resonance (ESR) neasurements of

7 tensors and hyperfine parameters for these defects!™®.
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The idea underlying this type of calculation is to use the F2 molecu-
le-ion as the basic model for a Vk or an H center, and then try to re-
produce magnetic hyperfine tensors determined by ESR measurements, and
Electron Nuclear Double Resonance (ENDOR). This kind of calculation
furnishes a better description of the defect as a whole, allowing the
determination of approximate values for relaxations of the ions neigh=
boring the central molecule, and suggesting possible improvements for
the electronic description of the center, as well. Furthermore, these
phenomenological calculations can be most relevant when one is inte-

rested in proposing an ab ¢nitZo formulation for the problem.

Because of the specific form of the dipole-dipole interaction operator,
it is wellknown that a certain care must be taken when numerically
evaluating the dipolar constants. 1In the present paper, we intend to
describe in detail the method which we deemed convenient in handling
these calculations, discussing also the difficulties and the proper
manner to bypass them. The rnain reason in presenting a complete dis=~
cussion of the method is that is has been successfully employed in a

827, To better understand

number of papers concerning defects in solids
these calculations, we apply them to the simplest case, which is the

evaluation of the dipolar hyperfine constant for the F2 molecule-ion.

The monoelectronic wave functions for the F2 molecule-ion have been
calculated by Gilbert and Wah1® who made use of appropriate linear
combinations of Slater type functions, centered on the nuclei, within
a Restricted Hartree-Fock LCAO-MO scheme. in such a scheme, the only
wave function of interest in describing the magnetic properties of the
molecule-ion is the one associated with the unpaired electron, that is
BGu. Such wave functions were obtained for several values of the in-
ternuclear distance R, and, therefore, by varying R, we are able to

fit the calculated results with the experimental ones.

2. METHOD OF CALCULATIONS AND RESULTS

In order to calculate, for the F; molecule-ion, the magnetic hyperfine

dipolar constant, one has to compute an integral of the form:
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corresponding to the dipolar interaction of the unpaired electron with
the magnetic moment of one of the two equivalent nuclei of the molecu-
le-ion. In Eq.1, ¥ is the position vector of the electron with res-
pect to the nucleus for which the calculation is performed, and k is a
conveniently defined constant. The integral is evaluated using the
coordinate axes defined in Fig.1, where V; and V2 are the molecule-ion
nuclei, and R the internuclear distance. The 3Ou axial symmetry makes
it convenient the use of cylindrical coordinates (cf.Fig.1), and then
the ¢ integration can be performed at once.

Since the 3Ou wave function is given in analytical form, the Gauss-lLe-
9 . . . .

gendre method can be conveniently used for numerical integration. One

of the advantages of using this procedure is the eventual saving. of

computer memory.

After integrating over ¢, we calculate the following integral:
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where (cf.Fig.1), (p?+2%) 2= »r.in the integrand, we have a term

which varies as the inverse of a length square, and, therefore, depen-
ding on the form f{z,p)}, there could exist a numerical pole that might
be a source of difficulties. The integral in Eq2 is evaluated by

writing
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Fig.1 - Coordinate system used in the calculation. V; and V, are the
nuclei of F;.
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Fig.2 - Plot of 3ou as a function of 2 for p=0 and R = 2.68 a.u..
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pn : ith root of Legendre polynomial of order n,

2 - jth root of Legendre polynomial of order n, and

o,

WZ : weight associated with the octh root.

Let us now discuss a problem which appeared in the calculation . It is
clear that the integrand depends on the position of the roots which ,
in turns, is dependent on the limits of integration, and or the order
of the Legendre polynomial. tt should also be noticedthat rhese roots
are concentrated near the limits of integration. From Fig.2, we see
that the behavior of 30u near the origin, together with the numerical
singularity, requires a detailed description of the integrand near

this region.

Of course, the first attempt to perform this integration, for diffe-
rent values of R, would be to vary the order of the Legendre polynomi=
als, and to check the convergence of the results. As is clearly shown
in Fig.3 (full lines), the convergence is quite poor. in a certain
way this result could be expected by the reasons put forward above. In
order to obtain results which are independent of the order of the po-
lynomials, and of the limits of integration, as well, it is necessary
to divide the interval of integration in subregions so that the roots
are concentrated near the origin. Figure 3 (broken line) also shows
the results of this procedure: we have made two series of calculations
using polynomials of orders 48 and 96, for each subregion. Four sub-
regions were sufficient to assure convergence. W would like to com-
ment that this result can be obtained using polynomials of order smal~
ler than 48. 1t is worthwhile noticing that the subdivision scheme, ta-
king the origin as one of the limits, automatically excludes the pro-
blem that may arise from the existence of a pole, since the integrand

will in no case be evaluated at the origin.

It is clear that this last result is not physically acceptable, since
we should expect, on physical grounds, that the value of b will incre=-
ase with decreasing R. This rather unexpected behavior can be easily
understood by a close analysis of the 30'u wave function. The linear

combination for this wave function contains ''s" type Slater functions,
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Fig.3 - Plot of the dipolar constant » as a function of . P indica~
tes the order of the polynominal. Intervals of integration in a.u.
(~12; +12) for z and (0;8) for p.
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centered on the origin. Clearly enough, these functions have to be ex-
cluded, since they are responsible for the Fermi contact term, and can-
not be taken into account in the calculations of the dipolar constant.
Only cross terms involving these ''s'" type functions, centered on the
origin, will contribute to this constant; they can be evaluated sepa-
rately using the same scheme. Calculations have shown that they are
usually very small (maximum contribution of the order of 2%). The fi-
nal result is still shown in Fig.3 (dash-point line), and the agreem-
ent with the same kinf of calculations, performed by Jette et al.'’ ,
using a different method, is exact. V¢ have again used polynomials of

orders 48 and 96 for each subregion.

W should also mention that the use of this method, when the wave
function is given numerically, requires a complex interpolation proce-
dure. V¢ again emphasize that one of the advantages of this scheme is

a significant saving on computer memory.
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