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We show, by direct calculation, that the Heavy-Particle-Transfer (HPT) model of back- 
ward elastic a-particle scattering, together with the assumption of cc-cluster structure 
for the 4n light nuclei involved in the process, is capable of explaining the anomalous 
large backward peak in elastic a-scattering from 4n target nuclei. Discussions are made 
concerning possible higher order contributions. 

Mostramos, por cálculo direto, que o modelo de Transferência de Partículas Pesadas, 
para o espalhamento elástico de alfas a grandes ângulos, junto com a hipótese de que os 
núcleos 4n, envolvidos no processo, sejam conglomerados de alfas, é capaz de explicar 
o pico anômalo, elástico, a grandes ângulos. Discutem-se possíveis contribuições, de 
ordem superior, ao processo. 

1. Introduction 

In recent years, a number of a u t h o r ~ ~ , ~ , ~  have investigated the so-cal- 
led anomalous cc-particle backscattering peak, from Z = N = even 
nuclei (light and medium), at various incident energies. However, the 
major criticism in most of these works refers to a lack of a more micros- 
copic basis. A paper by Noble and Coelho2, basically, gave the fírst 
idea for this problem, suggesting a Heavy-Particle-Transfer (HPT) 
interpretation in a more microscopic approach. In the last couple of 
years, two calculations more, by Agassi and Wall (knock-on exchange 
interpretation) and Boridy12 (one-particle exchange interpretation), 
similar in spirit to the work by Noble and Coelho2, attempted to con- 
sider this problem. While Coelho and Noble applied their model to a 
light nucleus (016), the two other papers dealt with a heavier nucleus 
(Ca40). The central idea of the present work is mainly based on the 
generalization of the papers by Noble and Coelho2 and Coelho3. 
Noble and Coelho2 showed, by direct calculation, that the Heavy-Par- 
ticle-Transfer (HPT) mechanism of backward and forward elastic 
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a-particle scattering, together with the assumption of a-cluster structure 
of 016 and C12, are capable of explaining the larger backward peak 
and the forward angular distributions of the differential cross section, 
in elastic a scattering from 016. 0 u r  effort, here, is to try to generalize 
that theoretical approach in such a way that it would also be applicable 
to other light even-even 4n - nuclei, besides 016. It has been observed 
e~perimentally '~"~ that the large backward peak shows strong isotopic 
dependence. While it appears for 4n nuclei, it is completely absent for 
other nuclei. This approach gives a microscopic insight into the ano- 
malous backscattering phenomenon. 

In Sec. 2, we describe our formalism, while, in Sec. 3, we give our con- 
clusions and discuss the differences from previous work. 

2. Theory 

Heavy particle transfer, for backward scattering, can be represented 
mostly by pole d i a g r a r n ~ ; ~ ~ ~ .  The interest in pole diagrams (instead of 
higher order diagrams, representing, for example, nucleon exchange 
between the incident a and the target nucleus) comes from the fact that 
they are simpler and because their singularities (as functions of the 
complex momentum transfer) lie somewhat nearer the physical region. 

Nuclei, in the lower half of the sd shell, are particularly suitable targets 
for a cluster confígurations5. Hence, one can consider, the light even- 
even 4n nuclei, as composed of n elementary a-particles. This composite 
system can represent a target which will scatter an extra a-particle. 
If K,(r) is the a - a potential, it can be shown6 that the plane-wave 
Born approximation (PWBA) amplitude, for a boson to be scattered 
from a normalized bound state of n identical bosons of the same type, 
may be expressed as 

where 

M ~ = ( ~ T c ) - ~  dr'exp [ i (k-k ' ) . ( r f -Ro)]  r 



and 

Me, = ( h p 3  dr' drl . . . dr, exp [ik . (r' - R,)] I 
x exp [I- ik' .(r1 - R')] $$(r1 - R', r2 - R', . . . , r, - r') 

where r, is the vth cc coordinate, R, is the CM coordinate for the target 
nucleus and, r', the coordinate of the incident cc-particle. The incident 
and outgoing wave vectors are represented by k and k', respectively, 
and R' is defined as 

The target wave functions t,hf and t,hi are normalized and fully symmetric 
in the n cc-particle position coordinates. Eq. (3) represents the fact that 
the incident cc is exchanged (with equal probability) with any of the 
n cc-particles of the target. On the other hand, Eq. (2) corresponds to 
no exchange at all. 

The following, suitable, change of variables will simplify Eqs. (2) and (3): 

where n = 2,3  . . . . The set {qi, vz,. . . , R) constitutes a Jacobi system 
of coordinates (the Jacobian of the transformation is unity). 
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If one uses the new system of coordinates given by Eq. (3, the definition 
shown by Eq. (4), a subsequent new transformation of variables r' + 

1 r' + R, - - r (which becomes obvious afterwards) and finally the use 
n 

of the symmetry in the variables r2, r3, . . . , rn, one obtains 

n Me, = ( h p 3  dr' dql . . . dqn- exp [- iql . Q S 
+ ir' . Q'] ~ f i ( r ' ,  qi  I q2, . . . , %-I)  x 

where the following definitions were used: 

1 1 Q = --k+k' ,  Q1=k  + - k', 
n n 

and 

1 n - 2  
~fi(r ' ,  i11 1 q2, . , qn-1) = SI? r', - - r' + - 

n n - 1  

Employing a similar reduction of variables, we find (here r' -, r' + Ro): 

M~ = (hp3 [dr' dql . . . d q n l  exp (ig . r') x 

where q = k - k'. 

Combining the first term in Eq. (6) with Eq. (9), we have an amplitude 
MD which represents the scattering of the incident boson from each 
of the bosons in the target (symmetrized) in PWBA. The second term, 
in Eq. (6), corresponds to HPT and we will denote it by MmT. Con- 
sequently, 

Mfi = MD + MHPT, (10) 
where 



and 

MD = 

X 

+ 
X 

If we expand the wave functions il/f and S/i in terms of a product of a 
complete orthonormal set of (n - 1) cr states @(q2,. . . , qn-l), and the 
wave functions q5(ql), which describe the relative motion of a single cc 
with respect to the (n - 1) cr-core, we can write 

We have assumed that the target states have spin-parity O + ,  which is 
certainly true for the ground state. It is worth mentioning that the states 
@(q2, . . . , qn- are eigenstates of the (n - 1) a Hamiltonian. These 
wave functions are identified as the states of the physical nucleus con- 
taining (4n - 4) nucleons. The C$) s appearing in Eq. (13), are the 
spectroscopic coefficients. 

Substituting the expansion given by Eq. (13) into Eq. (11) and noticing 
that 

[dr' dq, . . . dqn- exp (iQ' . r') $$(r', q2, . . . , qn- x 



where 

(E$-l,, represents the excited.levels of the (n- 1) a-core system), we 
obtain 

x [drfdq1 enp ( - iQ .q l  + iQ' . r f )  x 

x CtV C$') (00 ( J'J' M', - M ' )  x 
v'J' Mf 
v J  M 

x (O0 ( JJ M, - M) &$,(r1) IJ*M/(PI) x 

x &(Vi) XM(%) di12 . . dqn- i @?JI,-M, @M,-M (i1i12, %-i). (15) S 
The last integrals give the conditions v' = v, J' = J ,  M' = M. If we 
now use, in Eq. (15), the plane wave expansion, 

a, 1 

exp (ik . r) = 471 1 i' jl(kr) ~h(k)  X,(P), 
1=0 , , , : = - I  

and the addition theoremi5, we obtain a much simpler expression 
for MHPT : 

where ÒnSy elastic channels I Q ) = I Q' 1 were considered (on the energy 
shell). Observe that K$ = (2ma/h2) (n - l/n) Ed and Id(Q) is defined as 

The result given by Eq. (16) could also be derived by application of 
Feynman rules8 to the pole diagram shown in Fig. 1. That diagram is, 
obviously, important for backward scattering. 





The effect of Coulomb interaction (though small for backscattering) 
should also be included in the final scattering amplitude. We represent, 
by Tc(0), the Coulomb scattering amplitude, which is given by15 

Tc(6) = (ne2/2?') [k sin 8121-' exp [2i(oo - 5 log sin 8/21, (19) 

where 

ol = arg r(/ + 1 + i<) and 5 = nm, e2/(n + 1) h2k. 

Finally, the differential cross section is calculated by the expression6 

3. Discussion and Results 

The calculation of the differential scattering cross section given by 
Eq. (20) requires, basically, the knowledge of +,(vi) (see Eq. (17)) and 
the spectroscopic coefficients, I C$) l 2  (see Eq. (16)). To obtain &(v1) 
(we recall that, it represents the relative motion wavefunction of a sin- 
gle cr with respect to the core) is quite an interesting problem. But, so 
far, only phenomenological approaches have been c o n ~ i d e r e d ~ , ~ " ~ .  
It is a reasonable appraximation2,16 (and also convenient, because the 
integration given by Eq. (17) is straightforward) to take the Eckart 
wave function7 

where N, is the normalization constant, R and m are free parameters 
and k, is related to the separation energy, E,. Certainly, the choice 
of 4, (vi) is very important concerning the final results. The calculation 
of the I CtY 1' could be done indirectly, as s h o m  in Ref. (2), (essentially 
by fitting do/dQ given by Eq. (20), to the experimental ones) or, more 
microscopically, using nuclear structure models (shell m ~ d e l ) ~ . ' ~ .  

We should be aware of the fact that the final expression for the cross 
section is based on three assumptions: (a) a-cluster structure for the 
target nuclei; (b) the heavy ion transferred; (c) the Blair strong absorp- 
tion model to incorporate distortion effects of the strong direct (optical) 
potential. The angular momentum, L(Eq. 18), is left as a free parameter 
which is approximately given by kR. 
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is large for the energy domain chosen. Fig. 3 shows an angular dis- 
tribution for the 016 target nucleus. 

The last nucleus considered was Ca40, for which experimental data are 
availablel 9. It is a medium double closed nucleus and quite good to 
check how far one can go with our HPT interpretation of anomalous 
backscattering. We have taken Elnb = 24 MeV and R = 4.69 fm, m = 7, 
and R = 3.78 fm, m = 8 (both set of values obtained by fitting the rms 
radius of Ca40). We have let the cut off angular momentum, L, to 
vary free around L = 8 (obtained from L =  kR estimate). We were 
not able, in this case, to reproduce the angular distribution for backscat- 
tering. This result is not so surprising and has also been suggested by 
Austern13. This shows that, for heavier nuclei, the HPT amplitude is 
probably much smaller than other higher order processes, such as 
nucleon exchange between the incident a-particle and the target ' '$I2.  

The latter process is more likely, in medium 4n nuclei, than in light 4n 
nuclei, which seems plausible from the fact that it is easier to remove a 
nucleon from a medium 4n nucleus than from a lighter 4n nucleus. On 
the other hand, we are not completely sure that the choice for &, 
given by Eq. (21), is so reasonable for heavier nuclei. 

For lighter nuclei, we must say that, definitely, the HPT mechanism 
is the dominant one to explain the anomalous backward shape of the 
scattering. However, this agreement is not so good for an energy region 
below about 30 MeV, since, for this region, contributions from giant 
compound resonances at ligh excitation O C C U ~ ~ * , ~ ~  and, possibly, our 
model does not work there. 

It was gratifying to find that for the C'' case, ) C$) 1' < 1 (for the 016 
case, this was also found in Ref. (2)). They were also energy independent. 

It is interesting to observe that the PWBA HPT amplitude alone was 
large enough, so that the Blair model when incorporated into the model 
improved only the fine features of the angular distribution. 

Recent papers, by Agassi and Walll' and Boridy12, similar in spirit to 
the present work, attempt to explain the large-angle scattering of a 
particles from 4n nuclei. In both works only Ca40 nucleus is taken as 
the target necleus. Basically, they calculate the scattering cross section 
by considering one-necleon exchange between the incident a-particle 
and the target nucleus. In both papers agreement with experiment 
is still far from perfect. However it seems that for heavier nuclei the so 



far neglected one-nucleon exchange amplitude, could be an important 
contribution to the evaluation of the scattering ampli t~de"~ '~.  Refe- 
rentes (11) and (12), however, can not rule out the HPT mechanism 
used in this work. Our feeling is that, for lighter 4n nuclei, one-nucleon 
exchange or any other higher order process do not give the main contri- 
bution for the total elastic scattering amplitude. This argument has 
also been discussed partly in Ref. (3). See Fig. 4. 

Fig. 4 - Possible higher ordei diagrams for 0 1 6  as a target nucleus. 

We are perfectly aware that our model is the first attempt to consider, 
more microscopically, the interpretation of the backward peak arising 
in elastic scattering of cc-particles by 4n light nuclei. Because of that, 
we had no intention to make other refinements in the theory. Hence, 
the set of values found for the spectroscopic factors are not, probably, 
the best ones we could obtain. 

Polarization effects, among cc particles, and three-body effects (here, 
only two-body cr - cc interaction was assumed), are possibly some of 
the improvements for the model, even though, they should count very 
little. 
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