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The article shows how to transform the system of partia1 differential equations, describing 
the free one-carrier space charge motion in solid dielectrics under a given applied vol- 
tage and while the charge distribution touches only one of the electrodes, into a fírst order 
ordinary difrerential equation from whose solution all the interesting quantities may 
be easily derived. It was found that some charge distributions can display current reversal. 

O artigo mostra como transformar o sistema de equações diferenciais parciais que 
descrevem o movimento de carga espacial unipolar sob voltagem aplicada e enquanto 
a distribuição de carga toca somente um dos eletródios, em uma equação diferencial 
ordinária de primeira ordem, de cuja solução todas as grandezas pertinentes ao pro- 
blema podem ser facilmente derivadas. Verificou-se que algumas distribuições de carga 
podem produzir a chamada inversão de corrente. 

1. Introduction 

Exact solutions of the problem of one-carrier space charge motion 
in solid dielectrics, in planar geometry, have received increasing atten- 
tion recently. The problem can be divided according to: 

a) the externa1 conditions applied to the charged system; 
b) the complexity assumed for the kinetics of the carriers. 

Within a, we include the charge mode (open circuit) and the current 
mode (voltage applied). Within b, there are severa1 possibilities, starting 
with the simplest - free space charge motion (hereafter FSCM) - 
and allowing increasing complexity with deep trap kinematics and 
further with trapping and de-trapping mechanisms simultaneously pre- 
sent. The FSCM itself can be considered to take place in an insulating 
or in a conducting dielectrics. 
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In general, the charge mode is a simpler problem to solve. Exact so- 
lutions have been found even for the deep trap caseli2 and there is 
no special difficulty involving the solution of FSCM under this mode. 

The pattern looks different in the current mode. Here, aside from 
those works dealing with SCL current i n j e c t i ~ n ~ ? ~ ,  exact solutions are 
restricted to the FSCM for the box d i s t r i b~ t ion~ ,~ , ' , ~  and for those 
charge distributions whose carriers have not yet reached the electro- 
desg,10 (which will be called floating space charge). We include here 
the small signal case, extensively used in photoinjection experiment~",~~. 
The numerical integration of the partia1 equations performed by J. 
Van Turnhout8 should also be mentioned. 

The aim of this article is to show how to reduce the problem of FSCM 
under the current mode, with the charge distribution touching only 
one of the electrodes, to a first order ordinary differential equation, 
from whose solution the external current can be easily derived. We 
leave to a forthcoming article the consideration of the completely 
charged filled case. It is assumed that the electrodes do not inject free 
space charge even under favorable conditions (that is, even when the 
electric field in an electrode points in the direction of the dielectrics). 
They can, however, supply current for the normal conductivity of a 
conducting material. On the other hand, it is assumed that the electro- 
des receive a11 the current the dielectric tends to deliver according to 
the electrical conditions prevailing on the dielectric side of the boun- 
dary : metal-dielectric. 

The method of solution to be developed below can be applied as long 
as the system displays FSCM and is under the current mode, that 
is, under an applied voltage, which can be a function of time. We, 
however, will restrict numerical applications to the more interesting 
situation of short circuit. Here, we have found that some charge dis- 
tributions may exhibit current reversal, as suggested by B. Gross8,13, 
although not splitting themselves in two bumps. 

The external current wilX be found from the initial charge distribution. 
In this respect, it can be argued that exact solutions are not needed since 
the external current is a gross measure of the process going inside 
the dielectric. We agree with this statement, inasmuch as, in the current 
mode, the external current is, rigorously, the average of the conduction 
current taken inside the dielectric. We cannot, however, agree any 
further, since only knowledge of the exact solutions will allow us to 



find which features of the charge distribution are most responsible 
for the behavíour of the externa1 current. 

2. Theory 

The equations describing the FSCM in an insulating dielectric, in 
planar geometry, will be written in dimensionless variables 

The relation between the dimension variable E' (electric field), p' (charge 
density), conduction current density i', time t', and coordinate x' and 
the corresponding dimensionless ones, E, p, i, t and x, may be taken 
the same as those defined by Many-Rakavy3 when the applied vol- 
tage is not zero, or may chosen as 

whether or not the applied voltage is zero. In the above relations, d 
is the distance between the electrodes, E the dielectric permitivity, p 
the constant mobility of the carriers and po may have any desired value. 
The applied voltage V. and its corresponding dimensionless voltage 
V. are related according to: 

We note that the FSCM is completely specified by the expression de- 
fíning the conduction current density i' = yprE' (or, in dimensionless 
variables i = pE). It is supposed that only a kind of carrier (here taken 
of positive polarity) can move. Traps are not considered, unless they 
are in so intimate contact with the conducting band that a drift mobi- 
lity can be used3. In this case, p' is the total charge density (that is, 
trapped plus free charge). 

The total current density j is known to be 



Using the method of characteristics3, the following equations for the 
systeml result: 

The relation between position x and time t defines the flow lines, which 
can be labeled by the initial value of the position, xo , and of the electric 
field E(xo): 

In this notation, E(xo) = E(x, O). The charge density along a flow line 
can be easily found, with the same simplified notation, as 

In the charge mode, (j = O), Eqs. (3) and (4) give directly the desired 
solution of FSCM, in terms of the initial charge distribution and field. 
In the current mode, however, the density of the total current j must 
be found before the integral in (3) can be performed. In the floating 
space charge, it can indeed be found and so the problem is soluble 
up to that time when one of the edges of the charge distribution reaches 
one of the electrodes. The corresponding time will be taken as the 
origin for the next stage of the problem, and charge distribution and 
field will be supposed to be known at that instant of time. So, we will 
take, for p(x, O), 

so denoting the position of the leading edge. 

The electric field along a flow line can be found by differentiating 
Eq. (3) with respect to time: 



3. The Function y(t) 

Those charges near the electrode at x = O are moving toward it and 
will reach it at increasing times according to their initial coordinates. 
So, we can define a function of time, y = y(t), y being the initial coordi- 
nate of the carriers that reach the electrode at the time t. y(t) will be 
a monotonically increasing function of time as long as the electric 
fíeld remains negative at x = 0. 

Obviously, y(0) = O. Charge density and electric field, at time t, when 
those carriers, initially at y, are at x = 0, are by Eqs. (4) and (9, 

and 
E(0, t) = E(y) + 

The expression for the total current, Eq. (2), gives, at x = 0, 

Differentiating (7) with respect to t, we find 

dE 
But - = p(y) by Poisson's equation at t = 0, and substituting the 

dv 
abo~e~ex~ression in Eq. (8), we find, taking notice of Eq. (6), that 

Let us cal1 s(t) the coordinate of the far edge of the charge distribution. 
We put s(0) = so . The amount of charge between the planes at y and 
so (at t = O) is conserved during their motion. 

We may, therefore, write 

E(s) - E(0, t) = E(s~) - Eb). 



There is no charge beneath the plane at s and this means that E(s) = 
E(1, t). Rewriting the above expression, we have 

E(0, L) = Ek)  - E(so) + E(l, t). (1 0) 

4. The Differential Equation in y and t 

In the current mode, the voltage is supposed to be given as a function 
of time: 

V(,) = E dx. 

V(t) is the potential of the electrode at x = 0, compared with the groun- 
ded electrode at x = 1. Integrating by parts, we obtain 

We want to write the integral in this expression in terms of quantities 
defined at t = O. Once this is accomplished, use of E(l, t) in Eq. (10) 
will allow us to turn Eq. (9) into a differential equation. 

With this aim in mind, let us differentiate Eq. (3) with respect to xo , 
keeping time fixed. Using Poisson's equation, we get: 

clx = [I + p(xo) t] dxo . (12) 

We need also to express x in the integrand in Eq. (11) in terms of xo . 
If we write the Eq. (3) foi. the leading edge s and substract it from Eq. (3) 
itself we get 

x = s + xo - so + [E(xo) - E(so)] t. (13) 

s is an unknown function of time and must be related to quantities 
defined at t = O and perhaps to y. This can be done by taking the 
expression (13) for the point x = 0, when xo turns into y: 

The limits of the integral, in Eq. (ll), go obviously in y and so , since 
the integral will be performed in the variable x,. 



Now, Eqs. (12)-(14) can be substituted in Eq. (ll), giving 

Using this equation, together with Eq. (10), in Eq. (9), we finally get 
a differential equation in y : 

where 

5. Charge as a Function of Position and Time 

Suppose that y has been found from Eq. (16) as a function of time. 
The motion of the leading edge may be found using Eq. (14) and, from 
it, the flow lines corresponding to any xo can be determined by Eq. (4). 
In this way, the whole pattern of the charge distribution as a function 
of position may be found for any time. 

6. The Total Current j(t) 

If we integrate Eq. (4) in x, from O to 1, we get 

1 
j(t) = [EZ(l, t) - Ez(O, t)] + V(t). (17) 

Using Eqs. (15) and (10), together with the solution y(t) of Eq. (16), 
j(t) may be derived. 

7. FSCM in Conducting Medium 

We assume now that the dielectric in which FSCM takes place has 
an intrinsic conductivity z'. This conductivity may be due either to 
an ionic process or to some carriers, with charge density pó - of 



the same kind as those giving rise to the FSCM - already present in 
the conduction band of the material. In this case, calling p' the den- 
sity of free charge, we take the density of total charge p" in Poisson's 
equation3, 

as a new variable and use it in the expression of the conduction current 
densit y, o btaining 

i' = pp' E' = pp" E' + ppó E'. 

The coefficient of E', in &,E', simulates a conductivity with z' = ppó . 
In both cases, the conduction density i' may be written as 

Expressed in terms of dimensionless variables, this reads 

i = pE + TE, with z' = ppoz. 

The equations deduced from the method of characteristics3 are 

We can now follow the same procedure as in the insulating case. The 
expressions are more involved and we restrict ourselves to those lea- 
ding directly to the solution of the problem, e.g., Eqs. (4), (9), (10), 
(13), (14), (15), (16) and (17). They are 



E(l, t) = V(t) + e-" - (J - so) E(s0) + i 

1 
j(t) = T [E2(l, t) - E2(0, t)] + V(t) + zV(t). (17') 

The total current can be obtained following the procedure scheduled 
in parts 5 and 6, substituting there the unprimed numbered equations 
by the corresponding primed ones given above. 

8. Application 

Obviously the differential equation, Eq. (16) or Eq. (16'), can hardly 
be expected to be easily integrable, with the possible exception of the 
box distribution. It is straightforward to verify that in this case it leads 
to the correct solution for the motion of the front edge s(t) (Refs. 6,7). 
In general, Eq. (16) or (16') must be handled by computer, a very easy 
task indeed, nowadays. 

For the sake of illustration, we show the solution for the initial charge 
distribution, p(x, O) = 1 - 2x for O < x < 112, in an insulating (z = 0) 
dielectrics and with V(t) = O (short circuit); we have so = 0.5. 

Fig. 1 shows x and s(t) - so as a function of time t, t, = 30.9, indi- 
cating the time when s(t) = 1. Fig. 2 shows the evolution of charge 
density as a function of position, for severa1 times. It is seen that the 
charge distribution tends rapidly to the box distribution as has already 
been found by J. Van Turnhout8. 

Fig. 4 shows the negative of the total current as a function of time; 
it decreases monotonically to zero. 



Fig. 1 - The function y(t) and the motion of the leading edge of the charge distribution 
(minus its initial values, .5). The ordinate 1 represents linear dimension in reduced units. 
t, = 30.895 is the time for which s(t) = 1. The corresponding value of y, y(t,), is 0.335. 

9. Current Reversal 

In the following discussion, we will suppose V = O and z = O. De- 
fining the center of mass of the charge distribution, x, by 

it is easy to deduce the following relations 

j(t) = (3 - 112) q2, 
E ( l ,  t )  = zq. 

Now, since j = w, we have 
dt 

The time derivative of Eq. (18), gives 



Suppose that j(0) is small and negative. This happens if - E(0, O) = 

= E(1, t )  + 6,6 being small (Eq. (17)). Therefore, Eqs. (19) and (20) give 

dq d x Since - is negative, and X is always positive, - is positive. This shows 
dt d t 

d j  that - is also positive. Therefore, if j were initially negative, it could 
dt 

reverse its sign in view of the positive value of its derivative. It is not 

Fig. 2 - Three dimensional plot of the charge distribution as a function of the position, 
for severa1 times. The t = O labeled curve represents the initial density, p(x) = 1 - 2x, 
O < x < S. The axes correspond, in the usudxyz representation, to time, distance and 
charge density. (The time corresponding to the unlabeled curves can be found by re- 
gular interpolation from the times assigned to the labelled curves nearest to it). 

surprising that even under a small negative applied voltage a system 
can show such a current reversal. In this case, the current would start 
negative, become positive for a while, returning finally to its more 
stable negative value. 





We have found that the condition for observing the current reversal 
is met for monotonically increasing charge distributions at t = 0, 
stopping at some point so , near the electrode at x = 1. Fig. 4 shows 
severa1 discharges of an exponentially increasing charge distribution 
(eax), ending abruptly at so = 35. These curves were obtained using 
the equations deduced in Section 4 and are shown for the time interval 
corresponding to s - giving the position of the shock front - between 
.85 and 1. 

10. Final Remarks 

This work is a step in the mathematical solution of the one carrier 
FSCM problem. Its theoreticalimportance lays in the method, which 
can be extended to cover the most general situation in which the space 
charge occupies the whole space. between the electrodes, as will be 
shown in a forthcoming article. On the other hand, providing an exact 
solution, the way now is open for trying approximate solutions carrying 
those most essential features leading to a reasonable correct descrip: 
tion of the behavior of the externa1 current. 

We thank prof. B. Gross for his suggestions on the search for obtaining current reversal 
in our scheme, Mr. P. C. Camargo for checking some of our results, and also prof. R. 
Williams for reading the manuscript. 
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