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We show, by direct calculation, that the Heavy-Particle-Transfer (HPT) model of back-
ward elastic a-particle scattering, together with the assumption of a-cluster structure
for the 4n light nuclei involved in the process, is capable of explaining the anomalous
large backward peak in elastic a-scattering from 4n target nuclei. Discussions are made
concerning possible higher order contributions.

Mostramos, por cédlculo direto, que o modelo de Transferéncia de Particulas Pesadas,
para o espalhamento eléstico de alfas a grandes angulos, junto com a hipdtese de que os
nlcleos 4x, envolvidos no processo, sejam conglomerados de dfas, é capaz de explicar
0 pico andmalo, elastico, a grandes angulos. Discutem-se possivels contribuicdes, de
ordem superior, a0 processo.

1. Introduction

In recent years,anumber of authors!-2-11-12 haveinvestigated the so-cal-
led anomalous o-particle backscattering peak, from Z = N = even
nuclel (light and medium), at various incident energies. However, the
major criticismin most of these worksrefersto alack of a more micros-
copic basis. A paper by Noble and Coelho?, basically, gave the first
idea for this problem, suggesting a Heavy-Particle-Transfer (HPT)
interpretation in a more microscopic approach. In the last couple of
years, two calculations more, by Agass and Wall (knock-on exchange
interpretation) and Boridy'? (one-particle exchange interpretation),
similar in spirit to the work by Noble and Coelho?, attempted to con-
sider this problem. While Coelho and Noble applied their model to a
light nucleus (0'¢), the two other papers dealt with a heavier nucleus
(Ca*®). The central idea of the present work is mainly based on the
generalization of the papers by Noble and Coelho? and Coelho®.
Noble and Coelho? showed, by direct calculation, that the Heavy-Par-
ticle-Transfer (HPT) mechanism of backward and forward elastic
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a-particle scattering, together with the assumption of a-cluster structure
o 0'% and C!2, are capable of explaining the larger backward peak
and the forward angular distributions of the differential cross section,
in elastic a scattering from 0'°. Our effort, here, is to try to generalize
that theoretical approach in such a way that it would also be applicable
to other light even-even 4n — nuclei, besides0!®. It has been observed
experimentally® 12 that the large backward peak shows strong isotopic
dependence. Whileit appears for 4n nucle, it is completely absent for
other nuclei. This approach gives a microscopic insight into the ano-
malous backscattering phenomenon.

In Sec. 2, we describe our formalism, while, in Sec. 3, we give our con-
clusions and discuss the differences from previous work.

2. Theory

Heavy particle transfer, for backward scattering, can be represented
mostly by pole diagrams®~*. The interest in pole diagrams (instead of
higher order diagrams, representing, for example, nucleon exchange
between the incident a and the target nucleus) comes from the fact that
they are simpler and because their singularities (as functions of the
complex momentum transfer) lie somewhat nearer the physical region.

Nucle, in the lower haf o the sd shell, are particularly suitable targets
for a cluster configurations®. Hence, one can consider, the light even-
even 4n nuclel,ascomposed of n elementary o-particles. Thiscomposite
system can represent a target which will scatter an extra a-particle.
If V,(r) isthe a — a potentia, it can be shown® that the plane-wave
Born approximation (PWBA) amplitude, for a boson to be scattered
from a normalized bound state of n identical bosons of the same type,
may be expressed as

M = Mg + n M, (1)
where

My = (2n)~3 Jdr'exp [ik—K).(r' — Ro)]
X J‘drl coodr, YE Yy — R, .1 —Ry) x

St o
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and
M = (2n)‘3fdr' dry...dr, exp [ik .(r' = R)]

x exp[—iK.ory —R)] ¥#¥0¢' - R, 1 —R,...,1, = )

< =Rop =R | £Vl —no(Ro- - $ e )0

u=1

wherer, is the vth o coordinate, R, isthe CM coordinatefor the target
nucleusand, r', the coordinate of the incident a-particle. The incident
and outgoing wave vectors are represented by k and k', respectively,
and R' is defined as

R =R, + —i—(r’ —11). @)

The target wavefunctionsy; and yr; are normalized and fully symmetric
in the n a-particle position coordinates. Eqg. (3) representsthe fact that
the incident « is exchanged (with equal probability) with any of the
n a-particles of the target. On the other hand, Eq. (2) corresponds to
no exchange at all.

Thefollowing, suitable, change of variableswill smplify Egs. (2) and (3):

—r? oo 0 0 ... 0 1| |m
n
I, — ’]1 Z:’;’ 0 ... 0 1] In
=l - P 0 s |6
— :l hn—l—l n12 .+% 1 N1
[ ™ | . :l _n—l—l'ﬁni2"'_17 ]_ :1,,:11

wheren = 2,3.... Theset {n, 1, ..., R) congtitutes a Jacobi system
o coordinates (the Jacobian of the transformation is unity).
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If one usesthe new system of coordinates given by Eg. (5), the definition
shown by Eq. (4), a subsequent new transformation o variablesr' —

r+R, - % r (which becomes obvious afterwards) and finaly the use
o the symmetry in the variables r,, r3, ..., r,, One obtains
NMe = (27)73 Jdr' ang ...dp-r exp[-im . Q
tir, Q7 puld, MM, ..., M-1) X
R R A (L ST G

where the following definitions were used:
1

n

Q= k+MQEk+%“ (7)
and

, n—1, 1,4,n- 2
Pfi(l',ﬂ1|ﬂ2,--.,ﬂn-1)= ;k< n r,_r—_]r +mn2,...>x

/n—l 1 n—2

le’ik " 1]1,—ﬁ'l1+h_17i2,‘~>1- )

Employingasimilar reduction of variables,wefind (herer' — r' + Ry):

My = (2n)~3 (dr’ dng ...dn,—; exp (iq.r)x
J

, —1
X pei(M1, nlana-":nn—l)nI/aa(lr —n—n—m ')a 9)
where g=k - k.

Combining the first term in Eq. (6) with Eq. (9), we have an amplitude
My, which represents the scattering o the incident boson from each
d the bosonsin the target (symmetrized)in PWBA. The second term,
in EQ. (6), corresponds to HPT and we will denote it by Mypr. Con-

sequently,
Mfi = MD + MHPT> (10)
where

338



Mypr = n(2n)~3 Jdr’ dng ...dn,—; exp (—iQ.n; +
+1Q) pelt, mame) 0= D (17 = 22wl
and

Mp = (2n)~3 jdr' dny ...dw,—; exp [iq. <r’ + 2 ; ! m>:| X

X 1 Viol®) pei(Me, Mo M2 e oo s Mamt)

+ Q)2 [ drdny ... d0._; exp (—iQ .My + Q' . 1) x
X n Vaa(| F—1m D P, Ny | N2y evs Muet): (12)

If we expand the wave functions y¢ and ¢; in terms of a product of a
complete orthonormal set of (N — 1) o states®d(n,, - .., N.—1), and the
wave functions ¢(n;), which describe the relative motion of a single «
with respect to the (n— 1) a-core, we can write

Vi, o ooy Mamy) = Z CcH dwln)oml1)

vJM

X Dy —m(M2s -+ Ma—1) <00|JJ, M, -M). (13)

We have assumed that the target states have spin-parity 0%, which is
certainly truefor theground state. Itisworth mentioningthat the states
%y, ..., N,-1) ae eigenstates of the (n— 1) « Hamiltonian. These
wave functions are identified as the states of the physical nucleus con-
taining (4n — 4) nucleons. The C{ s appearing in Eq. (13), are the
spectroscopic coefficients.

Substituting the expansion given by Eq. (13)into Eq. (11)and noticing
that

Jdr’ ANy .. dW—y eXp Q. ) YE(, My oty Mam1) X

, -2
X l//0(1119 nZa---ann—l)(n—l) Vau<|r - 2 1"1 !)

n—

2
= — [E“, + o Q’z:l fdr’dnl...dn,,_l X

2m, n— 1

x exp (IQ . r) ¥, M2 .., Mact) YoMe, M2 oo Maq),  (14)
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where
Ey = (=t + my + M 1)) 2+ Ef - 1uv, J),

(E& - 1)« represents the excited levels of the (n—1) a-core system), we
obtain

Myer = — n(2n) 3| E L 07| x
HPT W 2ma n__]

X [‘dr’ dny exp (—iQ . + iQ .r) x
o
x Y COFCPO0]J) M, —M) x

vJ My
vy M

x (00| IIM, —M) ¢ (r) Tm(t) x
X ¢w(n1) Yim(h) Idﬂz e My O Py o (M2y L, M 1) (15)

The last integrals give the conditions v =v, J =J, M'=M. If we
now use, in Eq. (15), the plane wave expansion,

l

exp (ik.r)=4711;) 2 i k) Yik) Yiul®),

and the addition theorem!>, we obtain a much simpler expression
for MHPT:

-_-__hz_ 1 (0))2
MHPT(Q’ k) 2ma n—lﬁi%’c"ll X
x (Q* + x3) P (Q.Q|1Q) P (16

where only elastic channels| Q | = | Q' | were considered (on the energy
shell). Observethat k2 = (2my/h?) (n — 1/n) Ey and 1,,(0) is defined as

14(0) = f dn; W2 5HOnL) ). an

0

The result given by Eq. (16) could also be derived by application of
Feynman rules® to the polediagram shown in Fig. 1. That diagram is,
obviously, important for backward scattering.
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Fig I - Biagramumatic reptesentation of the HPY (polel amplitude with T4 transferred
fp o= 3,8, ) in vis state with spin J, parity (~7, excitation energy &4 e

An analogous expression, for Bq. (16), could casily be written for ine-
lastic channels { Q7] # [ Q ) and 4, in Bq, (13), could assume any other
allowed valoe besides zerol

A¢ this point, we should emphasize that we are assuming that the predo-
rapant amphitode, 8t backward asgles, arises from HPT, but no cor-
recions fov inelasticity {strong absorplion and rescattering by the
diveet forward-peaked amplitude Myp) were made. Certainly this is
vory imporiant in our ¢ase. These corrections may be obtamed by
subtracting, from Mper. its lowest partind waves, This is esseutially
the Blair sharpeutoff modet®. That s, we write the backwazd amplitude
as
X

T > 5 QU 1) Prfess 8) T, (581
¢

whers

L

T =

4
} ds PAs) Mgpris, k),
—1

and Mypr (tos 0, £} is given by Bq (16). The angular momentum, L,
is left as a pavameter which s, approximately, given by 4%, where R 13
the dimension of the target nucleus,
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The effect o Coulomb interaction (though small for backscattering)
should also be included in the final scattering amplitude. We represent,
by Te(6), the Coulomb scattering amplitude, which is given by'?

Te(6) = (ne?/22*) [k sin 6/2]72 exp [2i(oo — ¢ log sin 6/2],  (19)
where
oy =arg Tt 1+i¢) and ¢=m (nt 1) k.
Finally, the differential cross section is calculated by the expression®

2 2
= | [ 150 + mop 0

3. Discussion and Results

The calculation o the differentia scattering cross section given by
Eq. (20) requires, basically, the knowledge o ¢.,(x;) (see Eq. (17)) and
the spectroscopic coefficients, | C{? |* (see Eq. (16)). To obtain ¢.(n:)
(werecdll that, it represents. the relative motion wavefunction of a sin-
gle o with respect to the core) is quite an interesting problem. But, so
far, only phenomenological approaches have been considered®’-'®.
It is a reasonable approximation®'® (and also convenient, because the
integration given by Eq. (17) is straightforward) to take the Eckart
wave function’

$u() = Ny [1 — exp (—n /R cexp (—kgn)/m,  (21)

where N,; is the normalization constant, R and m are free parameters
and k,; is related to the separation energy, E.  Certainly, the choice
o ¢ (1;) is very important concerning thefinal results. Thecalculation
of the| C? |? could be doneindirectly, as shown in Ref. (2), (essentialy
by fitting do/dQ, given by EQ. (20), to the experimental ones) or, more
microscopically, using nuclear structure models (shell model)*'°.

We should be aware of the fact that the final expression for the cross
section is based on three assumptions: (a) a-cluster structure for the
target nuclei; (b)the heavy ion transferred; (c)the Blair strong absorp-
tion model to incorporate distortion effects of the strong direct (optical)
potential. Theangular momentum, L(Eq. 18), is|eft as a free parameter
which is approximately given by kR.
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The idea of the HPT mechanism, plus a-cluster structure for light 4n
nuclei has also been used successfully by Noble** to explain some
features of the heavy ion reaction C'%(C'?, a)Ne*°.

It is worth mentioning that it is impossible to use an optical potential
in our problem for reasons explained in Ref. (2). This argument is also
strengthened in Ref. (17).

Calculations were done for C'2, 0'¢ and Ca*° targets. Other 4n nuclei
were not considered since no reliable experimental data were found
in the literature. Our feeling is that the above nuclei represent the two
major categories: light and medium 4n nuclei.

For the C'? case, we have taken'® the parameter values R = 1.56 fm
and m = 4 (they were obtained from rms radius and electric form
factors calculations). Laboratory energy considered for the a-particle
was 41 MeV. The spectroscopic coefficients, | C |*, were obtained
from Ref. @4): |CQL|? = 0.70, [CPL|> = 029 and |C¥) > = 0.01 (at
0.,2.9 and 11.4 MeV, respectively). An attempt was also made to obtain
the |C{9|? by fitting the theoretical cross section, given by Eq. (20), to
the experimental data. However, we obtained, for the spectroscopic
factors, values not so different from those given in Ref. (4). The best
fitting for the differential cross section was obtained for L = 5. Fig. 2
shows the angular distributions (theoretical and experimental) at E,, =
41 MeV, where the experimental points and the optical potential were
obtained from Ref. (17). The agreement of our simple model with expe-
rimental data is encouraging.

The results for 0!° are again reproduced from Ref. (2). In that paper,
R=28fm, m=4, E,;, = 41 and 49.7 MeV. It is important to notice
two points in the calculation for 0'°: i) the spectroscopic coefficients
were obtained from fitting the theoretical cross sections to the experi-
mental ones; their values are |C$)|? = 0375, |C§2 |* = 0.075, |C{2 |?
= 0.15 (at 4.44, 9.64 and 14.08 MeV, respectively); ii) the 0" state of
Be?® is the most important intermediate state for C!? target nucleus, in
contrast with the predominant 2* intermediate state, of C*?, for 0*®
as the target nucleus. Those results are also in agreement with Refe-
rences (2) and (4). These results are understood by examining | 1,;(Q) |
as a function of Q? (Eq. 17). For example, for the energy domain chosen,
| I,(Q) |, for the 0% state (C'? intermediate state), is a rapidly decrea-
sing function of Q, whose maximum value occurs at Q =0. A different
situation occurs for the 0% intermediate state of Be®, where | 1,,(Q) |
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is large for the energéy domain chosen. Fig. 3 shows an angular dis-
tribution for the O'° target nucleus.

The last nucleus considered was Ca*?, for which experimental data are
available’®. It is a medium double closed nucleus and quite good to
check how far one can go with our HPT interpretation of anomalous
backscattering. Wehavetaken E,,, = 24 MeV and R = 4.69fm,m = 7,
and R = 378 fm, m = 8 (both set of values obtained by fitting the rms
radius of Ca*®). We have let the cut off angular momentum, L, to
vary free around L = 8 (obtained from L = kR estimate). We were
not able, in thiscase, to reproduce the angular distribution for backscat-
tering. This result is not so surprising and has also been suggested by
Austern’®, This shows that, for heavier nuclei, the HPT amplitude is
probably much smaller than other higher order processes, such as
nucleon exchange between the incident a-particle and the target'*+!2,
The latter processis more likely, in medium 4n nuclei, than in light 4n
nuclei, which seems plausiblefrom the fact that it is easier to remove a
nucleon from a medium 4n nucleusthan from a lighter 4n nucleus. On
the other hand, we are not completely sure that the choice for ¢,;,
given by Eq. (21), is so reasonable for heavier nucle.

For lighter nuclel, we must say that, definitely, the HPT mechanism
is the dominant one to explain the anomalous backward shape o the
scattering. However, this agreement is not so good for an energy region
below about 30 MeV, since, for this region, contributions from giant
compound resonances at ligh excitation occur'®*” and, possibly, our
model does not work there.

It was gratifying to find that for the C** case, | CP |* < 1 (forthe O'®
case, thiswasalsofound in Ref. (2)). They werealso energy independent.

It is interesting to observe that the PWBA HPT amplitude alone was
large enough, so that the Blair model when incorporated into the model
improved only the fine features of the angular distribution.

Recent papers, by Agass and Wall'! and Boridy'?, Similar in spirit to
the present work, attempt to explain the large-angle scattering of a
particles from 4n nuclei. In both works only Ca*° nucleus is taken as
the target necleus. Basically, they calculate the scattering cross section
by considering one-necleon exchange between the incident a-particle
and the target nucleus. In both papers agreement with experiment
is till far from perfect. However it seems that for heavier nuclel the so
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far neglected one-nucleon exchange amplitude, could be an important
contribution to the evaluation of the scattering amplitude!'2. Refe-
rentes (11) and (12), however, can not rule out the HPT mechanism
used in thiswork. Our feding isthat, for lighter 4n nuclei, one-nucleon
exchangeor any other higher order processdo not give the main contri-
bution for the total elastic scattering amplitude. This argument has
also been discussed partly in Ref. (3). See Fig. 4.

o Fa\ oL
o o
U/ A
|esO |2C IGO
6 {2He
o~ QG H M
3 p N 13
{' \ {n {p '3(!:\1
% o "%
IGO {3H lGO &

3
He
Fig. 4 — Possible higher ordei diagrams for O'¢ as a target nucleus.

We are perfectly aware that our model is the first attempt to consider,
more microscopically, the interpretation of the backward peak arising
in elastic scattering of a-particles by 4n light nuclei. Because of that,
we had no intention to make other refinements in the theory. Hence,

the set of valuesfound for the spectroscopic factors are not, probably,
the best ones we could obtain.

Polarization effects, among « particles, and three-body effects (here,
only two-body o — o interaction was assumed), are possibly some of

the improvementsfor the model, even though, they should count very
little.
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