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The duality properties in e+—e- annihilation of Schrbdinger bound state
models are discussed. For any confining potential, regular at the ori=
gin, it is found that duality arises if the eigenvalue E is linearly
related to the squared mass M2 of the bound state. The nonconfining

Coulomb case is also discussed.

Discutem-se as propriedades de dualidade na aniquilagdo e+-e- an mode-
los descritos por estados |ligados de Schr8dinger. Para qual quer po-
tencial confinante, regular na origem, obter-se-4& dualidade quando o
autovalor E for linearmente relacionado ao quadrado da massa, M2, do
estado ligado. O caso nao confinante, do tipo coulombiano, e também

discutido.

1. DUALITY IN e+-e- ANNIHILATION

Electron-positron annihilation into hadrons' seem to have two regions:

i) the 'resonance'' region, dominated by prominent peaks like P°, w; ¢
and  J/9,9' (g% around 0.78%; 1.022 and 3.12, 3.7% GeV? ,respectively),
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ii) the "scaling'" region, in which the total cross section is
smooth and decreasing as l/qz((1.7+GeV)2§_q2i(3.O Gev)2 and from

(4.5 GeV)? up to the end of present e -e storage ring energies).

In the resonance region the cross section is given by?
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MV and F‘tIOt denote the mass and total width of the resonance, M§/2YV is

the vector-meson-photon coupling and is related to the leptonic decay
width via
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The scaling region can be described by the quark-parton model®,yielding
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where Qi is the charge of the 7~ quark
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If there is '"'duality'", then the parton model cross section and the lo-
cal average over resonances should be equal to each other, not only in
some transition region but also at large q2 and in the threshold region.

This can be formulated as
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where V=p%,w; ¢, J/¥,...type and i = p, r; A, c,. ..type; while AMTZ/ is

the difference of squared masses of two neigbouring resonances.



Under the assumption that AM%/ is a constant, the restriction on the MV—
dependence of T, following from Eq. (3), was first conjectured by
Bramon, Etim and Greco®. It was shown by BYhm, Joos and Krammer®that in
a field theoretical dynarnical quark model with strongly bound heavy
quarks R(M‘z,) is a constant for large M%.Phenomenological studies of the

threshold regions have been made by Sakurai®, Schildknecht and Steiner’.

W want to investigate in this paper the scaling and duality proper=

ties of Schrdinger type (three-dimensional) quark-antiquark bound
state models. In such a model F(V»fl—) is expressed by
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where ¥(0) is the coordinate space Schrddinger wave function at zero
distance and <QV> = Trace (9.V), with V being the internal symmetry
part of the vector meson wave function. Since
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Eq. (3) can be put into the purely dynamical form
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Since $(0) vanishes for angular momenta R = 1,2,..., only the S-wave
bound states contribute to e+-e- annihilation. The index r denotes the

radial quanturn number, counting the nodes in the wave function.

Ve first discuss the "linear confinement' potential. which has been

advocated very recently in connection with the new particles®.



2. SCALING VIOLATION OF THE STANDARD LINEAR QUARK CONFINEMENT
MODEL

In the nonrelativistic description of quark-antiquark bound states, one

usually® starts from the Schridinger equation

&Y + m(E-V)Y = 0 (7)
and relates the eigenvalues E to the bound state masses M by

M= 2m+E . (8)

For a linear potential V:VO + hR (R*= ;2), the Schr8dinger equation
has analytical solutions for S waves, which can be expressed in terms

of an Airy function and its derivative®:
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where B=(m.>\)1/3- The a, denote the position of the nth zero of Ai(z).

An approximation to the a, is given by!?

a, = ~[ 3 tne1) 12700 (14 0 [T (10)

which even reproduces the value for a, within 1%.

The eigenvalues E are given by
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Note that |¢(0}]? is independent of r
br |y (0)]% = 8% . (12)

We now insert Egs. (S), (11} and (12) into Eq.(6), obtaining
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When we consider large r, we may neglect the constant 2m + VO’ and from

the asymptotic expression (10) we find

—— const
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Thus, the linear confining potential with the identification M = 2m + E
does not scale for large bound state masses and, consequently,it cannot

satisfy duality in the large q2 region.

W are well aware of the criticism this statement may receive. W have
used the model in the region of large excitations, where the naive
Schr8dinger description probably fails. However, from a mathematical
standpoint, we may ask the question: how is scaling restored in this
Schrbdinger model ? Since we want to keep the probability interpreta-
tion of $(z), it is obvious that we have to play with Eq. (8), i.e., the
dependence of the bound state mass M on the eigenvalue E.

3. QUADRATIC MASS FORMULAE AND DUALITY

The requirement of scaling,at large g%, of a Schrddinger bound state
model implies that R (r), defined in Eq.(6), should become a constant,

which has to be equal to one, if duality is to be satisfied.
For the linear confining potential, discussed in the previous section ,
it is easily seen, that scaling is obtained, if we relate the eigenva-

lues Er’ Eq. (11), to the masses Mr via
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So far this relation is ad #oc, and thus the entering of the quark mass
and the potential parameters into Eq.(15) is not specified. W may,

therefore, parametrize Eq. (15) as

C
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where ¢y has the dimension of a mass, and ¢, is a c-number (# = e = 1)

and R denotes the ciiaracteristic range of the wave function. If we
require duality to be satisfied for large r, we may determine ¢, from

Rred(r) = 1. By simple algebra, one finds c1=(12)2/3.

We have investigated other '"confining' potentials which have analytical
solutions, namely, the three-dimensional harmonic oscillator and the
spherical bag. The surprising result is that all these models scale
for large radial quantum numbers r, iff the identification Eq.(}S) is
made, i.e., if we linearly relate the Schr8dinger eigenvalue and the
bound state mass squared. A compilation of the normalized S-wave func-

tions and the mass formulae is given in Table I.

Since we can hardly believe that this result is purely coincidental, we
may look for a deeper reason and a generalization, independently of the
specific form of the potential. in fact, the relation between M; and

Er arises because of the property

d
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which can be obtained!! from the WKB solution
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with the Bohr-Sommerfeld quantization condition

;’[Rmax dﬁl:Z}J(Er—V(ﬁ))]l/z =7, h. », (17Y)

provided V(R) is smooth around the origin.

W also investigated a non confining potential which is singular at the
origin, namely, the Coulomb potential. This potential ‘'scales', even
for a mass formula

Mrc‘ = const + const'. £, , o0 . (18)

W should point out that in this case the limit of large r implies
M, > const, whereas for confining potentials M. > const' . (Er)‘/z.
Amusingly enough, one could generalize Eq.(18) to an arbitrary mass
formula

M,=flCy +E), E =1 . (18"

r L(r+1)2

The only restrictions are that f{z) increases monotonically with x and
f(c,) is finite. To sketch the proof:
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Thus the Coulomb case is rather exceptional*.
* Another example!? of a solvable nonconfining potential is

V(R)~-(cosh R/RD)'Z, which we did not work out here. But it should be

mentioned that, in this case, the number of bound states is finite.

14



4. SUMMARIZING REMARKS

V¢ have investigated the scaling behaviour of quark =antiquark bound
state models of the Schr8dinger type. Under the assumption that this

description makes sense even for large excitations, we have shown that,
for the class of analytically solvable confining potentials, the local
average of high mass resonances exhibits scaling behaviour and, there-
fore, can be made dual to the parton model, iff the eigenvalues of the
Schrdinger equation are linearly related to the mass squared. W have
given a proof that the quantum mechanical property, Eg (16), underlying
the relation between M and E is rather independent of the specific form

of the potential.

W have also shown that the Coulomb potential exhibits scaling for a
rather general class of mass formulae. But, clearly, it does not con-

fine the quarks.

The probtem which remains to be solved, is the dynamical justification
of a Schr8dinger type model with a quadratic mass formula. As a " hint ,
we would like to mention that quadratic mass formulae arise more or less
naturally in field theoretical bound state models based on the Bethe-
Salpeter equation®. This analogy, however, may be misleading because
of the relativistic nature of these models. Recently, Craigie and
Preparata13 have made an Ansatz which'starts from a Bethe-Salpeter type
model, in which the time component of the amplitude is eliminated.These
authors solved the "bag" with the radii increasing with the bound state
mass. W are not surprised that this model shows scaling, since the
essential input seems not to be the 'bag-potential' but rather the qua-

dratic mass formula.

One of us (M.K.) would like to thank the Instituto de Fisica Tebrica
for inviting her, for the warm hospitality and the pleasant working
conditions. She acknowledges the financial support, during her stay,
from CNPq. (Rio de Janeiro) and DAAD (Bonn-Bad Godesberg) .



REFERENCES AND NOTES

1. For a recent survey of the experimental data, we refer to the
Proceedings of the 't 1975 International Symposium on Lepton and Photon
Interactions at High Energies *' (Stanford, August 1975).

2. See, e. g. M. Gourdin in " Hadronic Interactions of Electrons and
Photons'' (J. Cumming and H. Osborn eds., Academic Press, London and New
York, 1971).

3. R P. Feynman, ' Photon-Hadron Interactions '* ( Benjamin, Reading ,
Massachusetts, 1972).

4. A Bramon, E. Etim and M. Greco, Phys. Lett. 41B, 609(1972).

5 M. BYhm, H. Joos and M. Krammer, Acta Physica Austriaca 38, 123(1973
and in " Recent Developments in Mathematical Physics "', pp.3-116 ( P.
Urban, ed., Springer Verlag, Wien and New York, 1973).

6. J. J. Sakurai, Phys. Lett. 46B, 207(1973).

7. D. Schildknecht and F. Steiner, Phys. Lett. 56B, 36(1975). For the
Han-Nambu interpretation of the new particle see: M. Krarnmer, D.
Schildknecht and F. Steiner, Phys.Rev. D12, 139(1975).

8. T. Appelquist, A De Rajula, H. D. Politzer and S. L. Glashow, Phys.
Rev. Lett. ﬁ, 365(1975); E. Eichten, K. Gottfried, T. Kinoshita, J.
Kogut, KD. Lane and T. M. Yan, Phys. Rev. Lett. 34, 369(1975); B J.
Harrington, S.Y. Park and A. Yildiz, Phys. Rev. Lett. 34, 706(1975) ;
R Barbieri, R Kdgerler, Z. Kunszt and R. Gatto, Ref.TH.2036-CERN;

J. S. Kang and H. J. Schnitzer, Brandeis University preprint, June 1975.
9. For a discussion of the properties of the S-wave solutions of the
linear potential we refer to: P.Leal Ferreira and J.A.Castilho Alcarés,
IFT 200/75, Lett.N.Cim. 14, 500(1975).

10. M. Abramowitz and |I. A. Stegun, Handbook of Mathematical Functions,
p. 450 (Dover Publications, Inc., New York, 1965).

11. We would like to thank R Haag and H. Joos for a very helpful dis=
cussion on this point.

12. We would like to thank J. Leal Ferreira for calling this to our
attention.

13. G. Preparata and NS. Craigie, Ref. TH. 2038-CERN; G. Preparata,
Lecture at the ' International Summer Institute in Theoretical Particle
Physics'' (Hamburg, September 1975).

16





