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A study of EPR intransition metal dilutealloysis presented. Phenomenological equations
to describe the dynamics of the magnetization are proposed. They reproduce the reso-
nace condition that is obtained from quantum mechanical derivations and satisfy,
without any ad hoc hypothesis, several physical properties not accounted for by previous
models. A recalculation of the y-shift in RPA isdone, using a new approach. The cross-
relaxation times are also obtained.

E apresentado um estudo de Ressonancia Paramagnética Eletronica em ligas metélicas
diluidas. S8o propostas equagles fenomenoldgicas para descrever a dindmica das
magnetizacdes. Elas reproduzem a condicdo de ressonancia que é obtida por calculos
guénticos e verificam, ssm nenhuma hipétese ad hoc, varias propriedades fisicas ndo
satisfeitas por modelos anteriores. Usando um novo tratamento, é recalculado o des-
locamento do fator g. Os tempos de relaxagdo cruzados sdo também obtidos.

1. Introduction

In a previous paper', it was presentd a brief description of magnetic
resonance in metallic materials, with emphasis in non-magnetic dilite
alloys. A phenomenological equation of motion for the magnetiza-
tion was then proposed which reproduced all the characteristic results
obtained from quantum mechanical derivations. Now, we address
ourselves to a discussion of EPR in transition metals dilute alloys.
The transmission technique in Ref. 1 seems to be very successful for
this kind of experiments, which provide a satisfactory way to study
locdized moments®3. Within the general problem of magnetism
in metals, that o localized moments in transition meta dilute aloys
has recently been the object of particular interest and controversy*:>:°.
The most successful microscopic model has been that of Anderson®.

*Work supported in par® by CNPq, BA&ESP, BNDE and FNDCT
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For the sake of completeness, we present in the following section a
brief review of Anderson's theory and the Schieffer-Wolff” canonical
transformation that shows the equivalence of Anderson hamiltonian
with Kondo hamiltonian®, aform that will be used later on in Sections
4 and 5.

The experimental data o EYR of dilute magnetic alloys®* has been
interpreted on the basis o Hasegawa's phenomenological equations’.
These are Bloch-type equations for the magnetization, which involve
relaxation of the magnetization towards thermal equilibrium. Sasada
and Hasegawa'® performed a detdiled quantum mechanical (RPA)
calculation for the transverse magnetization using Anderson's hamil-
tonian. They obtain a resonance conditjon which agrees with the one
obtained in the macroscogic approach.

However, Hasegawa®'® makes quite a point of the fact that a severe
shortcoming of the pheriomenological treatment residesinto the ques-
tion about the destination of the relaxing magnetization. The equations
involving thermal equilibrium destination agree with the results o
the microscopic theory, but in order to satisfy the requirement of
positive absorption, it is necessary to introduce an ad hoc hypothesis
regarding the detailed balance condition'®. Macroscopic equations
involving instantaneous equilibrium destination®*! correctly satisfy
the requirement of positive energy absorption, for another particular
detailed balance condition, but in that caseit is not obtained the proper
resonance condition'°.

The present authors have proposed' ? an alternative phenomenological
equation for the magnetization which involves transverse relaxations
normal to the instantaneous external fields and to the instantaneous
Weiss molecular fields. However, the final result if formally equivalent
to that derived assuming relaxation to the therrnal equilibrium values
o the magnetization®!°. The proposed model, without any additional
hypothesis correctly produces a transverse spin-susceptibility that,
for equal values of the gyromagnetic factors of both conduction and
localized spins, (a) gives a resonance condition which can be identified
term by term with the RPA result!®, (b) satisfies the requirements of
positive energy absorption, (C) satisfies the isotropy condition and (d)
the exchange part of the relaxation terms has no effect on the resonance
line shape. We present these results in detail in Section 3. In Section 4,
we present a recalculation of the transverse spip susceptibility of the
electron gasin dilute magneticalloys, using a Green function technique
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in conjunction with the use of Schrieffer-Wolff’ form of Anderson's
hamiltonian®. Finally, in Section 5 we present the calculation of the
transverse relaxation times that govern the cross-relaxation between
the spin subsystems.

2. Localized Moments

In Anderson's own words, his microscopic model for the description
of localized moments?, is a mathematical formulation and an extension
of Friedd's ideas®. Essentially, he performsa self-consistent calculation
to determine in which conditions localized moments appear.

Anderson's hamiltonian, in the second quantization formalism, reads

H =Y & Cio Co+ Y, Eodjodjs +
L v (2-1)
tu %3 djrdpdyd;, T kZij(Cfmdja td;,Ci).
aj

The first term is the unperturbed energy of the free electron system,
and the second the unperturbed energy of electrons in d-states on
impurity atoms. The third term is the Coulomb repulsive energy of
two d-electronson the sameimpurity, (theindex j numerates the atomic
impurities) and finally the last is the hybridization one-electron energy
of s and d-electrons, being the fundamental term in Anderson's hamil-
tonian.

This hamiltonian is treated within the Hartree-Fock approximation
and it is shown® that localized moments will arise for small ¥;;,/U
ratios. Schrieffer and Wolff” analize Anderson's model in the more
favorable conditions for the existence of localized moments. Because
of the inconvenience of dealing with the hybridization term in per-
turbation theory, [smal denominators (e —&-) ~0 appear in the
terms in four order in V], they propose a canonical transformation
that makes the hamiltonian (2-1) to take, in the new variables, a form
similar to Kondo’s hamiltonian®, containing a s-d-exchange-type
energy. Since the Kondo effect®!* seems to imply a condensation
at very low temperature with the production of a localized conduction
electron spin polarization that compensates that of the impurity,
Schrieffer and Wolff conclude that there is no localized moments at
zerotemperature. However, there existsa critical temperature (generaly
of the order of 1°K or lower) above which such a localized conduction
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electron polarization collapses and localized impurity moments can
appear. We restrict oui-selves to consider our system at temperatures
above Kondo temperature.
Schrieffer-Wolff hamiltonian is obtained performing the transformation

H=¢eH, e5 (2-2)
on hamiltonian (2-1), where

=3 {B,0) ¥ [4,00 - B,0)] diodic} (Ciodir — djsCic)
aj

and
Ask) = Vflexo — E; = U),  B(k) = Vi/lexs — E,)- (2-3)

This transformation eliminates terms containing V in first order, to
obtain

H= }: Exa Ciacka + Z E, d;"dj" +
ko : Jo
+ 3 Udjydydjdy + k; Jiae (b S¥) ™ (W5 Syry), (2-4)
J J
where
Jue = VeiVales— E-U) ' + (@ —E-U)"" -
~(—E) '~ (a - E)7'], (2-5)

d;
"

and 2S =a, with ¢ the Pauli matrices.

The Hamiltonian (2-4) clearly shows an exchange-type form with an
effective exchange interaction Jy,- that contains square powers o the
hybridization potential V. Some other terms that are present in H after
performing transformation (2-2) have been dropped’ because they
do not give any substantial contribution in the calculation of Sections
4 and 5.

3. Phenomenological Equation of Motion

One of the existing phenomenological theories is due to Hasegawa®,
who was the first t0 introduce the idea of considering the conduction
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and the localized electrons as two different spin systems, each with
its own resonant frequency and relaxation times but coupled through
a spin-spin-type interaction.

According to Hasegawa, one can describe the dynamics d the spin
system through a system of two equations of motion, one for each
spin subsystem, coupled by means o Bloch-type relaxation terms.
Figure 1 describes the relaxation scheme devised by Hasegawa. One
serious difficulty involved in this treatment is that, for certain values
o the parameteys, Hasegawals solution produces negative absorption.
[cf. Hasegawas™ Eq.(52) for Ay, < 1]. Thisdrawback can be overcome
by redefining the " destination values of the magnetization of the sub-
systems, namely, M and M,, that appear in the detailed balance condi-
tion, My/T.y=M,/T;s as M, = y°H.,, and M, =%$&, where T,, and
T;s are the cross relaxation times, x? and y; the static susceptibilities
for tﬂ?srspinsand for the "clothed" d-spinsand H,,, the total external
field"®.

Another phenomenological model is that of Cottet et al.'!, which is
based on instantaneous equilibrium destination, and the detailed
balance condition /T = 3/Tss needs to be introduced in order to
satisfy the requirement o positive absorption. The resonance con-
dition obtained from this model does not agree with that of Sasada
and Hasegawa™".

We propose a new system of phenomenological equations, a brief
account of which has been given elsewhere!?, that involves particular
mechanisms of relaxation associated with spinlattice and the cross
spin-spinrelaxations. Our results present a different phenomenological
model that besides satisfying the physical requirements of positive
absorption, isotropy condition and no effect of exchange contributions
on the line shape, it correctly repraduces the expected resonance
condition*" and is not burdened with the necessity of introducing
any ad hoc condition of detailed balance.

We write for the equations of motion for the coupled s- and d-magne-
tizations

Ms = ysMs X [Ha + /1Md + (2A/Ms20 VZMS] + R,, (3—'8.)

M, = yaMg x (He + AM;) + R, (3-1b)
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Fig. 1—-Hasegawa’s relaxation scheme for coupled two spin

systems.
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Fig. 2 - The relaxation vectors as proposed in the text
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Here, y, and y, are the gyromagnetic factors of s- and d-spins. The
fidd H, includes the static and r.f. external fields. The internal fields
are* H, =A M, TIM,T(24/M%) VM, and H,=i.M,T IM,.
The coupling constants between magnetic moments are A, 44 and
Asa = Aas = 4, Mo, Myo are the static magnetizations, and A is known
as the dtiffness parameter'®. Finaly, the vectors, R, and R, are the
relaxation terms, whose choice decides the destination of the relaxing
magnetizations. We propose for this relaxation terms

R, = Ry, + R, + Ry, | (3-22)
R; = Ry + Rys, | (3-2b)
where the direct relaxation*veciors are
Ry = (HZ T,r)™' H, x(M; x H,), (3-3a)
Ry = (H? Ty)” ' H, x (M, x H,), (3-3b)

Rss = (2A/Ms20 TA‘S) Ms X (Ms X VZMS)5 (3'36)
and the cross-relaxation vectors are °
de = (rsd/Mszo) Ms X (Ms X Md) +

+ Ca/M3)My x (M, x M) (3-3e)
Ry = (Tas/M7) Md_x (M,; x My) +
+ (Ta/M%) M, x (M x M), (3-3f)

where I'y; and I'y, are phenomenological constants.

The relaxalion terms (3-3a) and (3-3b) are of the type used (in the case
o a single component system) by Codrington et al.'®. These terms
imply a transverse relaxation perpendicular to the instantaneous total
external field, with relaxation time T;;, and T;;, and they reproduce
for the transverse part of M, in which we areinterested, a Bloch-Wangs-
ness relaxation term'’. The term R, of Eq. (3-3c) will result in a spin
diffusion term, as discussed in Ref. 1. The crossterms R, and R, area
generalization of Landau-Lifshitz-type relaxation terms'®, which are
expected to berelevant in case of systems with strong exchangé interac-
tions, as is the present case. They account for transverse relaxations
which have components perpendicular to the instantaneous exchange
fields AM; and AM,. Figure 2 describes the different relaxation con-
tributions. It is worth mentioning that Wangsness'® has shown that
in the steady state attained by a system of magnetic moments-in a
resonant experiment the rate of entropy production is a minimum.
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Such a condition is satisiied by equations of motion containing either
Codrington et a. or Wangsness-Bloch relaxation terms. Such a proof
is presently not available for equations containing Landau-Lifshitz
relaxation.

The two kinds o relaxation mechanisms so far introduced correctly
saisfy

i) for y,=7, and when Tz'=Tz;! =0, one finds R, * R, =0, what
means that exchange interactions do not modify the resonance line
in the absence of other interactions,

i1) the absorption coefficient is positive, as shown in Appendix A;
iii) the isotropy condition is verified, as shown in Appendix B;

Iv) the resonance condition, to be obtained below, agrees with that
of Sasada and Hasegawa, as will be shown with the help of Table 1.

The transverse susceptibility is derived in the linear approximation
from Egs.(3-1a) and (3-1b). Introducing m =M - M,, one finds

Mgy = Qs Mgy + iQqamyy + ifshy + D*V2mg, (3-4a)
Mgy = Qg Mas + iQus Mgy + ifahs, (3-4b)
where

Qs =7 (HotAMuo) -i (71 + T3 Y, (3-5a)
Qu =~%a (Ho+AMgo) —i (T + Tis ), (3-5b)
Qu =79, AM Ti T3 1, (3-50)
Qus = vahMa i T, (3-50)
D* =2AT5'-i y,AMy, (3-5¢)
Toq ' = Tus + (Mao/Myo) T, (3-59)
Tos ' = T'a + (Myo/Mao) Tus, (3-5g)
Bs =My +i(Ms/Ho) T2, (3-5h)
Bi = yaMao + i(Mao/Ho) T.L". (3-5i)

Here, we have defined the transverserelaxationtime T3 ' = T, + 15 1,
wheret, is an orbital relaxation time which appears due to the random
distribution of magnetic and non-magnetic impurities® 5.
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MICROSCOPIC RPA PHENOMENOLOGICAL MODELS

Calculation (5)
Thermal Equilibrium Present Model
Degtination (4,5)
cpulAn M, My,
2ﬂ2N (O)H 0 A_js M s0
P2u? A 2
QCAn TZ_Sl} Ts—;l = rds + 1_‘sd MM_@'
-1 -1 MSO
ON(0)2uH, T 245 Ty =Ty + Dy M
do
0 Tl Ta'
1'-1_1 Ts—il TEI = Tsil + ’[:2_1
0 0 D = 2A4T5' — iy, AM,,
Detailed Balance M, Tal = M. T3 M, Tl = My, Tt

Condition -—

Table 1



Taking the time and Fourier transform of Egs. (3-4d) and (3-4b), one
findsa system of agebric equations, linear in m,.(q, w) and m,..(q, W),
which can be easily solved to obtain the transverse susceptibility:

ms+ (4, ©) +mas (g, ®) _
h+(qa CO)

_ Byl —Qua) + Bl — Qg — iqu*) + ﬂdQsd + ﬂsts
(CO - st - 1q2D*) (0) - Qdd) - Qsd st )

X+(q9 a)):

(3-6)

In the adsence o magnetic impurities, one recovers, for the transverse

magnetization of conduction electrons, the results presented in Ref. 1,
and the results o microscopic calculations'®. The parameter D* is

the complex spin diffuson constant.

The resonance condition is given by the poles o the transverse sus-
ceptibility, i.e. by the solutions o

(O— R,, — quD*) ( 0- Qdd) - Qsdes =0. (3-7)

Replacing the values of the parameters given in Egs.(3-5), one finds
that our result quite agrees with the results of the R.P.A. calculation
o Ref. 10, and the mode involving relaxation to thermal equilibrium,
once the identification of coefficients, as shown in Table |, is made.

Furthermore, from Egs. (3-5f) and (3-5g), one finds the detailed balance
condition

Mo Tqt = My Ty (3-8)

It should be observed that, for examplefor CuMn alloys, it is expected
1> Aaa 8 > A0 > Ay x?, and then Eq.(3-8) becomes approximately

W Tt =y Tis (3-9)

where x? is the bare or free electron static susceptibility and y; the
dressed d-electron susceptibility xs = 73/1 1 - 442 %3 | (see Appendix C).

Neglecting spacia dispersion in Eq.(3-7) (i.e., putting g= O), one can
find the roots of Eq.(3-7). There are two solutions, o+and o-, the
latter corresponds to both spin magnetization precessing out of phase
and being strongly damped and not observable. The other root, once
it is taken into account that and since the exchange interaction is large
and then
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has the real part

o? + y,0d
res — > - -1
o) “Ttyp (3-10)

Here, w? =y.H, and w? =y,Ho, and 3. = x3/x° = Const./T.
On the other hand, the imaginary part of w4 is

_ Tt + o Tt
Tel - sL r AdL - 1
2eff 1+ % (3 1 )
The temperature dependence of O,,, and Th.¢r occurs through y,. At
low temperatures w,., tends to w§ and T tends to Tz, and at high
temperatures, i.e., when x? > 9, w,., approximates w? and T tends

to Ty These results are in accord with those originally obtained by
Hasegawa® and with the microscopic calculations!®:1°.

4. Macroscopic Theory

The first quantum mechanical calculation of the spin susceptibility
of the coupled s-d-spin system is due to Caroli et al.!°. Using Anderson
model® and by means of an ardous calculation they obtain the y-shift
in thegR.P.A. Their result agrees with that of the phenomenological
theory”. Sasada and Hasegawa'® extended the work of Caroli €t 4d.,
including spin-latticerelaxation of conduction electrons,crossrel axation
and spin-orbit scattering of the conduction electrons. They performed
a careful study of the bottleneck condition and investigated in detail

the relation between microscopic and phenomenological equations.

In this section we reconsider the calculation o the transverse suscep-
tibility using a Green function technique and starting from Schrieffer-
Wolff verson of Anderson hamiltonian, what we repute to be easier
mathematical handling, and to provide a clearer connection with
Hasegawa’s description .
The transverse magnetic susceptibility is given by?°

2+(q, 0) =21 (M .(q) | M_(g); ), 4-1)
where ((...|...;w)) is the Fourier transform of the retarded Green
function.

The total magnetization of the two spin subsystems is
M(r, 1) = uss(r, o Ylr, 1) + pabi (x, ovsa (r, 1), 4-2)
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where u; and y, are the magnetic moments of s- and d-electronsrespec-
tively and ,i; are the second quantization operators

Yr, ) = k}: Yieo(r) Cro(t), (4-3a)
and
Y, 1) = ) dolr —R))d;o(2). (4-3b)

Replacing (4-3a) and (4-3b) in Eq.(4-2), we obtain for the transverse
part o the magnetization,
M, 1) = 2u5 Y, Yk () Yo, (1) Cir(8) Cie ) +

kk’

+2u0 Y, $5E) G5, (0) () dy ). (4-4)

iy
Taking space-Fourier transform, it results for the q=0 component
M.(0;1) =24 ¥, Calt) Coa(0) + 204 Y. iy (1) dy 1) 4-5)

J

In order to use Schrieffer-Wolff transformation of Anderson hamil-
tonian, it is necessary to expressthe magnetization in terms of the new
variables. With S given in Eq.(2.3) one finds

M, (0,) = &M e =24, Y Ciy Cuy + 210 Y. djrdy, +
J
+ 2ua — ps) ), Bk

k

+ 2pta - ) . D) (3 Cuydyy + nudjy Gy, (4-6)

kj

~{

(Cirdyy, + djy Cu)) +

N’

where D(k) = A(k) — B(k). Let us observe that for u, =y, the trans-
formed magnetization of Eq.(4-6) has the same form than the magneti-
zation given by Eq.(4-5). Since | u - i |/ps ¥ 0.01, we neglect the
last two termsin Eq.(4-6). The transverse susceptibility isthen given by

x+(w) =4y, k); & CiCiy | iy Cuoy; @) —

— 4y Y, Kdjdy | djydyr; ). 47

\ J

The Green functions that appear in this equation satisfy the coupled
equations of motion?°

i # ' 1 + ;
0 LCit Cuet | iy Ceys o) = 3 {[CitCiy, Ce Gt D +
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+ {[Cx:Cus, H] | Cier Ciey; ), (4-89)
T + 1 B £
o Ldpdyy | diydie;0) = 7 (dhdi, djdir D T
+ K[did;, H] | djydjs @), (4-8b)
where H is given in Eq.(2-4).

We treat the commutators in Egs.(4-8a) and (4-8b) in the Random
Phase Approximation®%2! to obtain

. . O
W {Ciy Cy | Ciey Ciers 0 = 7’;’% [{(nr) — {mad] T

+ (exr — 1) KCirCuy | C;'iclg’ré w) +
1 4 %
+Y 5 Ju [Knnd = {mj )] LCuCia | CenCors 0 +
J

+3 % T [{myy = (miq Y] Kdjpdyy | diydyy; @, (4-9a)
7

i 5.,
o Kdjrdyy | djrdyr; 0 = 55 [{np) =<l +
+(E, — Ey) Kdjydyy | djy dyps o)) +

+ ; “;—Jkk [t - <ﬁkl>] Kdjdyy | dyidyrs 0

1 g i
+ ; = Juc [ ) = (13131 LGy G | Ciey Ciens @),
where E, =E - Un, and (...) are statistical average values.

Following Anderson®, we replaced the products of two matrix elements
W, by its average

ViiVes = (V) = V2 Oy (4-10a)
and therefore
Ju=2V2. [(e-E-U) '~ (& - E)71], (4-10b)
where we have neglected the spin contribution.
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Let us notice the equivalence between the terms in equations (4-9a)
and (4-9b) with that o the phenomenological equations (3-4a) and
(3-4b), with Jy, having the role of 4 and omitting the relaxation terms.

Introducing the notation

Q)=w+E; - E, - ;Jkk /2, (4-11a)
Qk(w)= W+ & — &y *‘Z.Ikk mj/Z, (4-]1b)

J
m; = [{npy = (], (4-11c¢)
e = [(mq) = (ma ), (4-11d)

system (4-9a) and (4-9b) becomes ‘
Qu(@) xiacl) + Y, My y5(w) = my, (4-12a)

Ji’
Qo) y;(0) + k; My () = my, (4-12b)
where 1ir(@) = 2L djrdyy | djydyy; o),

Kx(w) = —2m <<C;1Ckl , C;’lck'T ; 60>>
Performing the summation ) on both sides of Eq.(4-12a) and ).
kk'

kA
on both sides of Eq. (4-12b), we are |eft with a system of two algebraic
equations with two unknown variables. Therootsdf the secul ar equation

Qd(a)) - Z Jl%k My ml Qk_ 1 ((D)/4 =0 (4'1 3)
kj

produce the resonance frequencies. Using Anderson's notation

X =(ep-—-E)/U, y=I/A, A=aV?p,
where p; is the density of s-electron states at the Fermi leve, Eq. (4-13)
becomes

wdw - wd)

oo + QP A (@-14)

w - wf + A(x, y)

with  A(x, y) = ayx(1 - x)7, =g, -&y, of=E -E and
%= %a/%s = x(1°K)/T. For values appropriate to CuMn, i.. y ~ 10,
X ~1/2 and the impurity concentration ~ 100 ppm, produces
1{(T=1°K) ~ 3 and then w - »? can be neglected in the denominator
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in Eq. (4-14). The y-shift coincides with Eq. (3-10), becoming indepen-
dent of the parameters of Anderson's hamiltonian. From these results
we can identify A as

3= 2 = (U] (- )
Putting U ~ 4eV, one iinds, for the x and y values given above, that
Jege ~ 05 eV, which grosdy coincides with the expected values for
the exchange integral of Mn in noble metal hosts*?

In conclusion of this Section, we may say that Schrieffer-Wolff transfor-
mation of Anderson's hamiltonian makes quite clear how the covalent
mixing of s- and d-electronsresultsin an effective exchange interaction.

The latter can be largefor small values of X, i.e. when the renormalized
d-level is near the Fermi level. Hasegawas type of equations for the
magnetization should appear, as in fact was shown here.

5. Cross Rdaxation Times

We proceed in this section to an evaluation of the transverserelaxation
times T;; and T;,. For that purpose, we use the formalism due to van
Hove??® in order to deal with the extension at finite temperatures of
the "Golden Rule”?4. In the present case, we have

Tt = J dt exp(iwdr) CHSE (O) HESP @), (5-1a)

— o0

L9 =3 j dt oxp( i) (HESE O HED (1), (5-1b)

where HZ™ is the exchange energy part of hamiltonian (2-4) when
matrlx element between states (n |and|n) have been taken and
w§=E, - E; and o = skl—ng Furthermore, (...) stands for
statistical average at temperature T.

According to Zubarev?®, Egs. (5-1) can be rewritten as
¢ ' =—dn [exp(Bwf)— 117! Im CHFSY [ HES; 02D,
Ta (k —47IZ [exp(Bo) — 1171 Im KHPy | HEfe s s 0 -
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Replacing the interaction hamiltonians by their explicit form one finds

T ' =—n[exp (Bod)— 117" Im Z Jik T ppr <<Ck1CkT'C,,TCp1 Q)),
(5-29)

Ta'k)=-m Z [exp(Bwiw)—1]~" Im Z T <<dnd1l | dirydir; conge ).
(5-2b)

One easlly calculates the Green functions involved in Egs. (5-2) ob-
taining

Oy 5kp (g ) = {mey)
21 ®—&r + &gy (5-33.)

<<Cklck 1 i CpTC,, THOES
gt o = O () =gy
<<d.Ilel I d.l'ld.I'T ’ CU>> - E w— El + ET (5'3b)
Assuming K T w3, isotropic surfaces of constant free electron energy
g and T < Ty, Tuk) has a constant value T(kr) given by

=% SR e T sl o) (54a)

and
n KgT 0
Tps =5 —Tw Z nj —nj) owg + Wpxp)y  (5-4b)

j

Whae J = Jkpkp.

Using Y, — fdeg(e) and Z(nj - ;) = z8Ho/pta one finds
k

Tyl= % ¢ S(S+1) J2 p; (5-5a)

and
Ti ' = nKgT F pi, (5-5b)

where p, is the s-electron density of states at the Fermi level, and S the
d-electron spin quantum number.

It is interesting to note that the results thus obtained formally agree
with that of Overhauser?® for relaxation of conduction electrons
interacting with nuclear spins, and that of Heitler and Teller?® for
the relaxation of nuclear spins.
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Let usobservethat theexpressionfor 7, is valid only when the Zeemann
splitting is smaller than the thermal energy KT. For typical values
for CuMn with ¢ = 100 ppm, one finds T;; ~ 107 !! sec. For compa-
rison, typical relaxation times for spin lattice relaxation times are
T ~ 107 % secand T, ~ 1078 sec. Therefore[d. Eq. (3-11)], the reso-
nance linewidth is determined by the spin-lattice relaxation times and
then there is no experimental access to the cross relaxation times.

6. Conclusions

This work presents a study of EPR in transition metal dilute aloys.
We present a phenomenological equation for the dynamics of the
magnetization. This equation reproduces the quantum mechanical
results and, without any additional ad hoc hypothess, satisfies the
main physical requirements of positive absorption, isotropy conditions
and no exchange effects on the resonance line. Several relaxation
mechanisms are introduced, involving transverse relaxation normal
to the instantaneous external fields, and to the instantaneous Weiss
molecular fields. The orbital relaxation time was introduced on a
phenomenological basis, and inhomogeneity in the itinerant s-electron
magnetization became responsiblefor the appearance of a spindiffusion
term.

Finally, we consider some microscopic aspectsaf the problem. Calcula-
tions were performed utilizing Schrieffer-Wolff transformation of
Anderson hamiltonian what makes clearer the connection with
exchange-type interaction theories, and the phenomenological equa-
tions. Using the Bogolliubov-Tyablikov Green function technique,
as described in the already classical paper by Zubarev, and the RPA,
the equation of motion for the magnetizaion was obtained and
fromit, the resonance condition. Next we evaluated the crossrelaxation
times, which unfortunately cannot be determined from the EPR experi-
mental data.

To conclude, it should be remarked that these microscopiccalculations
were within the Hartree-Fock approximation. A more precise treat-
ment would bethe utilization of the unrestricted Hartree-Fock approxi-
mation. Since this implies in leaving unspecified the spin orientation
in d-orbitals, it should be a very convenient way to treat the particular
problem in the theory of magnetism that we discussed here.
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Appendix A: The Energy Absorption

The absorption coefficient is given by ~wImy.(w). Therefore, it is enough to verify
that Imy +(w) < 0 to show that absorption is definite positive. From Eq. (3-6),0one finds

2+(@) = N(w) . D¥w)/ | D{w) |, (A-1)

where
N(w) = Byler = Qug) + Bl — Qi) + Basa + B, (A-2a)
Diw) = (00— Qua) (00— Qg) — Qs (A-2b)

To find the sign of the imaginary part of the susceptibility, it suffices to study the sign
of the numerator in (A-1). Replacing the values of the different parameters as given by
Eqg. (3-5), one finds for InND* a polinomial in T,; !, T, f, T.z ' and T;z!. The linear
terms in T,z! and T;* result

—olx) Tt +28 Tt o+ WHo + AMo + 2AMyo) | < 0.

The linear terms in Ty' and T, vanish identically. Finally, the cubic terms in the
inverse of the relaxation times result

—o T+ T | (T " T TV + T T Y 15t Tt |
F (T + T Y T T @+ )+ 08 Tor + 8 T ) T ' T ' < 0.

Others cubic terms in the inverse of the relaxation times, but not proportional to w,
vanish identically.

Therefore, Imy .. (w) is definite negative and thus we have proved that power absorption,
as derived from our phenomenological equations, is definite positive for all values of
the parameters.

Appendix B: The Isotropy Condition

The isotropy condition means that in the static limit 0 — 0, the susceptibility reduces
to the longitudina one, regardless the spin lattice relaxation. This fact implies the
equality between the adiabatic and isothermal susceptibility®®.

Taking w — 0 in the Eq.(3-6) and neglecting the spin diffusion terms, we obtain

By - Qua) + Bl Qs — )
X+(q’ 0) a Q;id st - Qsd st (B-I)

where the superscript (‘) means that we drop the spin lattice relaxation times in the
Egs. (3-5). Using these expressions in (Bi) we have

1+(a,0) =

_ Yspa(Ho + AM o + AMao) (Mgo + Mao) + i(Tod ! + Ty7 1) (9sMso + ¥aMao)
yovaHo(Ho+ Mo+ AMao) + iHo(yaTea "+ 7sTas ) +iMys—pa) (Mo Tis '~ Mo T )

(B-2)




Using the detailed balance condition given by the Eqg.(3-8), we finally obtain:

2ela,0) = Mo E Mio ot (B-3)
Appendix C: The Static Susceptibilities
In the static limit, one finds
Mo = 22 (Ho + AsMyo + AM o), (C-1a)
Mo = 23 (Ho + AaaMao + AM o). (C-1b)
Solving this inh(;mogeneous system of linear equations, one finds
ts = Mso/Ho = 3| 1~ (haa= ) %3 | /D (C-2a)
%o = Mao/Ho = 43 |1 = (Vs = 2) 25 1/D, (C-2b)
where
D=(i - Awxd) (i = Aaa xd) - 227778. (€3

Neglecting A,x? (case of strong paramagnetism), and taking into account that (e.g. in .
CuMn)} 2u? ~ Joge ~ 05, 470 = Ap?ps = Joe ps ~ 0.1 (ps — 0.2 ev™?), it results to a good
approximation for x, and yx4:

As =S (C-4a)
Xa = x3/(1 - Xad Xg)- (C-4b)
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