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A formal direct derivation of the quantum phase space for an ideal relativistic gas sa- 
tisfying Bose-Einstein or Fermi-Dirac statistics is given. The result is a cluster decom- 
position in Boltzmannian phase spaces. The fundamental role of the symmetric group 
is stressed. 

É feita uma derivação formal direta do espaço de fase para um gás ideal relativístico 
satisfazendo seja a estatística de Bose-Einstein ou a de Fermi-Dirac. Daí resulta uma 
decomposição a maneira de Mayer em espaços de fase do tipo Boltzmann. Enfatiza-se 
o papel fundamental do grupo simétrico. 

1. Introduction 

In high energy physics literature, the expression phase space is usually 
employed to indicate the phase space factor, that is, the momentum 
part of the whole phase space to which also the configuration space con- 
tributes. In this sense, it is commonly presented under two forms19', 
the invariant and non-invariant ones. Both are useful in the calculation 
of transition probabilities once convenient normalizations for the states 
are used, but only the second one is acceptable in Relativistic Statistical 
Mechanics3. The reason for that is the non-invariance of the coníi- 
guration space. 

Yet, another difficulty arises concerning the phase spaces commonly 
used in Fermi-like models and in other multiple-production calcula- 
tions: they do not account for the syrnmetrization of states imposed 
by quantum mechanics4. They correspond to the classical limit of 
quantum statistics. 

Questions of statistics are best visualized in the partition function. In 
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the canonical ensemble, it is, in the relativistic case, the four-dimen- 
sional Laplace transform of the whole phase space: 

QN(P, V )  = d4Pe-BP RN(P, V). S (1-11 

Here, p is the inverse-temperature four-vector. It is shown, in section 
2, that the commonly used phase space leads to Boltzmann statistics. 

The aim of this paper is to obtain in a direct, constructive, way the 
correct N-particle phase space for bosons and fermions and to exhibit 
the fundamental role played by the symmetric group. The same result 
was recently obtained by Chaichian, Hagedorn and Hayashi5 by an 
inverse transformation procedure: RN(P, V )  is given as a sum of the 
comrnonly used phase spaces. In our case, the coefficients in the sum 
are shown to be fixed by the symmetric group. This is the subject of 
section 3. In section 4, it is proved that the proposed RN is indeed 
the correct one: it leads to the grand partition function for an ideal 
bosonic or fermionic gas. Section 5 is devoted to discuss further appli- 
cations of our formal procedure. 

2. Ordinary Invariant Phase Space and Statistics 

We shall here be concerned with integrals of the type 

They are related to cross-sections in the case that T is a squared tran- 
sition matrix element and to the N-particle phase space when T is 
a convenient function of the volume. In particular, the whole invariant 
phase space currently used is 

Of course d3p is non-invariant, but so is T) in a way such as to make 
Vd3p invariant. If we calculate the canonical partition function with 
the'suitable choice (fl, 0,0,0) for the inverse temperature four-vector, 

(2-3) 



we get the result 

This is the canonical partition function for an ideal Boltzmann gas. 
The expression (2-2) is the version of the phase-space commonly used 
in Fermi-like models, as well as in many calculations in multiparticle 
production. The meaning of the result (2-4) is clear: Eq. (2-2) corres- 
ponds to the classical limit of quantum statistics, where "indistinguisha- 
bility" of the particles is only partially taken into account via the Gibbs 
factor ( N ! ) - l .  In the next section, we shall find the expression for the 
phase space leading to the correct Bose or Fermi statistics. 

3. The Correct Invariant Phase Space 

The canonical partition function of an ideal non-relativistic gas may 
be definecl as6 

QN@, V) = TrN e-BH0, (3-1) 

where H. is the free Hamiltonian. The operator exp [- /?Ho] can be 
written in terms of the resolvent of H. by the Cauchy formula 

where the integration contour encircles the spectrum of H. . It is easy 
to find that 

so that 

QN(P, V) = dE eCPE TrN 6(E .- Ho). I (3-4) 

We shall assume that this formal procedure remains valid in the re- 
lativistic case. We use the momentum eigenstates (plp2 . . . p N )  proper- 
ly normalized and symmetrized and calculate the trace with the cons- 

N 

traint pi = P; that is, 
i =  1 



QN(P, V) = d4p e P P E  Tr; 6(E - HO). S 
Comparison with (2-3) shows that 

RN(P, V) = ~ r :  6(E - Ho). 

The states I p1p2 . . . pN) are such that7 

The sum is over a11 possible ways of pairing two momenta and the 
factor (i-)" comes from the statistics: (+) for bosons, (-) for fermions. 
The exponent, u, is the order of permutation of the set {al a2 ... aN). 

Explicitly, Eq. (3-6) reads 

The factor n 2ei is due to the normalization (3-7). 
)-I 

The N-particle phase space becomes 

Some insight about the summation inside the square bracket may 
may come from the consideration of the first few cases. Putting 
dkI = d3(pk - p,), we have: 

N = 1 :  C = 6 1 1 ,  
@O 

N = 2: E = til1 822 f 612 621, 
{a11 

N = 3: E = 611 622633 f 611 623 632 f 613622631 k 
{a11 

k 612 621 633 + 612 623 631 + 613 621 832 





The integrations over the momenta put them on an equal footing. 
For instance, in the case N = 3, the first term represents each particle 
isolated; the following three terms exchange particles two-by-two and 
give the same contribution; the last two terms give also identical con- 
tributions and represent complete (anti-) symmetrization. So, 

It is known since long that quantum symmetrization may be viewed 
as an "interaction" (exchange interaction) imposed on an ideal Boltz- 
mann gas. What has been shown above is, exactly, a cluster decom- 
position for that case (cases for N up to 5 are illustrated in Fig. 1). 

The first term, for each ,V, is simply [d3(O)IN = ( V / ~ Z ~ ) ~ .  It represents 
the case of N different momenta, where no (anti-) symmetrization is 
done and gives, if taken alone, precisely the Boltzmann case (Eq. 2-2). 

The "interaction" causes permutations among the particles and per- 
mutations among N particles are related to the symmetric group S,. 
More precisely, both summations, in the examples above and in the 
graphs in Fig. 1, represent the decomposition of SN into its conjugate 
classes (see Fig. 2). Each conjugate class accounts for permutations 
in sub-systems of the N particles. As we have seen, there are three 
ways of permuting 3 particles two-by-two. This illustrates 

Fig. 2 - Typical graphs and its equivalente to terms of the decomposition of S ,  into 
its conjugate classes. 

the general fact that the coefficient before each graph in the decom- 
position is just the number of permutations of SN in a given conju- 
gate class, which is given by the well-known formula8: 



where v! is the number of l-cycles in the class. The vl's are subject to 
the important condition 

The nurnber 

counts the cycles in the class and will be useful below. The exponent 
of the sign factor (i-) is ( N  - rnx as is easily seen. In this way we get, 
for the summation in Eq. (3-9), 

C (1)" d3(p1 - pai) d3(p2 - P ~ J  J3(p, - P~N) 
(a 11 

= C' (f )N-m C(,,) 622 ... 6kN, (3-13) 
(v11 

where the prime reminds us of condition (3-1 1). The symbol repre- 
sents a product of ~?~-functions with suitable arguments, forming a 
k-cycle. Exemplifying : 

It is convenient to impose Eq. (3-12) as an additional condition and 
sum over m. Eq. (3-9) becomes 

The double primed summation is restricted by both Eqs. (3-11) and 
(3-12). We will now show that integration over ( N  - m) momenta 
yields a cluster decomposition of the correct phase space in terms of 
ordinary phase spaces with multiple masses. For N = 2, we have: 

J 

However, 
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and therefore, 

The first term is just the ordinary phase space, R$')(P, V ; p, p); the 
second is 

so that 

For N = 3, we obtain 

Fig. 3 shows graphical representations for N up to 5. Each conjugate 
class of SN is determined by an ensemble (vi) which is a solution of 
Eqs. (3-11) and (3-12) and corresponds to an ordinary phase space 
for a system of vl particles of mass p, v2 particles of mass 2p and so on. 
To arrive at these simple expressions, a trivial transformation of va- 
riables is needed and it produces, for each class, an extra factor 

The final result is 

N 
RN(p,v) = 1 zr(+)~-m[fij4vjvj!]-1x 

m = l  {vi) j= 1 

x R ,  V ; ,  . 2 , ,  2 . .  (3-17) 



with 

Notice that no factor (m!)-I appears. The multiple masses will show 
themselves in ei = (p; + pf)112, with 

These cluster expansions give the correctioins to the ordinary phase 
space due to statistics. For the 3-particle case, they have been evalua- 
ted numerically by Chaichian, Hagedorn anld Hayashi5 and found to 
be very significant. 

It remains for us to show that the proposetl expression for RN(P, V) 
does lead to the correct statistical mechanics. 

Before going into this, we emphasize that we have not cared about 
spins and isotopic spins. They can be progerly taken into account 
by the inclusion of multiplicative factors g = (21 + 1) (2s + I), in Eq. 
(3-6). 
Eq. (3-6) can easily be extended to the case of a mixture of N1 nonin- 
teracting particles of tyge 1, N 2  of type 2, etc. The general formula is 

4. Partition Functions 

The canonical partition function may be simply evaluated by Laplace 
transforming Eq. (3-17) but we shall prefer t,o follow a lengthier pro- 
cedure which shows better the meaning of each factor in the resulting 
series. We substitute Eq. (3-14) into Eq. (2-3). By integrating on the 
total momentum and energy, one easily arrives at the expression 



(We shall omit the argument V from now on). 

This can be rearranged into 

We now see that 

so that J 

As Bose or Fermi statistics are more easily recognizable in the grand 
canonical partition function, we proceed to calculate it: 

This, as is easily verified, can be rewritten as 

(0 " 1 
Z = 1 + C (k)" 5 (k C" q v i (  Q W )  . . . QiN(NP).. (4-6) 

m= 1 N = m  ( v i )  

We now recall one of the multinomial series
g
, namely, 



Putting t = f eS' and xk = Ql(kP), Eq. (4-6) becomes 

By using Eq. (4-3), we can write 

It is now enough to recognize the logarithmic series inside the curly 
bracket to write 

the correct relativistic grand canonical partition function for bosons 
(upper sign) or fermions (lower sign). 

5. Final Comments 

We have given a constructive derivation for the correct expression 
for the N-particle relativistic phase space. The fundamental role of 
the symmetric group was made explicit. The procedure is equivalent 
to a cluster expansion for the exchange interaction, the first term of 
which gives the ordinasy phase space comrnonly used in calculations 
in multiple production and in Fermi-like niodels. The higher order 
corrections have been shown by the authors of Ref. (5) to be very im- 
portant and an obvious step forward would be to examine their con- 
sequences on Ferrni rnodels and general distributions. The forrns 
obtained are compact and convenient for computation. 

The cluster decomposition has an interest by itself, as it can be used 
as a model to guide the introduction of real interactions in a way alike 
to Lee-Yang binary method6. For binary interactions, one simply has 
to replace the two particle phase sub-spaces by 



where A is the phase operator (10). In the case of particles interacting 
through a zero-width resonance of "mass" M, the second term becomes 
(V/h 3)  6[E - (M* + P2)112]. By using the recursion formulae to de- 
compose R$", in Eq. (2-2), into its two-particle components and subs- 
tituting Eq. (5-1) one easily finds the partition function for a mixture 
of two Boltzmann gases. 

The extension to the case of interactions of bosons and/or fermions 
is more intricate and is still under study, but this procedure is possibly 
simpler than the one followed by Dashen and Rajaramanll. 
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