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Given a two-body force, there seems to be two distinct starting points in the many-body 
perturbation-theoretic problem of computing the energy per nucleon of infínite (as well 
as finite) nuclear matter: ordinary Hartree-Fock theory and the Brueckner theory. The 
former theory, treated almost exclusively with plane-wave solutions, has long-ago fallen 
into disuse, to yield to the latter, apparently more sophisticated, theory. After a brief 
outline of many-fermion diagramatic techniques, the Brueckner-Bethe-Goldstone series 
expansion in terms of the density is discussed as a low density, non-ideal Fermi gas theory, 
whose convergence is analyzed. A calculation based on particle-hole Green's function 
techniques shows that a nucleon gas condenses to the liquid phase at about 3% of the 
empirical nuclear matter saturation density. The analogy between the BBG expansion 
and the virial expansion for a classical or quantum gas is studied with special emphasis 
on the apparent impossibility of analytically-continuing the latter gas theory to densities 
in the liquid regime, as first elucidated by Lee and Yang. It is finally argued that ordinary 
H F  theory may provide a good starting point for the eventual understanding of nuclear 
matter as it gives (in thefinite nuclear problem, at any rate) not only the basic liquid 
properties of a definite density and a surface but also provides independent-particle 
aspects, avoiding at the same time the idea of n-body clusters appropriate only for dilute 
gases. This program has to date not been carried out for infinite nuclear matter, mainly 
because of insufficient knowledge regarding low-energy, non-plane-wave solutions of 
the H F  equations, in the thermodynamic limit. 

Dada uma força entre pares de nucleons, existem dois diferentes pontos de partida, 
assim parece, no tratamento perturbativo, a muitos corpos, do problema de se calcular 
a energia por nucleon da matéria nuclear infinita (ou fínita): a teoria usual de Hartree- 
-Fock e a de Brueckner. A primeira dessa teorias, onde quasi exclusivamente são uti- 
lizadas ondas planas, já há bom tempo caiu em desuso, cedendo lugar à segunda, apa- 
rentemente mais sofisticada. Após breve esboço das técnicas diagramáticas para muitos 
fermions, discute-se e analisa& a convergência da expansão em série de Brueckner-Bethe- 
-Goldstone, na densidade, para um gás de Fermi não ideal, a baixas densidades. Um 
cálculo, baseado no uso de funções de Green de partícula-buraco, mostra que um gás 
de nucleons se condensa, passando a fase líquida, a cerca de 3% da densidade de satu- 
ração, empírica, da matéria nuclear. Estuda-se, ademais, a analogia entre a expansão 
de Brueckner-Bethe-Goldstone e a expansão do virial para um gás, clássico ou quântico, 
enfatizando-se, especialmente, a aparente impossibilidade de se proceder a uma conti- 
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nuação analítica da teoriã do gás nucleônico aquela do sistema condensado, o que, pela 
primeira vez, foi elucidado por Lee e Yang. Argumenta-se, finalmente, que a teoria usual 
de Hartree-Fock pode constituir-se em um bom ponto de partida para o eventual en- 
tendimento da matéria nuclear, por propiciar, pelo menos no caso nuclearfinito, a in- 
ferência não somente das propriedades básicas do líquido nucleônico, a uma densidade 
definida, e de sua superfcie, como também aqueles atributos de partícula independente, 
e possibilitando, ao mesmo tempo, por-se de lado a idéia de conglomerados a n nucleons, 
propícia tão somente para gases diluidos. Abordagem desse tipo não foi, até o presente, 
realizada para a matéria nuclear infinita e isso, principalmente, devido ao desconheci- 
mento das soluções de Hartree-Fock, a baixas energias, distintas das ondas planas, no 
limite termodinâmico. 

1. Introduction 

We consider a system of A nucleons interacting through pairwise forces 
and confined in some volume R. The Hamiltonian is 

where vij is an arbitrary N - N  interaction operator dependent on 
position, momentum, spin and isospin variables of the pair (i, j) and 
subject to the usual invariance principlesl under translations, rotations, 
galilean transformations, etc. . The object is to develop an appropriate 
starting point from which one may proceed toward obtaining good 
approximate wave functions and eigenvalues of the A-body Schrodinger 
equation (E, - H) Y, = 0, starting, with a given Hamiltonian, Eq. (1-1). 

Physically, if the A particles are confined in the volume R, we must 
require that the wave functions Y, vanish outside this volume. For 
mathematical conveniente, one substitutes this true boundary condi- 
tion by the familiar periodic boundary, whereby the total wave function 
must obey 

Y . .  . . . , ( . . . , r i  + L,. . . i = 1 , .  . A ;  = x, y, 2, (1-2) 

where Lis the length of a cubic volume R = I?. This relatively simple 
substitution might be justified in the thermodynamic limit (A -, co 
and R 3 co but such that p r N/R = constant), thus providing a 
useful means of studying only the so-called volume effects which, for 
interacting systems, are independent of the specific characteristics of 
the surface, regardless of whether this wrface is an extraneous con- 
tainer, as in "a gas enclosed in a vessel" or, a proper containing surface, 
as in the case pf a "liquid droplet", The condition, Eq. (1-2) (which 



would certainly be satisfied if each particle were described by a plane 
wave), is obeyed if one expands the eigenfunctions 

in terms of the complete, orthonormal, totally antisymmetric, basis 
set, {@, I rn = 0,1,2,. . . a), defined by 

0, = O; Om = (A!)-'I2 det [cpk(x)], 

k (k, s, t), x = (r, oz, zz), 
112 ik.r (~k(x) Q- e x~(zz), (I-3] 

where k = (2n/L)n; (n,, n,, n,) = O, + 1, f 2,. . . . 
We note that the propagation vector k takes on discrete values con- 
sisting of points in a simple cubic lattice structure in momentum space, 
such that the volume of each "primitive cell" is just ( 2 ~ 1 ~ ) ~ .  Hence, 
in the limit A, Q -+ co, with p constant, the number of points equals 
the number of cells, or one may replace sums by integrals according to 

For the ground state of an ideal Fermi gas, one has a sharp step-function 
distribution up to the Fermi momentum hkF so that Eq. (1-4) then 
gives, on allowing for the possibility of four nucleons per k-state, 

The unperturbed problem of Eq. (1-3) can be written in occupation- 
-number representation by making the correspondences 

where a: are fermion creation operators; the N-body state index, m, 
designates the set {. . . , nk, . . .) of single-particle occupation numbers 
(O or 1). One may, further, characterize a Fermi sea, or unperturbed 
ground state ("vacuum state") by 

ao (with nk = 1 for a11 I k 1 I kF; nk = O for a11 I k 1 > k F ) ,  (1-7) 



so that, since for any m one has Wm = (h2k2/2m) nk, one may order 
k 

a11 the eigenvalues as W o  < W1 I W2 I . . . . In particular, the total 
energy of the unperturbed Fermi sea will be, using Eqs. (1-4) and (1-5), 

W ,  = c (h2k2/2m) 8 (k, - k) = 
k 

", d3k (h2k2/2m) 
(W 

Finally, the Hamiltonian, Eq. (1-11, may be expressed as 

(k;& Iv12 I klk2) = Q-2 d3rl d3r2 exp [- i(k; . r, + V, . r2)] x 

x (s;t;siti I v12 I sltls2t2) exp [i(kl . rl + k2. r2)] . (1-9b) 

Any approximate approach to the problem of solving the Schrodinger 
equation (in either coordinate or occupation-number representations) 
can be analyzed systematically within the framework of perturbation 
theory. For the time being at least, let us restrict the discussion to the 
exact ground state of the interacting system Eq. (1-1). As the unper- 
turbed ground state cari be assumed non-degenerate, one may apply 
ordinary Rayleigh-Schrodinger perturbation theory, in which the total 
energy of the exact ground state is given by the series, up to third order, 

where 



with Wo given by Eq. (1-8). This series has been reinterpreted by 
~ r u e c k n e r ~  and Goldstone3, in terms of a "linked cluster" theorem, as 

m 

= Wo + C (contributions of D,), 
n = l  D, 

the last summation being only over linked Feynman diagrams D, of 
order n, which is the degree of v. The first few diagrams, up to second 
order, are 

We briefly state the rules for calculating the contribution from a given 
linked diagram : 

a) to each interaction line is associated the factor 

b) between two successive interaction lines one introduces the energy 
denominator, with & h2k2/2m, 



c) each diagram contributes with the factor (-)'+h/g, where l is the 
number of closed loops, h the number of independent hole lines, and 
g equals 2 (or 1) if a given diagram has (or does not have) left-right 
symmetry. Examples : 

d) each diagram partick: line must be summed over a11 possible mo- 
menta aboue the Fermi value I k 1 > kF, while each hole line over 
a11 possible momenta below, ( k 1 5 kF. Furthermore, if a nucleon 
line begins and ends at the same vertes of a diagram, it should be 
accounted as a hole line [viz., the first two diagrams on the right-hand 
side of Eq. (1-1 I)]. 

2. Brueckner Theory as a Low-Density Approximation to a Non-Ideal 
Fermi Gas 

In this section, we discuss the highlights of the original Brueckner 
theory and subsequent modifications: a derivation is sketched in the 
Appendix. In order to compute the successive contributions in Eq. 
(1-lOb), one must evaluate the integrals (1-9b). If C2 is considered very 
large, these integrals simplify to 

= C2- l  6(k; + kl, k1 + k2) d3r (sítislt; I v12 I sltls2t2) eap [i(kl - J - kf1  . r ,  (2-1) 

where r = rl - r2; the notation 6(k, k') for the Kronecker delta has 
been adopted for graphical convenience. For the interaction operator 
v12, in Eq. (2-I), one should prefer to insert a "realistic" N-N potential, 
i.e., as given by two-nucleon experiments. Since around 1950, after a 
suggestion made by Jastrow4, the momentum dependence of the N-N 
potential v12 has very frequently been simulated by a local, velocity 
independent, infinitely repulsive (hard-cored), potential, 



the hard-core being surrounded (r > r,) by a finite, short-ranged, 
attractive part of some kind. Basic theory5 has to date determined 
unambiguously only the tail (r 2 2fm) of the potential as the one-pion- 
exchange contribution. The well-known "realistic" potentials6 of 
Hamada - Johnston and of the Yale group, as well as that of Reid7, 
for example, are of this general type. Such potentials would, of course, 
make the matrix elements (2-1) infinite, thus invalidating ab initio any 
perturbational approach based on the kinetic energy operator as the 
unperturbed Hamiltonian. 

To circumvent this difiiculty, Brueckner8 suggested a rearrangement 
of the perturbation series so as to eliminate the bare, singular, N-N 
interaction, Eq. (2-2), in favor of a renormalized nonsingular ("effective") 
two-particle interaction operator, K 2 .  This was accomplished by 
effecting a partia1 summation to infínite order of the following par- 
ticle-particle ("ladder") fragments of our groundstate energy diagrams: 

\ 
or formally, according to the rules given above, 

in which the unspecifíed quantity 6 will depend, in accordance with 
rule (b) above, on the particular structure of the remaining part of the 
diagram for which the "ladder summation" is being considered. The 
K-matrix element on the right-hand side of (2-4) is said to be "on-the- 
-energy-shell" if 6 = O and "off-energy-shell" if 6 # O. The ladder 
summation (2-4) leads to a second-order integro-differential equation, 
the Bethe-Goldstone equation9, for a "correlated two-particle wave 
function" $,,,,(r,, r,) defíned as 

Thus, in view of Eq. (2-2), it becomes possible to require of that it 
satisfies the boundary condition 



1Clktkz(rl, r2) = O for a11 r = I r, - r2 I I r,, 

so that the reaction matrix elements on the right-hand side of Eq. (2-4) 
are then clearly nonsingular and the perturbation approach has reco- 
vered its original meaningfulness. On the basis of this particle-particle 
ladder summation, Brueckner at first proposed the following starting 
point for determining the total energy of the exact ground state of the 
system : 

- - -  

- - -  

or, formally, applying the rules once more: 

where the required K-matrix elements a11 result on the energy shell, as is 
obvious from the general structure of the diagrams being summed. In 
Eqs. (2-5), as the particle and hole lines are "bare" lines, the correspon- 
ding energy denominators contain pure kinetic energies. 

Were these lines "dressed", with additional (negative) potential energy, 
one would get an unperturbed Hamiltonian which is more than just 
the kinetic energy operator of Eqs. (1-3) and the addition would be 
expected to provide improved convergence properties for the series of 
Eq. (1-10a). This "dressing" is accomplished by considering an addi- 
tional class of diagrams. These are obtained by applying the following 
procedure to both particle and hole lines; we discuss first what happens 
to hole lines: a) replace every "bare" hole line in the energy diagram 
of Eq. (2-5) by the sum of a11 possible K-matrix "bubble" plus exchange 
"half-oyster" insertions, namely, 

, I : \n 

replaced by 1 ( \ (2-64 



where each new insertion is. according to Eq. (2-3). explicitly 

b) each hole line on the r.h.s. of (2-6b) is then in turn replaced by the 
possible K-matrix "bubble", plus exchange, insertions (2-6a); c) and 
so on indefinitely. However, it then happens that the inserted K-inte- 
raction lines are off-the-shell but can be put on-the-energy shell, as 
was shown by Bethe, Brandow and Petschekl0, by adding a further 
class of diagrams with K-interaction lines (see Appendix). This new 
class has the same structure as the class described in the above procedure 
except that successive K-interaction lines are arranged differently. 
Now, as regards particle lines: if the "bubble" plus exchange insertions 
of Eqs. (2-6) are also used to dress bare particle lines, it turns out that 
these inserted K-interaction lines are always o#-the-energy-shell and 
cannot be put on-the-shell by the BBP "factorization-theorem" technique. 
The net result of this new "dressed" theory is that Eqs. (2-4) and (2-5) 
are replaced by the Brueckner-Hartree-Fock equations (as interpreted 
by Bethe-Brandow and Petschek): 



for J k J  > kF; 

The "average" operation appearing in Eq. (2-7d) is over additional 
hole line indices k2, k3, . . . , which are present and make the particle-par- 
ticle ladder K-interaction "bubble" plus exchange insertions, for par- 
ticle lines, off-the-energy-shell. Without this somewhat arbitrary 
procedure, the common potential Uk for particles would not depend, 
as it should, on only one orbital state index k. The BHF equations (2-7) 
seem as an improvement over the ordinary Brueckner equations (2-4) 
and (2-5) as one now has, through the dressed single-particle energies E ~ ,  

an unperturbed Hamiltanian which is more than just pure kinetic 
energy as in Eqs. (1-3). One might thus expect an improved conver- 
gente of higher order corrections based on Eqs. (2-7) as starting point. 

The BHF theory as sketched above corresponds to the partia1 summation 
to infínity of a selected class (or rather classes) of diagrams. The crucial 
question, of course, is: why are these particular classes selected to the 
exclusion of other classes? It appears that the only apparent expla- 
nation is to associate the resulting selected set of diagrams (the "ladders" 
with dressed particle and hole lines) with an assumed small density of 
the manybody system under consideration. This was shown some 
time ago by Hugenholtzl', as well as others, and can be seen as follows. 
The contribution of a fypical perturbation-theory diagram with nh 
independent [recall the Kronecker-b of Eq. (2-I)] hole lines and n, 
independent particle 1ine:s ("bare" or "dressed") will be according to 
the rules stated above quite generally 

where the function F includes the two-particle interaction matrix ele- 
ments as well as the energy denominators appropriate to the given 
diagram. As the energy denominators are never singular, and assuming 
a non-singular interaction v12, the function F is then analytic and may 
be expanded in a Taylor series in any of its momentum-vector argu- 
ments. For low densities, kF -4 0, and every hole-integration thus 
brings in a factor 



lo

k
F 4.n d3k F(. . . , k, .  . .) 3 F(. . . , O, . . .) ki + O(k$). 

In the sam.e limit, every particle-integration becomes 

d3k' F(. . . , k', . . .) = d3kt F(. . . , k', . . .) - d3k' F(. . ., k',...) li' 
3 Lrn d3kt F(. . . , k', . . .) + O(k;). (2- 10) 

Consequently, the total contribution to the potential energy from any 
set of diagrams having at least nh independent hole lines can be expres- 
sed, with the help of Eq. (1-5), as a power series, in the density, 

As there are no ground-state diagrams with none or only one hole line, 
the extreme low-density limit evidently dictates accounting only dia- 
grams with two independent hole lines in first approximation. This is 
precisely the original "bare" Brueckner theory, Eq. (2-5), or the "dressed 
BHF theory, Eqs. (2-7). The next obvious correction would be to 
include a11 diagrams with three independent hole lines, etc.. 

The BHF equations (2-7), however, evidently contain contributions 
from only selected 3-hole-line diagrams, as well as from 4-hole, 5-hole, 
etc., diagrams. The inclusion of a11 three-hole diagrams (the so-called 
"three-body clusters") has been considered recently by Bethe12 and 
others, using a three-body generalization, based on the Faddeev theory13, 
of the two-body Bethe-Goldstone equation. Accepting the unavoidable 
approximations made in dealing with calculation of the "three-body 
clusters", one obtains, for the total energy per nucleon of nuclear matter, 
a series expansion in powers of the particle density p which, in view of 
Eqs. (2-8) and (2-ll), would in principle be exact up to and including 
the p2+2/3 term, namely, 

where the fi rst term is the kinetic energy contribution, Eq. (1-8). This 
procedure'" based essentially on the BHF Eqs. (2-7), is the natural 



extension of the original BHF theory to higher and higher density re- 
gimes and is now known as the Brueckner-Bethe-Goldstone theory 
of nuclear matter. Excellent reviews of this theory, which has also been 
extensively applied in recent years to finite nucleilg, are listed in Ref. 14. 

Using the BBG theory, severa1 authors14, since Brueckner's initial 
work, have calculated the binding energy per particle of infinite nuclear 
matter for different values of kF and different N-N potential models. 
The values of kF are related to p, by Eq. (1-5), and EzRG/A, plotted 
against p, shows a minimum at some saturation density p, > O. These 
results are compared, respectively, with the volume energy per nucleon 
of the semi-empirical mass formula and the experimental central den- 
sity of heavy nuclei. It is entirely possible that these "saturation minima" 
might be completely spurious, since these calculations are based on an 
approximate function of density, like Eq. (2-12), so that genuine results 
can only be expected if the saturation density p, lies in the domain of 
small p for which the approximate, mutilated (even though it contains 
an infínite number of terms) series acceptably converges to the left-hand 
side of Eq. (2-12). (A very simple illustration of "spurious minima" 
is seen by approximating the function exp (-x), for x 2 O say, succes- 
sively by 1 - x, 1 - x + (1/2)x2, etc. . 

It has recently been recognized that the BBG series, (2-12), which to 
date14 includes up to 4-body clusters, can in fact be rewritten15 as the 
series 
EBBG o / A = ~ ~ ~ / ~ + B I C + B ~ I C ~ + ~ / ~ + B ~ ~ L ~ + ~ / ~ + C I C ~ + C ~ I C ~ ~ ~ / ~  

+ c2 K ~ + ~ / ~  + . . . , (2-13) 

where the new expansion parameter is 

in which ~ ( r )  is the "wound" function16 (non-perturbed minus pertur- 
bed two-body BG wave function). This function is basically deter- 
mined by the short-ranged repulsion of the two-body force in the BG 
equation. The coefficients in the series (2-13) will depend on both 
strength and range of the assumed two-body force, as well as on the 
BG wave function. Because of its rapid "healing", ~ ( r )  will differ appre- 
ciably from zero only for r < 2 to 4 fm and so, the "wound integral 
may be interpreted as the specific volume of correlation v,,,, = p,!, of 



the two particles. Calculation~'~ show that K e 0.16 for a "realistic" 
soft-cored potential and this has been taken as evidence that, at last, 
a small expansion parameter has been found for the nuclear problem, 
an assertion which would undoubtedly be true provided that the radius 
of convergence of the series (2-13) were, say, unity, as occurs, e.g., 
with the geometric series representation of (1 -x)-'. The series (2-13), 
however, is not even a Taylor series, in K, and there are no convincing 
arguments to exclude the possibility that its radius of convergence is 
not less than the above mentioned value of 0.16. The physical meaning 
of K has been given as the "fractional time" a pair of particles are found 
in correlaied motion, i.e., not independent motion, an interpretation 
which obviously relies on the assumption that the radius of conver- 
gente is unity. The two-particle correlation, which determines the 
value of v,,,, may not give the entire true correlation effect, since v,,,,, 
in Eq. (2.14), is obtained from a low-density two-hole-line theory with 
selected 3-hole, 4-hole, etc., correctiops, as discussed in connection 
with the BHF Eqs. (2-7). It is not clear, then, whether three-and 
more-hole terms will not drastically alter the correlation density p,,,,, 
so that the value of K quoted above seems highly uncertain in con- 
nection with real nuclear matter. Indeed, the fact that "healing" disap- 
pears, making t.,,,,.,. and hence K infinite, upon inclusion 'of hole-hole 
ladders (see Appendix) in itself, constitutes a strong indictment against 
the concept of "healing" as a real physical phenomenon present in 
nuclear matter and consequently on the concept of K- as a small expan- 
sion-parameter. 

But regardless of the exact value of vCorr = p&Tr, the higher-orcter terms 
in the BBG series, (2-13) or (2-12), will grow in importance as density 
is increased, i.e., as p increases so do the roles of the three-body, four- 
body, etc., cluster effects. The crucial question now is: what is low 
and high density for the nuclear matter system? A clarification of this 
point is attempted in the following two sections. 

3. High-Density Fermi Gas RPA Instability 

The purpose of this section is to carry out an estimation of the critica1 
density at which a dense gas of fermions, interacting through a "realistic" 
purely-central N-N attractive plus repulsive potential, becomes unstable 
due to the appearance of spontaneous density fluctuations of the 
kind that set in, as a gas is compressed to the condensation point. A 
fuller account of this phase transtion problem appears elsewhereZ3. 
The procetlure here is to solve a transcendental dispersion relation, 



based on the so-called ring diagrams only, for the energy-spectrum 
of the elementary (collective) excitation associated with the density 
fluctuation. Th"e spectriim appears as purely real for densities below 
a critica1 density, and partly imaginary for densities above that value, 
leading thus to an exponentially increasing amplitude in time which 
is interpreted as setting, in the gas-to-liquid transition point. 

Consider the Fermi gas, particle-hole, Green's function 

Q(q; t - t') - (,TO 1 T(P,(~)P;(~')) I TO), (3-1) 

where the expectation value is between the exact many-particle ground- 
state eigenfunction of the Hamiltonian, Eq. (1-1); Tis the time-ordering 
operator and the collective variables are defined in Heisenberg repre- 
sentation by 

pi(t) = exp ( A )  - Ht pa exp ( h )  -- Ht , 

where p(r), the density operator in configuration space, is given by 

where a: = a+k,,, is the fermion creation and ak the fermion annihilation 
operators. If the Fourier transform of Eq. (3-1) is defined as 

then the elementary-excitation spectrum20, co = co(q), follows from 
the poles of Q(q; co). This quantity is expressible as an infinite sum 
of so-called "polarization", or "density-fluctuation", Feynman 
diagrams20. 

At very high, but still gaseous, densities (and provided the interpar- 
ticle interaction is long-ranged), the main contributions to Eq. (3-4) 
will come from the sa-called "ring" polarization diagrams, leading 
essentially to a form of the wellknown random-phase aproximation 
(RPA), narnely, 



The salient feature of this particular class of diagrams is that each 
one contributes with the Fourier-transformed interaction, 

raised to the nth power, n being the order of the diagram, i.e., the number 
of interacting lines. Any diagram of the same order but which does 
not belong to the ring type, (3-5), will contribute, in nth order, with 

and its overall value is considerably smaller than the corresponding ring 
diagram, provided the y(q)'s are heavily concentrated around small q 
values (long-rangedness). To illustrate this, consider the two third- 
order cases: 

In (3-6), I k J > k F , J k - q J ~ k ~ , J k ' J > k ~ , J k ' - q J ~ k ~ ;  in (3-7), JkJ>kF,  
( k - q ( <  k,, (k+q'I > k,, (k+qr-q(< k,. The 4's are the appropriate 
energy denominators dictated by rule (b) of Sec. 1. Thus, if the y(q)'s 

42 1 



are localized for small q values, the additional restrictions, on the 
k-integration of Eq. (3-'7), will greatly suppress its contribution com- 
pared to that of Eq. (3-6) which has only two restrictions both on the 
k- and k'-integrations. 

If, in Eqs. (3-1) to (3-4), the interaction potential is turned off (H is then 
pure kinetic energy), one may define the (ideal Fermi gas) Green's 
function, Qo(q; o), which turns out to be 

= h212/2m. The dash. in the k-summation means that I k 1 > kF 
and I k - q ( <  kF. 

Using relation (1-4) and carrying out the resulting integrations in 
Eq. (3-8) [see Ref. 22, Eqs. (6) to (8), for example], one is left with 

Now, if v12 is, as before, the two-nucleon interaction, Eq. 
(suppressing, by the moment, spin and isospin variables) 

(3-9) 

(2-1) gives 

where the 6 is the usual Kronecker delta and ~ ( q )  is the Fourier trans- 
form defined after Eq. (3-5). The infinite sum, in (3-9, 1s clearly a geo- 
metric series and, therefore, the ring-diagrams Green's function is just 

a (boson) density-fluctuation propagator. Note that, since in the 
ring diagram summation, (3-5), one has an arbitrary number of hole-lines 
included, this approximation applies for high densities whereas the 
Brueckner ladder summation discussed before is for low densities. 
The poles of Eq. (3-10) are given by the solutions of 



with Qo(q; co) given by Eq. (3-9). The solutions lead to the following 
qualitative results: a) for densities p = (2/37c2)kF below a certain critica1 
value p, one has two branches of stable elementary excitations with 
a phonon-like behaviour as q 4 0, namely, col,2 E c1,~q, for small q, 
with c l , ~  the real propagation velocities of the corresponding excita- 
tions; b) for densities p 2 p,, both cl and c2 go through zero at p = p, 
and, for p > p,, one of them becomes complex so that an instability of 
the gaseous phase has appeared. Hence, it suffíces to take the simple 
special case co = O = q, in Eqs. (3-9) and (3-ll), to obtain the value 
of the critica1 kF. associated with p, by Eq. (1-5). For an attractive 
interaction, v(q) = - 1 v(q) 1, one immediately obtains the result 

k$ I v(0) I = 27c2h2/m. 

Introducing spin and isospin one has, instead of Eq. (3-lO), the equation 

QK*(~; co) = Qo(q; co) [I + (fia)- '( - )'+ w(q)Qo(q; o)] - ', (3-12) 

where is the spin-isospin-dependent N-N potential which satisfies 
the Pauli principle through the simple requirement that 1 + S + T= odd, 
1 being the relative angular momentum, S and T the total spin and 
isospin of the two nucleons, and the 6-j symbols are the standard ones. 
The quantum numbers 3, characterize the collective excitation 
boson. The poles of Eq. (3-12), for o =O, are then given by 

in which we define the dimensionless variable y E q/kF. 

Simplicity dictates that for v:$(,), in Eq. (3-13), we use the purely central, 
even-state Tubingen p ~ t e n t i a l ~ ~  which is a superposition of three 
gaussians (one short-ranged repulsive plus two longer-ranged attractive) 
for each, singlet and triplet, states: the six adjustable parameters in 
each state are fitted24 to N-N phase-shift and deuteron data. In order 
to maintain consistency with the long-range assumption cited before 
to justify predominance of ring diagrams, we suppress* the (soft) repulsive 

*This procedure is not essential, since straighforward use of a Skyrme-Moszkowski 
"modified delta in te~ac t ion"~~,  which in addition saturates nuclear matter at the correct 
density, yields a critica1 density smaller by an order of magnitude. 
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cores but account for their presence in a rough way by reducing the 
total available volume by the corresponding "excluded volume" given 

2~ 3 by A - r o ,  with r. taken (roughly) as the interparticle distance at 
3 

distance at which the Tübingen potential changes sign (ro 0.67 fm) 
so that the effective density becomes 

As a consequence of having no odd states, in the adopted interaction, 
one has only (ST) = (01) and (10) and this leads, in Eq. (3-13), to the 
collective excitation modes having (ST) = (OO), (Ol), (10) and (11). 
Figure 1 shows vgF(q) for the attractive gaussians of the Tübingen 
potential in the four excitation modes mentioned. Figure 2 displays 
the function in the square brackets of Eq. (3-14), and is seen to be non- 
-increasing in y. Thus, Eq. (3-14) can be satisfied only if (-)S+T+'v&q) 

Fig. 2 



is positive; Figure 1 shows that this occurs only for the (3, T )  = (O, O) 
mode, i.e., for the ordinary (spacial) density-fluctuation. (The remaining 
modes correspond to various spin-isospin-density fluctuations but 
are relevant only if the interaction were repulsive.) A purely repulsive 
interparticle force will not, of course, produce spacial condensation 
as - yO0(q)  is then always negative and Eq. (3-14) has no solution. Finally, 
Figure 3 shows the graphical solution of Eq. (3-14) for severa1 selected 
values of y = q/kF 2 0. Combining Eqs. (1-5) and (3-15) one may 
express the effective density in terms of kF; the lowest value of kF 
for which a solution exists indeed occurs for q =O, i.e., when both 
the bracketed function in Eq. (3-14) as well as - vtt6(kFy) are maximized. 
One then has 

so that this value of kF may be used in Eqs. (1-5) and (3-15) to deter- 
mine &. Note that the onset of density fluctuations in the Fermi gas 
are here determined exclusively by the volume integral of the attractive 
parts of the N-N interaction: a weaker attractive portion makes for a 
smaller slope of the y = O line in Figure 3 and thus gives a higher critica1 
density. 7he striking result is that condensation appears at a density 
of only $c 0.03pS, where p, is the known saturation density of nuclear 
matter. 

In determining the critica1 density at which the unstable density fluctua- 
tions appear, we have made the crucial assumption that, among a11 
the polarization diagrarns which together would give the exact par- 
ticle-hole Green's function, Eq. (3-I), the ring diagrams are the most 
important. The justification of this assumption seemingly relies on 
both large gas density and long interparticle force range. However, 
the resulting instability condition is very meaningful as it is related 
with the condition that a plane-waves determinantal zero-order state 
ceases to minimize the energy of the non-perturbed single-particle 
Hamiltonian, leading thus to the breakdown of any H F  perturbational 
approach based on a plane-waves determinant. Detailed consideration, 
from this viewpoint, of the gas-to-liquid phase transition in a many- 
-nucleon system is found in RefsZ3, where the critica1 density found 
here is related to the end of the gaseous metastability branch. 





4. Analogy with the Viria1 Expansion for a Real Gas and Condensation 
Theory 

It is well-known that the idea of expanding physical quantities of 
a many-body system as a series in the density, originated in the studyZ6 
of a classical gas system under a given total potential energy function. 
In the simplest case, additivity is assumed for the potential energy, as a 
sum of pair potentials v(rij) taken to be, e.g., a Lennard-Jones shape 
having a short-ranged attraction (- rc6) plus a strong repulsion at 
shorter separations (- rij--I2) and a minimum value at an equilibrium 
distance r*. Starting from the partition function, which is just the 
phase-space integral of exp (- H/kT), where k is the Boltzmann's cons- 
tant, 7' the absolute temperature and H = T + u i j  the classical 

i i >  j 

Hamiltonian function, MayerZ6 was able to deduce the heretofore 
semi-empirical equation of state for real gases 

The so-called virial coefficients BZ(T), B3(T), . . . , for the classical gas 
turn out to be universal functions of kT/&, where (-E) is the minimum 
value of the two-body potential, so that pv/kT is a universal function 
of kT/& and p/po (law of corresponding statesZ9). (For a quantum 
gasZ9, of either fermions or bosons, one still has an expansion of the 
type of Eq. (4-1) except that now the coefficients Bz, B3, .-, depend 
in addjtion on the dimensionless quanturn parameter h/Jme r* where 
h/&& is essentially the de Broglie wavelength of a nearest-neighbor 
pair of molecules with relative kinetic energy E.) For the classical 
case at least30, the coefficients Bz, B3,. . . , are fully determined by 
quadratures from a given interparticle potential function vij, viz., 

B2 =- ( T a ) - '  Jd3rlJd3rZ [exp (- v12/kT)- I], 

etc.. Now, there evidently exists a close analogy between the virial 
expansion, Eq. (4-I), in p/po, and the Brueckner - Bethe - Goldstone 
series, Eq. (2-13), in K = p/p ,,,,. 

The virial expansion, Eq. (4-I), has turned out to be very usefulZ8 
in predicting the thermodynamic properties of real but dilute gases 



(under the assumption of pairwise additivity: deviations between 
calculated and experimentally-deduced higher-order virial coeficients, 
from B3 on, have been attributed at least in part to this restrictive 
assumption). But even putting this latter discrepancy aside and taking 
the pairwise attractive-plus-repulsive force as a model, it is presently 
known3' that the radius of convergence of Eq. (4-1) is considerably 
less than unity, that is, it converges only within the gas region. In 
the early days of the Mayer theory, a t t e m p t ~ ~ ~  were made to extend 
the virial expansion beyond its convergence circle in order to get a 
liquid eqiiation of state, as well as determine the condensation density. 
This extrapolation lead to the general result32$34 that, in the pressure- 
-volume diagram, ali isotherms below the critical one were horizontal 
for a11 volumes below the predicted condensation volume, meaning 
that the theory was apparently incapable of producing a pure liquid 
phase (for which the isotherm must of course rise rapidly with decrea- 
sing volume). The failure of these attempts was not clearly understood 
until Lee and Yang33 studied the analytical properties of the virial 
grand partition function with careful emphasis on the !2+ oo limit. 
They produced a very probable explanation of why the Mayer virial 
expansion theory failed in the pure liquid region: the pure liquid 
isotherm is not continuable analytically the pure vapor isotherm, 
as the two are in fact separated (below the critical temperature) by a 
fiat segment along which both phases coexist in equilibrium. The dif- 
ficulty with the Mayer theory in constructing a correct liquid theory is 
thus clear : it is an unjustified extrapolation from the low-density gaseous 
region. Attempts starting from the high-density crystalline side (viz., 
the so-called "hole", "cell" and "cell-cluster" theories) have since 
a ~ p e a r e d ~ ~  but to date have had only limited success. 

5. Conclusions 

Throughout the history of nuclear physics there has existed the ten- 
d e n ~ y ~ ~  to associate the gas phase with independent-particle behavior 
and the liquid phase with strong-interaction or collective behavior, 
both aspects being considered to a large extent self-contradictory. 
The former association is probably due to the notion16 that "strong, 
short-ranged, forces are not compatible with independent-particle 
motion", so that one is somewhat obliged to adopt a low-density, 
Fermi gas theory, e.g., the "independent-pair model" or, basically, the 



BHF theory. The natural step beyond this point was the BBG density- 
-power-expansion theory. But, since no a priori assurance of the con- 
vergence of this theory exists, we feel that a meaningful treatment of the 
nuclear problem by successive approximations will be correctly ini- 
tiated only if the basic physical properties of the nuclear Eiquid state 
are incorporated (viz., the surface and a fixed density) from the very 
beginning into the unperturbed, zero-order Hamiltonian. A "strong- 
interaction" model, like a quantum-liquid theory, based on a self- 
-consistent, single-particle, potential well, deduced, e.g., by a Hartree- 
-Fock approximation, with non-singular N-N forces, as carried out 
for finite ~ y s t e m s ~ ~ ,  gives not only the surface property and a fixed 
density but, moreover, avoids a11 considerations related to clusterings 
as would be appropriate in dilute gases. The ordinary HF approach 
is furthermore capable in principle of reconciling both individual 
particle and collective aspects of real nuclei. 

Great care, however, must be exercised in avoiding the use of plane- 
-waves (or trivial) solutions to the HF equations, for an infinite system, 
as the existence of non-plane-wave (or non-trivial) solutions has been 
e~tabl i shed~~ for a wide variety of both repulsive as well as attractive 
two-body interactions. Unfortunately, none of these are quadratically- 
-integrable, over a very large but finite volume a, in such a way as to 
guarantee a proper surface, i.e., one that will prevent the orbitals from 
"leaking to infinity" if the "walls" of a normalization volume Q are 
receded. This latter deficiency is most clearly manifested in the fact 
that, in every nuclear matter calculation, the energy per particle increases 
for densities below the predicted saturation density, instead of remaining 
constant40. 

The authors gratefully acknowledge the hospitality of Facultad de Ciencias Físicas y 
Matemáticas, Departamento de Física, Universidad de Chile, in Santiago, where this 
collaboration has begun. 

Appendix. Green's Function Derivation of Brueckner Theory4l 

The Brueckner-Hartree-Fock equations, (2-7), as interpreted by Bethe, Brandow and 
Petschek", correspond to a single-particle HF-like picture (consisting of stable quasi- 
particles) in which short-range correlations of the Brueckner ladder summation kind 
are included. To arrive at this scheme, severa1 approximations must be made and these 



are appreciated more lucidly by starting with the one-particle Green's function defined, 
diagramatically, by 

and, formally, by 

Gij(t - t') = G$(t - t') ai j  + 

The shaded rectangle, in Eq. (A-1), is a generalized Brueckner reaction matrix defined as 

the dashed line being the bare interaction v,,. Formally, Eq. (A-4) is written a5 

This formulation is more general than the usual BHF theory in that: a) both particle- 
-partide as well as hole-hole ladders are included since, in Eq. (A-4), both t > t l  and t < t l  
are possible; b) ladder insertionsare possible as well as particle lines, as is clear from 
Eqs. (A-1) to (A-3). 



Assume the K-operator, of Eq. (A-4), to act instantaneously: 

Kil,km(t - t ') = 6(t - t ') Ri$:. (A-6) 

Then, Eq. (A-2) becomes an ordinary HF propagator in which v12 is replaced by KyyF 
and can be written as 

where nk are occupation numbers, the E'S are single particle energies and, the c's, amplitude 
coefficients in the single-particle states 

9 i ( x )  = cji'hj(xh 
j 

where 

t,bi(x) = Q- liS exp (iki  . r) xsi(oZ) xzi(z,). 

The c's and E'S satisfy the BIIF equations 

(T - &j)  C i j  + 1 R!,km (1 C,, CZ n,) C k j  = 0. 
klm 

('4-8) 
S 

To obtain the total ground state energy, in the BHF theory, we proceed as follows. 
Consider the exact retarded Green's function Gij(t - t') r - (a)(tl)ai(t)), where the fermion 
operators are in Heisenberg representation, and the expectation value between exact 
ground state wave functions. If the total Hamiltonian is H@) = T + o(g), then 

where, now, expectation values are between ground state solutions of H(g). Now, the 
commutator is just 

[ H ,  aj(t)I =: - T, aj(t) - g 1 Vjk,lm a&) a&) adt), (A-  10) 
klm 

so that, from Eq. (A-9), one can form the relation 

where 
is the 

' ~ ( Y O ( S )  1 / y o ( d ) ,  (A- 1 I) 

[ E & -  H(g)]Yo(g) = O and Eo(l )  is the exact ground state energy. Rut if H; 
unperturbed energy, then 

equals ( Y o ( g )  1 v 1 Y,(g))  and, thus, the energy shift is 

(A-  12) 



and, combining it with (A-12), one has the formula 

1 '  h a 
= l0 5. (; . + r,) Gjj(t ,  t1 , g) t , ; ,  , 

giving the exact energy shift solely in terms of the exact one-particle retarded Green's 
function. This can, now, be used with Eqs. (A-7) and ( A 4  to yield 

which, together with (A-8), constitutes the basic equations of BHF theory. Note that 
the basic assumption, Eq. (A-6), is, strictly speaking, inconsistent with Eq. (A-5), since 
Eq. (A-7) siibstituted into (A-5), gives 

which is energy-dependent as opposed to Eq. (A-6). Standard BHF theory ignores the 
last term in Eq. (A-15) and assumes an "average" constant value of w to reconcile Eqs. 
(A-15) and (A-6). The presence of the last term in Eq. (A-15), i.e., of hole-hole ladders, 
destroys the wellknown healing phenomenon, which occurs if only the particle-particle 
ladders are kept. 

The Bethe-Brandow-Petschek theory is a less restrictive interpretation of Eqs. (A-1) 
to (A-5) than is the BHF theory and also leads to a conventional single-particle picture, 
i.e., stable quasiparticles. The assumptions made here are: a) to neglect completely, 
in Eq. (A-1), a11 hole-hole ladders; b) to replace a11 particle propagators by their zero- 
-order propagator G O;  c) in dressing the bare hole lines, to consider only a certain class 
of insertions with time ordering, like, e.g., for second-order insertions: 

c' 

-- 
C 

but ~l io \c '  insertions with time orderings like 

1 tine 



In other words, in the BBP theory only hole lines appear dressed and, then, only with a res- 
tricted class o f  particle- particle ladders. Eqs. (A-1) to (A-5) then become: for t < t' (holes), 

GiBjBP(t - t') = G?(t - t') B i j  + 

+ f dti r' dt; X$>.(tl - t i )  G?(t - 11)  G:fP(t; - t l  -O)  x G F ( t ;  - t l) ,  (A-16) 
2 -a2 

klm 

while, for t > t' (particles), 

G;"(t - t') = ~ ? ( t  - t i) Bij ,  

where 

Kz;F(t - t') = O for t < t', 

and, for t > t', 

K;,:;(t - t') = Vij,kl B(t - t' - 0) - 

Eqs. (A-18) and (A-18') lead to 

Eqs. (A-16) and (A-17) are now solved by writing 

GZBP(t - t') = exp - - T(t  - t') (1 - ni)  8(t - t') [ i  I 
- 

= O(t -- t') GZBP(t - t i)  + O(tl - t )  GZBP(t - t'), 

the result being that, 

for n, = ni = 1 ,  

for n, = ni = 0, 

Eis = ais, ci = T = h2k?/2rn; 

for either n, = O, ni = 1 or n, = 1, ni = 0, 

ci, = o. 

(A- 17) 

(A- 18) 

(A- 18) 

(A-19) 



Finally, the total ground state energy becomes, with the use of Eq. (A-13), 

For nuclear matter, describabie by a translational-invariant single-particle potential, 
a11 c,, become 6,,. 

References 

1. J. Okubo and R. Marshak, Ann of Phys. (N.Y.) 4 (1958) 166. 
2. K. A. Brueckner in The h4any-Body Problem. Les Houches Lectures, 1958, Wiley, 

1959. 
3. J. Goldstone, Proc. Roy. Soc. (Lond.) .A239 (1957) 267. 
4. R. Jastrow, Phys. Reu. 81 (1951) 165. 
5. See, e.g., Supplement, Prog. Theor. Phys. 39 (1967) and references therein. 
6. T. Hamada and I. D. Johnston, N-I. Phys. 34 (1962) 382. 

K. Lassila et al, Phys. Rev. 126 (1962) 881. 
7. R.V. Reid, Ann. Phys. (N. Y.) 50 (1968) 411. 
8. K.A. Brueckner et al., Phys. Rev. 95 (1954) 217. 
9. G. DahlX, E. Ostgaard and B. Brandow, Nuc. Phys. 124 (1969) 481 and references 

therein. 
10. H.A. Bethe et nl., Phys. Rev. 129 (1963) 225. 
11. N.M. Hugenholtz, Physica 23 (1957) 533. 
12. H.A. Bethe and R. Rajaraman, Rev. Mod. Phys. 39 (1967) 745. 
13. L.D. Faddeev, JETP 12 (1961) 1014. 
14. B.D. Day, Rev. Mod. Phys. 39 (1967) 719; H.A. Bethe, Ann. Rev. Nucl. Sci. 21 
(1971) 93; D.W.L. Sprung, Adv. Nucl. Phys. 5 (1972) 225. 
15. B. Brandow, Phys. Rev. 152 (1966) 863 and also Ref. 18. 
16. L.C. Gomes, J.D. Walecka and V.F. Weisskopf, Ann. of Phys. 3 (1958) 241. 
17. Ref. 9, page 538. 
18: B. Brandow, in Boulder Lectures 1968, Quantum Fluids and Nuclear Matter, Gordon 

and Breach, 1969. 
19. M. Baranger, 1967 Varenna Lectures, Academic Press, 1969. 
20. A.A. Abrikosov, L.P. Gorkov and I.Y. Dzyalbshinski, Methods of Quantum Field 

7heory in Statistical Physics, Prentice-Hall, 1963; R.D. Mattuck, A Guide to Feynman 
Diagrams in the Many-Body Problem, McGraw-Hill, 1967; A.L. Fetter and J.D. 
Walecka, Quantum 7heory qf Many-Particle Systems, McGraw-Hill, 1971. 

21. M. Gell-Mann and K. Brueckner, Phys. Rev. 106 (1957) 364. 
22. K. Sawada et al., Phys. Rev. 108 (1957) 507. 
23. S. Ramírez & M. de Llano, Nuc. Phys:A193 (1972) 81 ; M. de Llano and V.V. Tolma- 

chev, Phys. Lett. 37B (1971) 37. 
24. H. Eikemeier and H. Hackenbroich, Z.f. Phys. &95 (1966) 412. . 
25. J. Hubbard, Proc. Roy. Soc. (Lond.) .A240 (1957) 539. 
26. J.E. Mayer and M.G. Mayer, Statistical Mechanics (Wiley, 1940). 
27. T.L. Hill, Statistical lhermodynamics (Addison-Wesley, 1960). 
28. J.O. Hirschfelder, et a/., Molecular lheory o f  Gases and ú'quids, Wiley, 1954. 
29. J. de Boer, Repts. Prog. Phys. 12 (1948) 342 ff. 
30. Regarding the quantum viria1 expansion, see also: T.D. Lee and C.N. Yang, Phys. 

Rev. 113 (1959) 1165. 


