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The Renormalization Group Theory has a natural place in a general
framework of svmmetries in Quantum Field Theories. Seen in this way ,
a '"' Renormalization Group'™ is a one-parametric subset of the direct
product of dilatation and renormalization groups. This subset of spon
taneously broken symmetry transformations connects the inequivalent so-
lutions generated by a parameter-dependent regularization procedure, as
occurs in Renormalized Perturbation Theory. By considering the global,
rather than the infinitesimal, transformations, an expression for gene-
ral vertices is directly obtained, which is the formal solution of

exact Renormalization Group equations.

A Teoria do Grupo de Renormalizagao encontra seu lugar natural no qua
dro geral de simetrias, nas Teorias Quéanticas de Campo. Visto dessa mE
neira, un "Grupo de Renormalizacdo' & um sub-conjunto, a um parametro,
do produto direto de grupos de dilatacdo e de renormalizacao. Esse sub-
conjunto de transformacdes de simetria, espontaneamerite quebradas, liga
as solugoes ndo equivalentes geradas por um método de regularizagdo de-
pendente de um pardmetro, como ocorre en Teoria de Perturbacdo Renorma=
lizada. Considerando as transformagoes globais, ao invés das infinite-
simais, obtem-se diretamente uma expressdo para vértices gerais, que &
a solugdo formal das equagoes exatas do Grupo de Renormal jzacado.
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1. INJRODUCTION

In recent years, the original idea'’? of the Renormalization Group, in
Relativistic Quantum Field Theory, has been generalized and deepened
(see, for example, Refs. 3-14.).

At present, the basic formalisrn appears to be well understood.

One point which is not yet quite transparent is the position of the
Renormalization Group is relation to the conventional symmetry concepts,
and the question which one the actual symrnetry group exactly is. It is
the purpose of the present paper to clarify these questions and related
ones by showing that the Renormalization Group fits quite naturally in

a framework of generalized symmetries in Quantum Field Theories'®.

From our viewpoint, a Renormalization Group is a special one-parametric
subset contained in a certain group of generalized, spontaneously bro-
ken, symmetry transformations. The Renormalization Group differential
equation represents the effect of an infinitesimal change of the conti-
nuous parameter characterising the transforrnations of the set. Because
we work with the global, instead of the infinitesimal, transformations,
we find directly the solution of the usual approxirnate Renormalization
Group equations for general vertices, without needing this equation

Besides, an exact formal expression for these vertices is obtained.This
possibility of avoiding the detour over the Renorrnalization Group diffe

rential equation, which occurs quite naturally in the present formula

tion, seems not to be generally known.

In the next section, the direct product of the passive dilatation and
renormalization groups is discussed as an exarnple of a spontaneously
broken symmetry group, and in the third section the connection with the
Renormaiization Group equations is made. In the Concluding Remarks |,
some aspects of the relation of the present approach to other recent

papers are discussed.
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2. THE DILATATION-RENORMALIZATION TRANSFORMATIONS AS A
SPONTANEOUSLY BROKEN SYMMETRY GROUP

Our considerations are made in a framework for generalized symmetries
in Quantum Field Theories which has been given in Ref. 1_5. In the next

paragraph we review its essential points, omitting all details.

The basic definition'is the one of a Passive Symmetry Transformation of
a theory as being an algebraic transformation, of the field operators ,
which carries any solution (often given as an irreducible representati-
on) into another solution. Because each solution is supposed to des-
cribe the physical properties of the system, all uniquely measurable
quantities must be invariant under any passive symmetry transformation.
If such a transformation is represented by a unitary operator, it is a
physical or ''good' symmetry; otherwise, we call it, in a generalized
sense, an ''spontaneously broken'''® symmetry. To draw in this case non-
trivial physical conclusions, additional assumptions, replacing unitary
equivalence, are necessary. If, for instance, spontaneously broken pas-
sive symmetries form a Lie Group and are, in each space-time plane, ge-
nerated by a local ( in general not conserved) current, one obtains a
charge algebra with the structure coefficients of the passive symmetry

group. If a generating current is even conserved, one has an spontane-
ously broken symmetry in the usual, more restricted, sense and Goldsto-

17918 gstates that the symmetry must be a physical one,

ne's Theorem
unless a boson or long range interaction occurs with the quantum numbers

of the zero component of the current.

The occurrence of a passive symmetry in the basic theory of a physical
system manifests itself by the existence of different descriptions  of
the same Ph)'/sics, in each of which any uniquely measurable quantity!®
has the same value. Conversely, the availability of a continuous set
of such descriptions indicates the possibility of formulating the theo~
ry in a manifestly passive-syrnmetric way. Two special cases of this si-

tuation are essential for our later considerations:

a) A change in the length unit of a closed physical theory changes the

mathematical description, but not the physical quantities which are
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always dimensionless!®. This is what one would expect in a theory with
a passive dilatation symmetry, and in the following we shall assume
that it is possible to formulate the theory under consideration so that
it is passively dilatation invariant. In fact, it appears in some ca-
ses nearly unavoidable to do so. For example, In Quantum Electrodyna-
mics the bare electron mass is the only parameter of mass dimension
entering in the basic equations. In usual perturbation theory, one s
compelled to take the bare mass infinite, whereas in a selfconsistent
calculation the bare mass has to vanish?°’2!, Both of these mass values
are dilatation invariant and consequently the basic theory does not se-
lect the electron mass, allowing for an arbitrary mass scale with the

corresponding infinite set of mathematically non-equivalent solutions.

The passive dilatation symmetry is a typical case of a spontaneously
broken symmetry, in the sense of the present section. If {p(z), 4" (x)}
is a solution (with "physical’ electron mass Am), then {\b'(x)=>\3/2\p()\x),

A (2) = M Ox)) is also a solution (with electron mass m ).

It is interesting to note ttiat, for the case of more general conformal
invariance, the above argument is not valid. In a general physical sys-
tem, no simple change of description are known wtiich leave physical

guantities invariant and which correspond to conformal transformations.

b) Dilatation invariance is a space-time symmetry and has, therefore, a
clear classical meaning. A non-classical symmetry transformation,which
occurs quite naturally in certain Quantum Field Theories, is the renor-
malization. The values of coupling constants, and the a priori not
defined renormalization of a finite number of singular local operator
products are considered as a part of the solution. Then on can, at
least in renormalizable Quantum Field Theories, construct new solutions
from a givem one, by multiplying field operators, coupling constants
and the mentioned products by suitable related finite numbers. Under

such transformations, all physical quantities remain unchanged.

A renormalization symmetric formulation of the theory cannot, of course,
contain fixed canonical commutation rules, but these are in general

anyhow untenable. As in the case of passive dilatation symmetry in
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Q.ED, which one only can break by brute force as by postulating a de-
finite value for the electron mass, one can also oniy break renormali-
zation symmetry rather artificially. One may do this, for instance,
by demanding, as part of the theory, a definite normalization of cer=
tain Green's functions at prescribed momenta, in this way excluding the

other solutions and with that destroying the passive symmetry.

In trying to give an explicit example of a renormalization invariant
field theory, we are of course hampered by the fact that no clearly con-
sistent Quantum Field Theory in four dimensions has yet been construc-
ted. In Quantum Electrodynamics, one might, for instance, imagine the

free Lagragian of the electron to be defined by!®:

Lo(x) = I Jlx + %)S“(e)w(x - —;—)d"e, (1

V()0

where 871 ({g) (containing as a factor the equivalent of the conventional

Z,) is the inverse of the electron propagator S(g):
Js(e-e')s"(e')de' - 5" (c). (2)

An analogous form can be assumed for the free Maxwell Lagragian. In the
interaction, the renormalization factor of S$~'(E) is also included ,
playing the role of Z;(=2;), and the value of the coupling constant is
assumed to belong to the solution of the theory, To guarantee that one
has the usual strength of the electromagnetic interaction, one demands,

as part of the theory, the condition:
lin & %20, (k2) = o (3)
€20 Im © ¢

with a being the usual fine structure constant and Dt the transversal
photon propagator. As a result, the theory will have the desired passi
ve symmetry: if {y(z), 4"(x),e} is a solution, then {¢Y'(x) = Zi/z Yz},
A'u(ac)=Z§/2 AM(z),e'= Z;l/ze}, with the Z.'s being arbitrary, finite ,

positive constants, is also a solution.



in the following, we shall assume that the theory under discussion can
be formulated passively symmetric under renormalization transformations,

and dilatations as well.

The direct product of both, commuting, abelian Lie groups will be cal-
led the "Dilatation-Renormalization!' (D.R.) Group. As we have remarked,
this symmetry is in agreement with the results of renormalized pertur-
bation theory. Any passive invariance of a field theory is, by defini-
tion, inherited by equivalent equations derived from it, as,for instan-
ce, the equations for the Green's functions. As long as a non-trivial
relativistic quantum field theory cannot be consistently formulated,one
may instead start from these equations. The non-uniqueness of the so-
lutions corresponding to the D.R. group is then generated be the non-

uniqueness of spontaneously broken symmetry solutions??

of Dyson -
Schwinger equations or by the arbitrariness in the renorrnalization pro-
cedure. However, the general symmetry view (as many other considerati-
ons) becomes clearer, if one assumes that there exists some underlying

field theory, which hopefully will once be exactly defined.

A transformation, characterized by the dilatation parameter h and the
renormalization parameters Zi_acts on the field operators and coupling

constants as:

] - / "'d. -1
Pi(x) = zé 2% wi(x z),

: (%)
e! = Z'.l/2 e.,
J J d
where the d's are canonical mass dimensions. If {wi’ej} solves the
theory, then {$!,Le!}3 is another solution.
For the vacuum expectation values, it follows that
<Ppi(xy)... \J);(xnl)tpz',(yl)... wg(ynz)...> =
1A% 2 ) e, 0 ).
1: ILl
Y, Ay q;z(x“yn Yooo > . (5)

2
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Vertex functions, in momentum variables, transform as:
\ -d
I'(p) = AT 2T (), (6)

where dr and Zr are,respectively, the canonical mass dimension and re-
normalization constant of the general vertex I', calculated from the
ones of the composing fields and inverse propagators, and p denotes all

momentum arguments.

Let us suppose that one has found a solution of the theory defined py
the complete infinite set of vertices. Then, a continuous manifold of
sets of other solutions can be found by applying the transformation (6),
for different values of Zzl and A, to each'vertex of the solution:

-d
I’Z"A(p) =X
7

r zr(zi)rzi= 1, a=1 ) (7)
I'y1{p) being the original solution. This statement means just the
assumed passive symmetry of the theory. The parameters X and Zi' of the
D.R. group, may in this way be used to characterize any of the soluti-

ons if one solution, Ty,{p), is given.

3. APPLICATIONS

As is true in general for passive symmetries, also in the case of the
D.R.group, additional assumptions are necessary to draw physical con=

clusions.

a) Let us first make the strong assumption that the many-parameter DR.
transformations, Eq (7), contain a one-parameter subgroup, Zi(A)‘ which
is a '"'good' symmetry, being representable by a unitary operator with an
invariant vacuum. For this subgroup, the coupling constants and the
L.H.S. of Eq.{7) must be independent of A (say, equal to I‘ll(p)). We

can, therefore, write

on [x'dr ZP(K)F(Xp)], (8)

o
"
e
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or
d Rn ZF(A) d nT (Ap)
-dl“ + + =0
d Rn A d an{Xp)

As this equation should be valid for all values of p, one obtains

d Rn 2, (A)
— L --a, (9)
d Rh A
with ay being constant. The solution with Z2(1) = 1 is
2y = A9, (10)
and inserting Eg. (10) in Eq. (7) one has
d.+a
TOp) = XAT°T T'(p) . (1)

Applying the same analysis to a number of suitable vertices for the

Zi's, of which the Z_.'s are composed, a power law is also found:

r

7,00 = A"2a; (12)

This type of conclusion, in which an assumption concerning the L.H.S.of
Eq. (7) determines the trajectory Z'LO‘)’ will in the following recur

repeatedly.

The '‘good'' one-parameter subgroup of the D.R. transformation (4)becomes,
from Eg. (12),
o) = a9ty o,
7 T
(13)

One might call this combination of a normal dilatation and a renorma-
lization an "anomalous dilatation™. Usually, the transformation (13}
is considered as being a normal dilatation but with the "anomalous di-

mensions'! a; -
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From the present point of view, it becomes understandable why, in theo-
ries with anomalous dimensions, many observables transform with their
"normal’ dimensions, which are obtained by assigning canonical dimen-
sions to the composing field operators. Observables are most often so
defined that they are renormalization invariant. Their representation,
with respect to the pure Renormalization Group, is then the trivial one,
and the effect of the DR. group on these quantities reduces to pure
dilatations which are defined to be the conventional ones. As an exam-
ple, we may quote the electromagnetic current, which is renormalization
invariant: because of Ward's Identity, and has therefore the normal di-

mension, d = 3.

VW have shown that if the passive DR. group contains a good subgroup,
then this can only be an anomalous dilatation. However, in this case
it follows from Eg. (11) that such a theory cannot have a discrete non-
zero mass spectrum. For our additional condition to be applicable to a

realistic theory, we have therefore to weaken it.

b) Let us suppose that all symmetries of the DR. group are spontane-
ously broken, but that there is a subgroup which leaves all vertices
asymptotically invariant for safficiently large values of the momenta
(or h). In this case, exactly the same reasoning as above can be
applied, with the understanding that it is only valid for sufficiently
large p-values. Expression {i1) now determines only the asymptotic be-
haviour of the vertices. The anomalous dilatation, Eq. {13), 'becomes

a good symmetry' at sufficiently high momenta.

klthough the present case admits of a discrete mass spectrum, its as-=

sumption is probably still too strong to be generally valid.

c) To obtain a realistic case, we shall add to relation (7) some infor=
mation which Renormal ized Perturbation Theory suggests, and which is
supposed to be true in each order of the perturbation. Of course, the
hope is that these relations are also valid for the exact solution.
Proofs of these results of perturbation theory, so far as they exist ,

may be found in standard treatments®’?2,
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Renormalized Perturbation Theory is an approximate method of solving the
problem by means of a limiting procedure, which consists of a smooth re-
traction of a regularization. If the solution of a theory is not unique,
then the particular solution one finds by any lirniting procedure will,in
general, depend on the way in which the limit is reached. This is what
happens in perturbation theory. By choosing different values for a pa-
rameter, which is kept fixed in the limiting procedure, one is able to
generate a one-parameter set of solutions, cornparable to the one-parame=
ter sets under a) and b) of this section. However, the relation between
these solutions, following from perturbation theory,is still weaker than

the asymptotic invariance condition.

Let us now consider a theory with several physical nasses. Under the D.
R. group, the mass ratios rernain invariant, and we can therefore define
the scale of any solution by giving the physical mass mo of one specifi-
ed particle. Usually, the limits in perturbation theory are so perfor-
med that this "renormalized™ mass has, in all cases, the same fixed va-
lue. The parameter, to which different values are given, is the quanti-
ty u? of the external (momenta)?, at which a sufficient nurnber of simple
vertices are normalized in order to fix all renorrnalization constants,
Zi’ These constants, and consequently also the coupling constants ej »
which are associated with a part of the Z's, are therefore functions of

U.

Perturbation theory gives the vertices as a power series of the coupling

constants. These may be written as
T(p,e (mp,u) , mgu), (14)

vhere T abbreviates the infinite set of vertices of the solution under
consideration, and p denotes the occurring mornenta, while e stands for

the coupling constants ej .

For the same momenta, corresponding vertices in two solutions {(14), for
different values of u, differ only by a constant normalization factor ,

but this factor is rather indirectly given. The value of u does not in-
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dicate directly the solution which is selected, but it defines the way
in which this selection is performed. To simplify this situation, we
choose an arbitrary but definite value g of Y. O a representation with
U= Auo, we apply a (normal) passive dilatation transformation with pa-
rarneter A, and as a consequence of passive dilatation invariance we
obtain again a solution. One has

~d -
Vo =
' =x7T F()\p,e(mR,U) ,mR;U) =

= Tlp,elmg/X,ug) mp/Naug), (15)
where the identity follows from dimensional analysis.

Instead of the set (14) we shall use the set (15), in which each member

is characterized by a value of A

in a similar way, the set (15} could have been derived for the case of

a dimensional regularization, where y has then another meaning!®.

In fact, from our point of view, we could have more naturally obtained
the set of solutions (15) directly from the renormalization procedure,
by keeping the parameter y and the renormalization prescription fixed,
and instead varying the mass scale, selecting the particle mass to be
equal to mR/A. The detourover expression (14) was taken to make the

connection with the usual treatment.

As all our solutions (15) are related only be renormalizations and di=-

latations, one has from Egs. (7) and (15),

T(p,elmg) mp) = A0 221 (T (p, e (my/A) mp/A) (16)

where we have ommited the fixed parameter uo. In this way, the one-pa-
rameter set of perturbation solutions defines a one parametric trajec-
tory Zi(”’ in the multi-parameter (X,Zi)-space of the D.R.group (as in
a) and b) of this section). By varying the normalization conditions at

the point Mg» One may find a dense set of one-parameter trajectories .
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The Z7.(>\) values of any two trajectories are, however, related, by
h-independent factors and it is therefore sufficient to discuss one of

these trajectories.

By writing Eq.(16) for those vertices by which the coupling constants
and renormalization constants are defined, differentiating the logarithm
of these equations with respect to the logarithms of the external (nmp-

menta)2, and taking these equal to ui, one finds, as usual, equationsof

the type
de.
)\2;\'1'= Bj(e,mR/)\): (]7)
d &n zZ,
A v Y,L.(e,mR/A) . (18)

The dependence on the fixed value Mg has again been dropped.Perturbati-
on theory gives the functions B and y as series expansions in the cou-
pling constants. (Because these constants are directly related to some
of the renormalization constants, the corresponding 8's and y's are not
independent.) Egs. (17) and (18) gives the changes of the couplihg and
renormal ization constants along a trajectory zi(x), and may be compared

with the much stronger Eq. (9).

The important assumption made by Gell-Mann and Low?, which seems plau-
sible and is confirmed by perturbation theory, is that for sufficiently
large values of h, i.e., for sufficiently small values of m = mR/)\ in
the set (15), under fixed normalization conditions, the explicit depen-
dente on the scale of the particle masses vanishes. This means that ,
for high A,

T p,elmy/A) ,mp/A) > Tlp,e(my/3),0) . (19)

Inserting this 1imit into Eq.(16), one obtains, for large A,

d

I (Ap,e(my) ,mp) AT ZEI(A)T(p,e(mR/X) 0 ). (20)
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If, in addition, also the limits

eJ.(mR/A); ej(o) 21

00

would exist, one would have exactly the previous case b) of asymptotic
invariance, leading to anomalous dimensions. This assumption, however,
may be in general too strong. Instead, as in Eqg. {19), only on the R.H.
S. of Egs.(17) and (18) the explicit dependences on the mass-scale
seems, from perturbation theory, to vanish in the limit mR/X->0. One ob-
tains, in this limit,

de .

A —L =g (e,0) (22)
dax J
d %n Z.

A — =Y7:(e,0) , (23)
ar

with the A-dependence on the RH.S. occurring only implicitly in the

coupling constants.

Egs.(20),(22) and (23) form the basis of rnost discussions on the Renor-
rnalization Group. In fact, the conventional Renormalization Group equa-

tion for general vertices is obtained by differentiating the logarithm
of Eq.(20), with respect to Rnh, inserting Eqs.(22)} and (23) and going
back to the u variable. W obtain the wellknown solution of this dif-
ferential equation directly, substituting in Eg. (20) the coupling and
renormalization constants by the conventional solutions of Eqs.(22) and
(23). The reason why we save one integration is that the usual approach
implicitly works with an infinitesimal version of the transformation
(7) whereas we use the global transformation. From the present point
of view, it is understandable why the Renormalization Group equations
can be integrated, and the general form of the solution becomes trans-

parent.

One might derive exact Renormalization Group equations by differentia-
ting the logarithm of Eq.(16), with respect to Rnh, and using Egs. (17)
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and (18). However, this procedure is againa detour, as Eq.(16) is
already the exact formal solution in which one is interested. Given
sufficient information concerning the mR/)\-dependences of the functions
occurring in Egs.(16), (17} and (18),corrections to the:-vanishing mass
approximation, in the conventional Renormalization Group equations,

would be calculable.

W remark that any solution of the Renormalization Group, Eq.(18), de-
fines, by Eq.(4), a global symmetry transformation of the field opera-

tors, which is a generalization of the wusual dilatation transforma-

tions or of the anomalous ones given in Eq.(13).

4. CONCLUDING REMARKS

The main point of the present paper is to show that Renormalization
Group Theory has a common root with other symmetry theories, be they
concerned with physical or spontaneously broken symmetries. The root
is the natural occurrence of a passive symmetry in the basic theory .
The transformations relevant to the Renormalization Group form a one-
parameter subset of the direct product of the usual dilatation and re-
normal ization passive symmetry groups. This subset is given by the
set of solutions which it connects, i.e., in practice, by the selected
renormalization procedure. Seen in that way, the only essential dif-
ference with the case of conventional symmetries is that the transfor-
med representations are not unitary equivalent, but have a weaker
relation, on which, for instance, perturbation theory may give infor-

mation.

One may wonder how could we have avoided to even mentioning the infi-
nities of Quantum Field Theories, which appear to be basic in many
treatments of the Renormalization Group. From our viewpoint,the essen-
tial function of these infinities is to allow for the non-uniqueness
of the solution which must occur in the theory, if it possesses the
passive D.R. Symetry. After having postulated this symmetry, and the
finiteness of the theory, and as long as we avoid explicit calcula-
tions, we do not need to discuss anymore how, in detail, the Renorma-

lization Program masters the infinities.



Recently, 't Hooft and Weinberg®’!'® (see also Refs. 11,12) have found
a variant of the usual way of handling perturbative renormalization,
which leads to '"New Renormalization Group Equations' corresponding to
trajectories for which Egs. (22) and (23) are exactly true for all va-
lues of A, The price one has to pay is that the arguments correspon-
ding to mR/A of I', in Eq.(16), are now "effective' masses, which are
functions of the coupling constants and A. The main advantage is that
the New Renormalization Group Equation can be formally integrated,. be-
fore the vanishing mass approximations have been made. Therefore, the
validity of the approximation {(19) can be investigated and corrections
to it calculated. The new solution is again obtained if one substitu=~
tes, in Eq. (7), the relevant expressions for the vertex and renormali-
zation constants. As remarked earlier, Eq.{16) may also be considered

as the formal solution of exact Renormalization Group equations.

Our point of view is quite different from the one taken in the imagina-
tive work of Wilson!*, who discovered the remarkable analogy between
Kadanoff's scaling properties of Many Body Systems,at critical points??
and the Renormalization Group Equations of Relativistic Quantum Field
Theory. Whereas inour treatment, the Renormalization Group, as any
conventional symmetry group, is a set of transformations between solu-
tions of one definite theory, in Wilson's theory it transforms diffe-
rent cutoff-interactions into each other. The connection between the
two approaches is about the following. Our non-equivalent solutions (15)
of one definite theory may be generated by renormalizing, differently ,
regularizeci theories. These regularized theories are related to each
other as Wilson's different interactions on the "renormalized" trajec-
tory in his space of interactions, namely, by a combined dilatation and

renormalization.

Any symmetry of a theory is unavoidably linked to a non-uniqueness of
the mathematical description, which therefore must contain quantities
without a direct physical meaning. The anomalous dimension of a char-
ged field, being gauge-dependent, is one example of'such a quantity.
This general symmetry property may explain why considerations on
the relativistic Renormalization Group often do not follow the patterns

of naive physical intuition.
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