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The one dimensional periodic potential problem is solved using the La-
place transform method and a condensed expression for the relation
Exk and effective mass for one electron in a polyatomic structure is
determined. Applications related to the effect of the asymmetry of

the potential upon the one dimensional band structure are discussed.

Resolve-se o problema do potencial periédico, a uma dimensdo, fazendo
uso do método da Transformada de Laplace. Obtem-se uma expressdo com-
pacta para a relagao E x k e massa efetiva, para un eletron em estru-
tura poliatdmica. Discutem-se aplicacoes relacionadas aos efeitos da

assimetria do potencial sobre a estrutura de banda unidirnensional.

1. INTRODUCTION

In a one dimensional Kronig-Penney model!,the crystal potential is re~
presented by an array of Dirac delta functions located at the tattice

sites. With this simple model, it was possible to explain and under-

* Conselho Nacional de Pesquisas (CNPq), Contract No. 6195/74.
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stand important properties of' the real three dimensional crystals, and
to have an exact solution to tbe Schridinger equation. Several methods
have been used to solve the one electron Schrbdinger equation,exactly,

2, None

with a periodic potential represented by Dirac delta functions
of them, however, makes use of the Laplace Transform Method, and
allows such an easy generalization of the dispersion relation, for se-

veral atoms per cell, as this method does.

Let us consider a polyatomic, one dimensional, crystal wmade up of p

distinct atoms per cell. Let a be the length of the unit cell, and
let us represent the potential energy, due to atom i, by a Dirac delta
function of strenght Pi’ located at the position Bia, where Bi is a

fraction of a, that is, 0 < 8. < 1. The one electron ‘Schr¥dinger equa-

tion, for the whole lattice, is

] n> q*
- - eV(x) (Yx) = B ylx) , {1)
8u%m  dx?
[
&+ L y@) |pla)= - K() , (2)
d.'L'z a2
L
where
2
=8y (3)
hZ
2 2
U = T Ly | (4)
hZ
w P
Ulz) = a Z Z P7: 6{x-(n+8.)a], (5)
. T
n=-0 g=1
for 0 < Bi < landn =0, =1, 12, #3,... Expression (5) is our model
of the potential energy for the whole lattice. In Fig. 1, we show the

potential function U{x) for one cell only, that is, for 0 £ zZa,which

is the cell nearest to the origin and which corresponds to the second
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summation only, in Eq. (5). This potential U(x) is periodic,with period

a, or Ulx+ta) = U(z).

The Schrbdinger equation, for the whole lattice with p distinct atoms

per cell, is, in this model,
a2 . 2 P
— — = - 2
T+ 2 1 1 pefetuialy@= @, ©)

where the subscript on the wave function denotes the number of peaks

per cell.

Let us define the Laplace Transform, of the wave function wp(x), by

Y (s):

v (e) = L0y (&) L ey (@) (7)

p
The inverse Laplace Transform of yp(S) is the wave function Ibp(x), ie,

L'l{yp(S)} = le(S) . , (8)

!f we multiply both sides of Eq.6 by exp(-sx), and integrate from zero
to infinity, we'obtain
{o0]

o p
o % ] . ] Pié[x—(wﬁi)a:'wp(x)

0 n=—o =1

- —sxd—z—w (x)dx+—2-J
¢ g P a
0

(9)

= -szp(s) .

The Laplace transform of the second derivative of wp(x) is given by

L{wz’)'(x)} = SQL{\Pp(x)} - swp(\o) - %(0) . (10)
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The integral that appears in Eq. {(9) can be easily performed because Pi

is a constant, and proceeding in this way we can write

o]

© . s ) Z P, 6[x—(n+8 )a} =
Jo p n==w =1 ()

The only contribution comes from positive values of n because the
range of integration, of the delta function, is for positive values of

X. Substituting results (11) and (10) into (9), we areable to write

Ly, @)1= 3, (@) = =2y () + ——p7(0)

s2+x2 P s2+x2 P
x P
_2 ] ) Piwe(m+8ia) e—s(n+8i)a (12)
a n=0 =1 3

where LpP(O) and wF;(O) are the values of the wave function wp(x) , and
its derivative wF;(x), calculated at the origin. Taking the inverse

Laplace Transform of both sides of Eg.12, we obtain

(x)-— 11} (0)coskr + w (0) - sme
-2 3:0 FZ) P w (na+8 a)sinK[x—(n+67,.)a] . ule - na - Bia)’ (13)
a n=0 =1 X

where was used the fact that

L-l{e-sb [ 1 }} . SinK(x-b) ulz-b), (14)
ls? + k2 X

and u{x-a) is a step function which has the value one, for positive

values of the argument, and zero otherwise. It is easy to see that ,
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for x limited to the first unit cell, Eq.13 reduces to

sinkKx _

wp(x) = IJ'Jp(O)cosI@c + %(0) P

P
2 .
T iZ1Pi¢p(Bia)5'"K(x‘eia)”(x'sia) ’ (1)

where 0 S x 2 a

2. THE DISPERSION EQUATION

Equation (14) is the formal solution of the SchrbBdinger equation, for
the model (6), for 05xSa, but since the potential energy is a periodic
function, as expressed by (7), the solutions lIJP(x) have to satisfy the

boundary conditions
wp(x+na) = exp(ikna)lbp(x), (16)

% (wtna) = exp(ikna)l,bz; z, (17)

where K is a real number, and n an integer. These conditions, also
known as Bloch's theorem, lead to eigenstates of the Schr8dinger equa-
tion which are travelling waves, the wave (states) being differentia=
ted from one another by the number k, or the way the phase changes ,
from cell to cell, in the crystal. Imaginary values of k do not give
travelling waves, and so they represent forbidden states for the
electrons. Once K is given, the value of the wave function and fits
derivative, at all points in the crystal, can be obtained, from their
values in the first cell, just by applying Eqs.16 and 17. In particu-

lar, we have

u')p (a) = exp (ika)wp(ﬂ), (18)

wl; (a) = exp (ika)wé(ﬂ). (19)
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These expressions allow us to relate each accessible state (travelling
wave) to the energy (frequency of the wave) of the state. This can be
achieved by considering wp(x) in Eq.15, taking its derivative with
respect to x, and then imposing the conditions (18) and (19). Proceeding

in this way, we arrive at

ika 1y S inKa
e ~1Pp(0)= wp(D)cosKa * wp(o) Ve
9 p
- ) Piwp(Bia)sinK(a—Sia).u(a—Bia), (20)

1=l

'eikal,b'(o)- -xy (0)sinKa + \p’(O)(;osKa -2 ZZ) Py (B.a)
p p 2 a Lyt

2 p

. cosK(a-Bia).u(a—Bia)— e 7:Z]Z’ilbp({siaz)sinK(a—Bia)-cS(a—B_b.a). (21)

Equations (20) and (21) can be simplified because the step function is
always 1, since 0<B7:<1, and the product of the sine by the delta func-

tion is always zero. W can, therefore, write

wp(O) [cosKa—eika] + %(U)Si;]{a - aZ—K 7:§1P,L.11Jp(67/.a)5inK(a—Bia) =0, (22)

p

Py

v, (0 [—Ke-ikasinka] + ) (0) [e’ikacoska—x]- % g "tka 7’2 § Bgv, (Ba).

. cosK(a-Bia) =0 (23)

it is necessary to know the value of the wave function, at the posi-
tion Bia of each atom inside the unit cell, before imposing the con-
dition for the system of Egs.22 and 23 to have a nontrivial solution .
In Ref.3, the set of equations above was solved for the simple cases
of p=1 and p=2, that is, mnoatomic and diatomic lattices. In general,

we need the relation between wp(Bia) and wp(ﬂ), fori =1, 2 3,...p.
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In order to have this relation, we may proceed in the following way .
For a fixed value of x, say x = Bja, the summation in z, in Eq. 15 ,
can be divided into two parts, Z<j and Z>j. The sum is zero for this

last case, since, for <>, the step function is zero, and for z=j the

sine vanishes. |t then follows:
- sin(kBja)
lP(Béa) wp(O)cos(KBéa) + |P'(0)K_
277 by (6 aysinlx(s -8 )al (24)
- & i‘zﬂ iwp Bja sin|k sj—si al,
. 2 J-1 )
V,(Bia)= ¥, (Bia) = 2% 1 Py (Ba)sink(B,=8 )a, (25)
1=1

and this is valid for any =1, 2, 3,..., where Yo(x) is the wave func-
tion corresponding to the case of zero peaks per cell, i.e., the free
electron case. The wave function, in the summation above, is always
calculated at points situated on the left of the point we are interes=
ted in. With this, we can obtain, starting with j= 1,2,3,..., all wp
(Bja) in terms of Y, (Bg.a), IJJO(BJ-_1a), %(Bj-za)’ etc., where wo(Bja)
is given in Eq.15 in terms of ¥,(8) and ¥§(0). Replacing the values
of wP(Bia)’ that appear in the summations of Egqs. 22 and 23, by the
corresponding expressions in terms of wP(O) and '4:1;(0), obtained as ex-
plained above, we go to a system of two equations in the unknowns
wp(o) and wl;(o). In order to have a nontrivial solution, the follow-
ing relation between energy and wave number must hold:

P L
cos (ka) = cos(ka) + 'Z'("”‘Lz(g-]) I f Pf.(t) )
Lm1 icC tm] T
Ps
1 . -
. ;(-a— SInK|:Bfi(t+1) Bfi(t):la’ (26)
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(see Appendix). For a given crystalline structure, this equation is a
rel ation between wave nunber kand energy k2, where the nunber k enume-
rates the accessibl e quantum states, when k is real,and when K is ina-
gi nar~,it characterizes the forbbiden quantumstates. So, through Hi.
26, we can cal cul ate the energy associated with each accessible k-sta-
te.

The all owed energy levels for the electron, in this model, are those
val ues of K for which the righthand side of E0.26 is linted by =+ 1
Qutside this range, the values of K correspond to forbbiden energy
states, since they nmake the left-hand side of the equation outside the
interval [+1,-1], and this is only possible when k is inaginary.

if we plot, the righthand side of Eg.26, on a vertical axis, and (xa)?
on a horizontal axis, we observe the following typical results: for
(Ka)?<0, that is, K inaginary and negative energies, the righthand si-
de of E. 26 contains hyperbolic functions, instead of trigononetric
ones, and this neans that once it crosses the +1 line, at (ka)?= Ey,in
Fg.2, it will never cross this line again for decreasing values of
(Ka)?. Consequently, there are no avai lable states for the electron
with energy below;, in Fig.2 Wen (xa)? increases, fromthe value
E, towards zero, the righthand side of Ej.26 crosses the line -1, at
(ka)%= E,, and then crosses it again, at (xa)® = E3, etc. The set of
val ues of (ka)%, fromEg, to E,, constitute a band of allowed energy ,
and it is the only negative band that this nodel presents. This comes
fromthe fact that we are representing the potential energy by Dirac
delta functions, and we know that an isolated Drac delta function po-
tential permts only one bound state (state with negative energy).When
we place several Dirac delta functions together, in a array, the iso-
lated bound state apreads due to the overlap of the wave functions,
centered on different lattice points.

The only negative band the nodel allows of is called the val ence band.
In Fig.2, E; is the bottomof the val ence band, £, the top of it, and
(E,-E,) is the width of this band. The set of values of (ka)?, for
which the righthand side of EJ.26 varies fromE; to E,, is called the
conduction band. E; is the bottomof the conduction band, and (E;-E,)
is the gap.
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Fig.1 - One dinensional representation of the potential for polyatomic
crystal.

4 rhs
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E2

Fig.2 - Typical plot of the righthand side (rhs) of Eq.26, as discussed
in the text, versus the energy x2.
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3. THE EFFECTIVE MASS

Electrons in a crystal respond, to applied external fields, as though
they had an effective mass m*, different from the mass, mq,in vacuum.
This mass can be obtained once we know the energy associated to each
guantum state, i.e., the dispersion relation, since the effect of an
external field is to alter the quantum state of the electron, and con-
sequently its energy. It can be shown that the effective mass, for a

one dimensional crystal is given by

.”Lt = ﬁ (BQ‘E !
T G (27)
where K and E are related by Eq.26 or, having in mind Eq.3, by
* a2 -1 2 2]-1
o2 (72| - |22+ & ; (28)
mo St A2 0z

where x = ka and Z I Xa.

The relation that we have between x and Z is the one obtained through
Eq. (26}, so it is convenient to rewrite Eq.28 in terms of the deriva-

tive of cosf{x) with respect to x:

% (cosz) = I=(cosz) dz (29)
2 42

-C—Zi—(cosx) =4 (cosx)g—z— + i-((:osac)g—£ . (30)
2 dxd? de dz dx?

In the band edges, the only place where expression (27) has a meaning,
we have x = 0 or x = w. Then, from Eq.29, we obtain

Cdz—z(cosx) ii =0, at the band edges. (31)
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The righthand side of Eq.(26) contains hyperbolic functions, for Z<0 ,
and trigonometric ones, for Z>0, and the only value of Z for which
this equation could have an inflexion point would be at Z = 0. So for
Z # 0 and at the band edges we can take % = 0 and then from Eg. (30)

-1
az + |:d—(cosm)} (32)

where the plus sign is for x = m and the minus sign is for x = 0.

So, the effective mass at the band edges is

m*
Mo

(cosx), (33)

N =
B~

and, finally, using EJ.26, we obtain

m*_ _ sinZ
m Z

L

p .
2,(2-1) 1 % . )

+ QZ] ('1) 2 Z’Q’+1 7;20 {'7 tzipfi(t)SIn{(Bfi(t+]) Bfi(t))ZJ
) X

.

2 : 2
* h§1 [Bfi(hn)‘sfi(h)}’ fi(h)co{(sfi(hﬂ )-Bfi(h))zjlqzlpfi (@) °

qEh

Lein [(Bfi(q+l) 'Bfim)”} ' (34)

where s = 1, ifx=m, and s = -1 if x = 0.
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4 APPLI CATI ONS

There are several applications of Eq.26 and 34, especially to those
probl ens related to pol yatom c one dinensional crystal s. These equa-
tions allowus to calculate the band structure and effective mass,for
a one dinensional structure, with as nany atons per cell as we want.
V¢ can al so verify the way the effective mass and the band structure
change, when one changes the regularity of the distribution of the
potential peaks, inside the unit cell. This change can be accompli~
shed either hy changing the strength of the potential correspondi ng
to some points inside the cell, or by displacing the location of the
potential inside the cell.

Let us consider a periodic one dinensional structure with period g ,
and p atons per cell. The potential of each atomis represented by a
Dirac delta function, of strength P, | ocated at B.Za wth 0<Gz. <1
According to Egs.4 and 5, the potential is given by

w2 %
Vig) =& — ¥ Pié(x—na—sia) , na £x < (n-1a, (35)
me a? i=1
and the average potential, per cell, is
: (n+1)a #2 p
<eV> = — J eViz)de = — ) P, . (36)
a 2 . T
na ma* =1

Ve know that * the dispersion relation, Eq.26, gives the sanme band
structure for the following two lattices: one of themhas period a,
one atomper cell located at 8a, and represented by a Drac delta
function of strength P. The other has period pa (p integer),p iden-
tical atons per cell, located at Bja = (f-Va+Ba,Wth1 25 =% p,
and each atomrepresented by a Dirac delta function of magnitude pP .
Both lattices have the sane average potential per cell , and they are
really identical since, in the second one, we took a period of repe-
tition which is a multiple of the minimum one, a. So they have iden-
tical band structures.
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Fig.3 - Energy bands corresponding to polyatomic structures, with the same average poten-

tial per cell. The various bands are obtained by introducing an asymmetry into the mono-

atomic structure.

the band edges.

Here, p is the number of atoms per cell, and u is the relation m*/m, at



However, if we change the location of any peak, inside the cell of
the second lattice, i.e., if we consider a displacenent (AB)a in a
particular atomk such that its new position is Bya = (k-1)a+Ba+(AB)a,
or if we change the nagnitude of any potential inside the cell, then
the lattice is not equivalent to a nmonoatom c one anymore, but beco-
nes a lattice with p peaks per cell, that is, it becomes a pol yatonic
lattice.

If we perform either one of the asymmetries mentioned above, each
energy band of the nonoatomic lattice will break up in (p-1) bands .
The separation of these bands, as well as the variation of the effec-
tive mass, is due only to the asymmetry introduced, Since the average
potential per cell' is kept constant in all cases.

Fig.3 shows the splitting of the first energy band of a nonoatomc
lattice(central portion of the figure), corresponding to the case 7=
15 p=1and 8 = 0O if we consider two or three peaks per cell ,
characterized, respectively, by P, =P, =3, B, =0, and B, = /2 or
P, =P, =Py =4.5 wth g, = 0, B, = 1/3 and B3 = 2/3, etc.,we would
obtain the same results as those obtained for the monoatomc case.But
consi dering the cases

p=39 By = 0, 82=-259 83=2/3’P1 P2=_P3-Ll°5)
p= L}, 81 = 0! BZ =.2 ’ 83 = '55’ Blo = '759 Pl=--'=P’+= 6 ’

we get the right side of Fig.3.

If we keep the regularity of the positions of the peaks, but change
the strength of the potential, then we get again the splitting of the
bands.' This is shown on the left side of Fig.3, and corresponds to
the cases:

p=2,8, =0, B, =1/2, P, =2.5, P, =3.5,
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Fig.4 = Band structure for the diatomic lattice, in terms of the posi-
tion, B,, of the second atom in the cell. Here, 81=0 and P,=P,= 3.
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Fig.5 = Electron effective mass, at the oand edges shown in Fig.4.
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p=3,8 =0, B=1/3, B3 = 1/3, Py = b, P,= 5, P3 = 4.5,

p=l'l, 81=0, 82=1/l|, 63=2/li, Bq=3/l‘, P1=Pq=6, P2=6.5, P3=5.5.

Also plotted, in Fig.3, is the relation u=m*/my, on the band edges ,

according to Eq.3%.

The model also allows us to verify the way the band structure, and
the effective mass, vary with respect to a continuum variation of the
position of one of the peaks, inside the cell. Figure 4 shows the
dependence of the first energy bands on the position Bz of the second
peak for a diatomic lattice with fixed strength P, = P, = 3 and 8,=0.
The negative band tends to higher negative values, when B, approaches
zero, since at this position the lattice is a monoatomic one, with a
peak P = 6 per cell, and this corresponds to a maximum binding poten-
tial. The gap, which appears when 8, # 1/2, and is the result of the
splitting of the first band, can be considered as the energy diffe-
rence between the bottom of the positive energy band and the top of
the negative one. The gap also increases with 82, even though the
bottom of the positive band does not vary much with B,. In Fig.5, we

plot the effective mass corresponding to the bands showed in Fig.4.

Similar results are obtained for a triatomic lattice, when we consi-
der p, = P, = P3 = 45, B, =0, B3 = 2/3, and B, taking values from
1/3 to zero. The results, for the first bands, are shown in Fig. 6

and Fig.7 shows the corresponding effective mass.

In Fig.8, we plot the splitting of the bands with respect to an asym-
metry, AP, in the potential, for a lattice with four peaks per cell,
where each peak is held in a fixed position inside the cell, that is,
By =0, B, = 1/4, B3 = 2/4, and By = 3/4, but each peak with a va-
riable strength given by P, = P, =6 + AP, and P, = P; = 6 - AP. The
average potential per cell is kept constant, in this way, for each
value of AP, and the splitting of the band is due only to the asymme-

try introduced. Figure 9 shows the corresponding effective mass.
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Fig.6 = Band structure for the triatomic lattice in terms of the posi-
tion B, of the central atom. Here 8y =0, By = 2/3, Py = P, = P3=Ah.5.
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Fig.7 - Electron effective mass, at the band edges shown in Fig.6.

71



APPENDIX

V& have shown® that the general expression for the dispersion relati-

on, when we have p peaks per cell, wwith strengths P1,P2,P3,...Pp and

located, respectively, at 8ia, Baa, Bad... Bpa, with0 < B. £ 1,is of
1

the form
cos (ka)= (Ka) - Z;: b-?ii—sinKa
o = cos T
p P PiP,.
2 i ~B. infK{1-8.+8.
+ Z Z —JLs(Ka)2 mliK(B!7 Bz)a]sm[( BJ+B7,)a]
i=j §>i

P.,P,...P
PPt 12D . - - .
oo+ (-1)P(2) . sm[K(Bz Bl)a}...sml:K(Bp Sp-l)a:l

-sin[xh—eparel)a] .

This expression can be written in a condensed forrn to facilitate its
handling. Let us define:

Cp,g.as the set of all the subsets of 1,2,3,...p, with R elements
each;

fi: J+I as a strictly increasing function defined over the set J={1,2,

3,...2+1}, and taking values in the set | = <U{p+1}, i.e.,fi(2+1)-p+1;

=1+8

Bfi(lﬂ) fi(i) :

With these definitions, we can verify that the dispersion relation

above can be written as it was presented in Eq.26.

Let ys consider the case that we have three peaks in the cell, P1,Pa,
and P3, located at B;,B2 and Bs. The sets C3 0 for 1 < 2 £ 3, are:

CS’I = { {1}y {2}’ {3} }!
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Fig.8 - Band structure for a lattice, with four atoms per cell, in
terms of the asymmetry parameter, AP. Here, By = 0, B2 = .25, B3 =.50,
R, = .75, P, =P, =6 + AP, P, =P; =6 - AP,
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Fig.9 - Electron effective mass, at the edges of the bands, shown in
Fig.8.
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Cs,» = { {1,2}, (1,31, {2,3} },

Cy,a =1 {2,1,3} } .

For each R, the sets 7 are

{1} or 2 = {2} or ¢ = {3};

iCCg’l = %

1CCy,p=> 2 ={1,2} or Z = {1,3} or ¢ = {2,3};

{2,1,3} .

icC 03’3 a> 7

For each %, the functions fi : J»I are

ey {62 =>{1,4) , forR=1
frgpt 11,2 ={2,4) , for 2 =1,
fi3yt {1,2} =>{3,4} , for 2. =1,
fi1,2y:01,2,38 =(1,2,4) , for & = 2,
F1,33:11,2,31 =>{1,3,1 , for 2 = 2,
fla,3: {123} =>{2,3,4} , for £ =2,

f{2,1,3}‘{]’2’3’4} =>{1,2,3,4} , for & = 3.

With these values, the dispersion equation becomes

cos (ka) = cos(Ka) = PlsnnKa _ stnnKa _ P35|nKa

Ka Ka Ka

+ 2 P1P253n[K(62-81)a]~sin[K(l'Bz+B1)a}
(Ka)?

P1P3
+ 2 ———sin[K(Ba-Bl)a]sin[K(1'Bs+51)a:l +
(Ka)?
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P,P,

+ 2 ——sin[K(Bg-Bz)a] . sin[K(l-Bg-(»Bz)aj'

(ka)?

P\P,P,

e sin[K(Bz-Bl)a}sin[K(Ba-Bz)a]sin[K(1-Ba+Bl)a]
. .
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