
Revista Brasileira de Física, Vol. 5, N." 3, 1975 

Conduction Electron Spin Resonance 11: Transition Metal 
Dilute Alloys* 

SÉRGIO COUTINHO 
Instituto de Física, Universidade Federal de Pernambuco, Recife, Pe 

ROBERTQ LUZZI 
Instituto de Física "Gleh Wurayhin", Universidade Estaducrl de Cnrnpinas, Campinas SP 

Recebido em 28 de maio de 1975 

A study of EPR in transition metal dilute alloys is presented. Phenomenological equations 
to describe the dynamics of the magnetization are proposed. They reproduce the reso- 
nace condition that is obtained from quantum mechanical derivations and satisfy, 
without any ad hoc hypothesis, severa1 physical properties not accounted for by previous 
models. A recalculation of the y-shift in RPA is done, using a new approach. The cross- 
relaxation times are also obtained. 

É apresentado um estudo de Ressonância Paramagnética Eletrônica em ligas metálicas 
diluídas. São propostas equações fenomenológicas para descrever a dinâmica das 
magnetizações. Elas reproduzem a condição de ressonância que é obtida por cálculos 
quânticos e verificam, sem nenhuma hipótese ad hoc, varias propriedades físicas não 
satisfeitas por modelos anteriores. Usando um novo tratamento, é recalculado o des- 
locamento do fator y. Os tempos de relaxação cruzados são também obtidos. 

1. Introduction 

In a previous paperl, it was presentd a brief description of magnetic 
resonance in metallic materials, with emphasis in non-magnetic dilite 
alloys. A phenomenological equation of motion for the magnetiza- 
tion was then proposed which reproduced a11 the characteristic results 
obtained from quantum mechanical derivations. Now, we address 
ourselves to a discussion .3f EPR in transition metals dilute alloys. 
The transmission technique in Ref. 1 seems to be very successful for 
this kind of experiments, which provide a satisfactory way to study 
localized moments2y3. Within the general problem of magnetism 
in metals, that of localized moments in transition metal dilute alloys 
has recently been the object of particular interest and c o n t r ~ v e r s y ~ ~ ~ ~ ~ .  
The most successful microscopic model has been that of Anderson5. 
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For the sake of completeness, we present in the following section a 
brief review of Anderson's theory and the Schieffer-Wolff7 canonical 
transformation that shows the equivalence of Anderson hamiltonian 
with Kondo hamiltonians, a form that will be used later on in Sections 
4 and 5. 

The experimental data of EYR of dilute magnetic a l l o y ~ ~ , ~  has been 
interpreted on the basis of Hasegawa's phenomenological equations9. 
These are Bloch-type equations for the magnetization, which involve 
relaxation of the magnetization towpds thermal equilibrium. Sasada 
and Hasegawal0 performed a detáiled quantum mechanical (RPA) 
calculation for the transverse magnetization using Anderson's hamil- 
tonian. They obtain a resonance condition which agrees with the one 
obtained in the macroscogic approach

g
. 

However, Hasegawa9,l0 makes quite a point of the fact that a severe 
shortcoming of the pheriomenological treatment resides into the ques- 
tion about the destination of the relaxing magnetization. The equations 
involiring thermal equilibrium desthation agree with the results of 
the microscopic theory, but in order to satisfy the requirement of 
positive absorption, it is necessary to introduce an ad hoc hypothesis 
regarding the detailed balance conditionl'. Macroscopic equations 
involving instantaneous equilibrium de~tination'~," correctly satisfy 
the requirement of positive energy absorption, for another particular 
detailed balance condition, but in that case it is not obtained the proper 
resonance conditionl O. 

The present authors have proposedl an alternative phenomenological 
equation for the magnetization which involves transverse relaxations 
normal to the instantaneous externa1 fields and to the instantaneous 
Weiss molecular fields. However, the final result if formally equivalent 
to that derived assuming relaxation to the therrnal equilibrium values 
of the magnetization9,10. The proposed model, without any additional 
hypothesis correctly produces a transverse spin-susceptibility that, 
for equal values of the gyromagnetic factors of both conduction and 
localized spins, (a) gives a resonance condition which can be identified 
term by term with the RBA resultlO, (b) satisfies the requirements of 
positive energy absorptjon, (c) satisfies the isotropy condition and (d) 
the exchange part of the relaxation terms has no effect on the resonance 
line shape. We present ~hese.resu%s in detail in Section 3. In Section 4, 
we present a recalculatjon of the transverse spip susceptibility of the 
electron gas in dilute magnetic alloys, using a Green function technique 



in conjunc;tion with the use of Schrieffer-Wolff7 form of Anderson's 
hamiltonian5. Finally, in Section 5 we present the calculation of the 
transverse relaxation times that govern the cross-relaxation between 
the spin subsystems. 

2. Localized Moments 

In Anderson's own words, his microscopic model for the description 
of localized moments5, is a mathematical formulation and an extension 
of Friedel's ideas4. Essentially, he performs a self-consistent calculation 
to determine in which conditions localized moments appear. 

Anderson's hamiltonian, in the second quantization formalism, reads 

+ u 7 -+ djitdjtdjldjl + vkj(c;,,djo + dljacka). 
J k a j  

The fírst term is the unperturbed energy of the free electron system, 
and the second the unperturbed energy of electrons in d-states on 
impurity atoms. The third term is the Coulomb repulsive energy of 
two d-electrons on the same impurity, (the index j numerates the atomic 
impurities) and finally the last is the hybridization one-electron energy 
of s and d-electrons, being the fundamental term in Anderson's hamil- 
tonian. 

This hamiltonian is treated within the Hartree-Fock approximation 
and it is shown5 that localized moments will arise for small h j / U  
ratios. Schrieffer and Wolff7 analize Anderson's model in the more 
favorable conditions for the existence of localized moments. Because 
of the inconvenience of dealing with the hybridization term in per- 
turbation theory, [small denominators ( E ~ - E ~ )  O appear in the 
terms in four order in V], they propose a canonical transformation 
that makes the hamiltonian (2-1) to take, in the new variables, a form 
similar to Kondo's hamiltonian8, containing a s-d-exchange-type 
energy. Since the Kondo effect8*13 seems to imply a condensation 
at very low temperature with the production of a localized conduction 
electron spin polarization that compensates that of the impurity, 
Schrieffer and Wolff conclude that there is no localized moments at 
zero temperature. However, there exists a critica1 temperature (generally 
of the order of 1°K or lower) above which such a localized conduction 



electron polarization collapses and localized impurity moments can 
appear. We restrict oui-selves to consider our system at temperatures 
above Kondo temperature. 

Schrieffer-Wolff hamiltonian is obtained performing the transformation 

H = eS H, e-' (2-2) 
on hamiltonian (2-I), where 

S = C ( B ,  ( k )  + [A,(k) - B,(k)] d,,djõ} ( c L d j õ  - d;&,) 
ka j 

This transformation eliminates terms containing V in fírst order, to 
obtain 

and 2s =a, with o the Pauli matrices. 

The Hamiltonian (2-4) clearly shows an exchange-type form with an 
effective exchange interaction Jkk, that contains square powers of the 
hybridization potential V Some other terms that are present in H after 
performing transformation (2-2) have been dropped7 because they 
do not give any substantial contribution in the calculation of Sections 
4 and 5. 

3. Phenomenological Equation of Motion 

One of the existing phenomenological theories is due to Hasepwag, 
who was the first to introduce the idea of considering the con uction 
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and the localized electrons as two different spin systems, each with 
its own resonant frequency and relaxation times but coupled through 
a spin-spin-type interaction. 

According to Hasegawa, one can describe the dynamics of the spin 
system through a system of two equations of motion, one for each 
spin subsystem, coupled by means of Bloch-type relaxation terms. 
Figure 1 describes the relaxation scheme devised by Hasegawa. One 
serious dificulty involved in this treatment is that, for certain values 
of the parameters, Hasegawa's solution produces negative absorption. 
[cf. Hasegawa's

g 
Eq.(52) for Âxd < I]. This drawback can be overcome 

by redefíning the "destination" values of the magnetization of the sub- 
systems, namely, hf, and Md, that appear in the detailed balance condi- 
tion, M,/T.id = Md/Zs as M, = X : ~ e , ,  and Md = $&,, where Td and 
Zs are the cross relaxation times, x,O and xd the static susceptibilities 
for the s-spins and for the "clothed" d-spins and H,,, the total externa1 
fieldlO. 

Another phenomenological model is that of Cottet et al.ll, which is 
based on instantaneous equilibrium destination, and the detailed 
balance condition X : / ~ d  = X:/&s needs to be introduced in order to 
satisfy the requirement of positive absorption. The resonance con- 
dition obtained from this model does not agree with that of Sasada 
and Hasegawa". 

We propose a new system of phenomenological equations, a brief 
account of which has been given elsewhere12, that involves particular 
mechanisms of relaxation associated with spinlattice and the cross 
spin-spin relaxations. Our results present a different phenomenological 
model that besides satisfying the physical requirements of positive 
absorption, isotropy condition and no effect of exchange contributions 
on the line shape, it correctly repraduces the expected resonance 
condition"' and is not burdened with the necessity of introducing 
any ad hoc condition of detailed balance. 

We write for the equations of motion for the coupled s- and d-magne- 
tizations 

M, = y,M, x [H, + ÂMd + (~A/M&) V2Ms] + R,, (3- la) 





Here, y, and yd are the gyromagnetic factors of s- and d-spins. The 
field H, includes the static and r.f. external fields. The interna1 fields 
are14 H, .= A,, M, + ÂMd + (2A/M&) V2M, and Hd = AddMd + AM,. 
The coupling constants between magnetic moments are A,,, Add and 
Asd = Âds = A, Mso, Mdo are the static magnetizations, and A is known 
as the stiffness parameter15. Finally, the vectors, R, and Rd are the 
relaxation terms, whose choice decides the destination of the relaxing 
rnagnetizations. We propose for this relaxation terms 

where the direct relaxation*vectors are 

and the cross-relaxation vectors are i 

where rsd and rds are phenomenological constants. 

The relaxa1 ion terms (3-3a) and (3-3b) are of the type used (in the case 
of a single component system) by Codrington et a1.16. These terms 
imply a transverse relaxation perpendicular to the instantaneous total 
external field, with relaxation time X L  and &, and they reproduce 
for the transverse part of M, in which we are interested, a Bloch-Wangs- 
ness relaxation term17. The term R,, of Eq. (3-3c) will result in a spin 
diffusion term, as discussed in Ref. 1. The cross terms RSd and Rds are a 
generalization of Landau-Lifshitz-type relaxation terms18, which are 
expected to be relevant in case of systems with strong exchangé interac- 
tions, as is the present case. They áccount for transverse relaxations 
which have components perpendicular to the instantaneous exchange 
fields AM, and AMd. Figure 2 describes the different relaxation con- 
tributions. It is worth mentioning that wangsnessl8 has shown that 
in the steacly state attained by a system of magnetic momentsXin a 
resonant experiment the rate of entropy production i s  a minimum. 



Such a condition is satisíied by equations of motion containing either 
Codrington et al. or Wangsness-Bloch relaxation terms. Such a proof 
is presently not available for equations containing Landau-Lifshitz 
relaxation . 
The two kinds of relaxation mechanisms so far introduced correctly 
satisfy 

i) for y, = yd and when z1 = Tcl  = 0, one finds R, + Rd = 0, what 
means that exchange interactions do not modify the resonance line 
in the absence of other interactions; 

ii) the absorption coeffícient is positive, as shown in Appendix A; 

iii) the isotropy condition is verified, as shown in Appendix B; 

iv) the resonance condition, to be obtained below, agrees with that 
of Sasada and Hasegawa, as will be shown with the help of Table 1. 

The transverse susceptibility is derived in the linear approximation 
from Eqs. (3-la) and (3-lb). Introducing m = M - Mo, one finds 

where 

Q,, = - y, (H0 + AMdo) - i (TZ ' + Ki l), (3-5a) 

= - y d  (Ho+Â.M,o) - i ( T d i l + & ~ l ) ,  (3-5b) 
Qsd = ysIMso + i Gs1, (3-5c) 

Qds = YPÂM~O + i T,d l, (3-5d) 
D* = 2A T,;' - i ysAMso, (3-5e) 

x d  = r d s  f (Mdo/Mso) rsd, (3-50 

Tds = r s d  f (Ms0/Md0) rds, (3-%) 

Ps = YS Mso + i(MSolHo) T,i l, (3-5h) 

P d  = ?à Mdo + i(Md0/H0) TdZ (3-5i) 

Here, we have defined the transverse relaxation time ?; = T,- ' + z; ', 
where z2 is an orbital relaxation time which appears due to the random 
distribution of magnetic and non-magnetic impurities9,18. 



MICROSCOPIC RPA PHENOMENOLOGICAL MODELS 
Calculation (5) 

Thermal Equilibrium Present Model 
Destination (43) 

- - - -  

O O D* = 2ATG1 - iy,AM,, 
- 

Detailed Balance M ,  T Z ~  = %id T Z ~  M,, ~ , d l  = M~~ ~ d , l  

Condition -+ 

W 
h, 
w Table 1 



Taking the time and Fourier transform of Eqs. (3-4a) and (3-4b), one 
finds a system of algebric equations, linear in mS+(q, w) and md+(q, w), 
which can be easily solved to obtain the transverse susceptibility: 

In the adsence of magnetic impurities, one recovers, for the transverse 
magnetization of conduction electrons, the results presented in Ref. 1, 
and the results of microscopic calculations18. The parameter D* is 
the complex spin diffusion constant. 

The resonance condition is given by the poles of the transverse sus- 
ceptibility, i.e. by the solutions of 

( o  - R,, - iq2D*) ( o  - Qdd) - QsdQds = 0. (3-7) 

Replacing the values of the parameters given in Eqs. (3-5), one finds 
that our result quite agrees with the results of the R.P.A. calculation 
of Ref. 10, and the model involving relaxation to thermal equilibrium, 
once the identification of eoeffícients, as shown in Table I, is made. 

Furthermore, from Eqs. (3-50 and (3-5g), one finds lhe detailed balance 
condition 

MsoKdl = Md&il. (3-8) 

It should be observed that, for example for CuMn alloys, it is expected 
1 > Âdd xd » Â 2 » As, x:, and then Eq.(3-8) becomes approximately 

xsO Ti1 = LI G i l 7  (3-9) 

where 11: is the bare or free electron static susceptibility and xd the 
dressed d-electron susceptibility xd = Xj/l 1 - hd 22 1 (see Appendix C). 

Neglecting spacial dispersion in Eq.(3-7) (i.e., putting q = O), one can 
find the roots of Eq.(3-7). There are two solutions, o+ and o - ,  the 
latter corresponds to both spin magnetization precessing out of phase 
and being strongly damped and not observable. The other root, once 
it is taken into account that and since the exchange interaction is large 
and then 



has the real part 

Here, w: = ?,Ho and o: = ydHo and zr = X:/X: = Const./T 
On the other hand, the imaginary part of o+ is 

The temperature dependence of o,,, and T2eff occurs through xr. At 
low temperatures o,,, tends to o; and T2eff tends to T,,, and at high 
temperatures, i.e., when X: » xd, o,,, approximates o: and Tzeff tends 
to zL. These results are in accord with those originally obtained by 
Hasegawa9 and with the microscopic c a l c u l a t i ~ n s ~ ~ ~ ~ ~ .  

4. Macroscopic Theory 

The first quantum mechanical calculation of the spin susceptibility 
of the coupled s-d-spin system is due to Caroli et al.19. Using Anderson 
mode15 and by means of an ardous calculation they obtain the y-shift 
in the R.P.A. Their result agrees with that of the phenomenological 
theory

g
. Sasada and Hasegawalo extended the work of Caroli et al., 

including spin-lattice relaxation of conduction electrons, cross relaxation 
and spin-orbit scattering of the conduction electrons. They performed 
a careful study of the bottleneck condition and investigated in detail 
the relation between microscopic and phenomenological equations. 

In this section we reconsider the calculation of the transverse suscep- 
tibility using a Green function technique and starting from Schrieffer- 
Wolff version of Anderson hamiltonian, what we repute to be easier 
mathematical handling and to provide a clearer connection with 
Hasegawa's description

g
. 

The transverse magnetic susceptibility is given by20 

x+(q,o)=-271. ((Af+(d IM-h); o)), (4-1) 

where (( . . . I  . . . ; o)) is the Fourier transform of the retarded Green 
function. 

The total magnetization of the two spin subsystems is 



where p, and pd are the magnetic moments of s- and d-electrons respec- 
tively and $,id are the second quantization operators 

Replacing (4-3a) and (4-3b) in Eq.(4-2), we obtain for the transverse 
part of the magnetization, 

M +  (r, t) = 2 ~ s  7 iI/kf (r) $k'L(r) c k ~ ( ~ )  Ck'l(t) + 
kk! 

Taking space-Fourier transform, it results for the q = O component 

In order to use Schrieffer-Wolff transformation of Anderson hamil- 
tonian, it is necessary to express the magnetization in terms of the new 
variables. With S given in Eq.(2.3) one fínds 

where D(k) = A(k) - B(k). Let us observe that for p, = pd the trans- 
formed magnetization of Eq.(4-6) has the same form than the magneti- 
zation given by Eq. (4-5). Since 1 pd - ps l/ps 0.01, we neglect the 
last two terms in Eq. (4-6). The transverse susceptibility is then given by 

The Green functions that appear in this equation satisfy the coupled 
equations of motion2' 



+ (([c&ck~, H] I C ~ , I  a)), (4-8a) 

1 
(a ((d;?dji I d;,idjct ; o)) = - ([djTdji, d;,,djrT]) + 

2n 

+ (([dftdji, H] dj,,dj'~ o)), (4-8b) 

where H is given in Eq.(2-4). 

We treat the commutators in Eqs.(4-8a) and (4-8b) in the Random 
Phase A p p r o ~ i m a t i o n ~ ~ , ~ ~  to obtain 

w ((C& c k 1  I c L , ~ c ~ , ~  ; w)) = [(nkr ) - (nki)] + 2n 

+ (&*I - &kT) ( ( G T c k I  / ~i, i<,f  ; 4) + 
1 + 1 7 Jkk [(njT) - (nji)] ( ( ~ & c k J  I ctrick'T W)) + 

J 

where 3, = E, - Un, and (. . .) are statistical average values. 

Following Anderson5, we replaced the products of two matrix elements 
I/ki by its average 

KjKgj = (Vkjl/kjj) = V2 Jkk, (4- 10a) 

and therefore 

Jkk = 2V2. [(ck - E - U ) y -  (ck - E)-l], (4-10b) 

where we have neglected the spin contribution. 
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Let us notice the equivalente between the terms in equations (4-9a) 
and (4-9b) with that of the phenomenological equations (3-4a) and 
(3-4b), with Jkk having the role of Â and omitting the relaxation terms. 

Introducing the notation 

Rd(w) = w + ET - È1 - J~~ mk/2, (4-1 la) 
k 

where ~ l ~ ~ ( o )  - -271 ((d;?djl I d;cldjpT ; CL))), 

&k'(o) = - 2n ((C;, Ckl ( C:,, ; w)) . 
Performing the summation 1 on both sides of Eq.(4-12a) and 1 

kk' jj 

on both sides of Eq. (4-1 2b), we are left with a system of two algebraic 
equations with two unknown variables. The roots of the secular equation 

produce the resonance frequencies. Using Anderson's notation 

x = ( E ~  -- Ê)/u ,  y = I/A, A = nV2 p,, 

where p, is the density of s-electron states at the Fermi level, Eq. (4-13) 
becomes 

with A(x,  y) = nyx(1 - x)-', o: = ~ k i  - F ~ T ,  O: = Êl - ET and 
2,. = x~O/X: = x~(~'K)/?: For values appropriate to CuMn, i.e. y - 10, 
x - 112 and the impurity concentration - 100 ppm, produces 
%(T= 1'K) - 3 and then w - o: can be neglected in the denominator 



in Eq. (4-14). The y-shift coincides with Eq. (3-10), becoming indepen- 
dent of the parameters of Anderson's hamiltonian. From these results 
we can identify Â. as 

Putting U 4eV, one íinds, for the x and y values given above, that 
J e f f  - 0.5 eV, which grossly coincides with the expected values for 
the exchange integral of Mn in noble metal hostsZ2. 

In conclusion of this Section, we may say that Schrieffer-Wolff transfor- 
mation of Anderson's hamiltonian makes quite clear how the covalent 
mixing of s- and d-electrons results in an effective exchange interaction. 

The latter can be large for small values of x, i.e. when the renormalized 
d-leve1 is near the Fermi level. Hasegawa's type of equations for the 
magnetization should appear, as in fact was shown here. 

5. Cross Relaxation Times 

We proceed in this section to an evaluation of the transverse relaxation 
times Xd and T,,. For that purpose, we use the formalism due to van 
HoveZ3 in order to deal with the extension at finite temperatures of 
the "Golden R ~ l e " ~ ~ .  In the present case, we have 

'(k) = J dt exp(- iwkFt) (H$$i (O) H ~ E Q ~  (t)), 
k' - 

where is the exchange energy part of hamiltonian (2-4) when 
matrix element between states (n 1 and 1 n') have been taken and 
o: = EI  -- ET and okk, = ckl - ckjt. Furthermore, (. . .) stands for 
statistical average at temperature T 

According to ZubarevZ0, Eqs. (5-1) can be rewritten as 



Replacing the interaction hamiltonians by their explicit form one finds 

TI; = - n [exp (fio:) - 1 J - ' Im C Jkk, Jpp, ckeT I C:, ; o:)), 
kk'pp' 

One easily calculates the Green functions involved 
taining 

(5-2a) 

dYldjcT ; OIkk,)). 
(5-2b) 

in Eqs. (5-2) ob- 

6.i~ (nit >r (niA > ((dJtdjl I d:lldjfT ; o)) = - 
2n o - E l  +E t  

Assuming K T  » o:, isotropic surfaces of constant free electron energy 
sk and T « TF, Kd(k) has a constant value Td(kF) given by 

and 

where J = JkFkF.  

Using E -, ds g(&) and C(njT - njl) = $Ho/pd  one finds 
k 

and 
T& = nKBT J2 p:, (5-5b) 

where p, is the s-electron density of states at the Fermi level, and S the 
d-electron spin quantum number. 

It is interesting to note that the results thus obtained formally agree 
with that of O ~ e r h a u s e r ~ ~  for relaxation of conduction electrons 
interacting with nuclear spins, and that of Heitler and Teller26 for 
the relaxation of nuclear spins. 



Let us observe that the expression for Kd is valid only when the Zeemann 
splitting is smaller than the thermal energy KT For typical values 
for CuMn with c = 100 ppm, one finds Zd 10- sec. For compa- 
rison, typical relaxation times for spin lattice relaxation times are 
ZL 10- sec and GL 10-8 sec. Therefore [cf. Eq. (3-1 I)], the reso- 
nance linewidth is determined by the spin-lattice relaxation times and 
then there is no experimental access to the cross relaxation times. 

6. Conclusions 

This work presents a study of EPR in transition metal dilute alloys. 
We present a phenomenological equation for the dynamics of the 
magnetization. This equation reproduces the quantum mechanical 
results and, without any additional ad hoc hypothesis, satisfies the 
main physical requirements of positive absorption, isotropy conditions 
and no exchange effects on the resonance line. Severa1 relaxation 
mechanisms are introduced, involving transverse relaxation normal 
to the instantaneous externa1 fields, and to the instantaneous Weiss 
molecular fields. The orbital relaxation time was introduced on a 
phenomenological basis, and inhomogeneity in the itinerant s-electron 
magnetization became responsible for the appearance of a spin diffusion 
term. 

Finally, we consider some microscopic aspects of the problem. Calcula- 
tions were performed utilizing Schrieffer-Wolff transformation of 
Anderson hamiltonian what makes clearer the connection with 
exchange-type interaction theories, and the phenomenological equa- 
tions. Using the Bogolliubov-Tyablikov Green function technique, 
as described in the already classical paper by Zubarev, and the RPA, 
.the equation of motion for the magnetizaion was obtained and 
from it, the resonance condition. Next we evaluated the cross relaxation 
times, which unfortunately cannot be deterniined from the EPR experi- 
mental data. 

To conclude, it should be remarked that these microscopic calculations 
were within the Hartree-Fock approximation. A more precise treat- 
ment would be the utilization of the unrestricted Hartree-Fock approxi- 
mation. Since this implies in leaving unspecified the spin orientation 
in d-orbitals, it should be a very convenient way to treat the particular 
problem in the theory of magnetism that we discussed here. 



Appendix A: The Energy Absorption 

The absorption coefficient is given by -wImx+(w). Therefore, it is enough to verify 
that I m ~ + ( w )  < O to show that absorption is definite positive. From Eq. (3-6), one finds 

~ + ( 4  = N o ) .  D*(m)l) D ( 4  12, 64-11 

where 

To find the sign of the imaginary part of the susceptibility, it suffices to study the sign 
of the numerator in (A-1). Replacing the values of the different parameters as given by 
Eq. (3-5), one finds for ImND* a polinomial in T i 1 ,  E; I, ZL1 and %L1. The linear 
terms in Ti' and T,,' result 

- ~ I x :  T , i1+x;  E;'l I W + ~ ( H O + Â M ~ O + ~ ~ M ~ O ) I  (0. 

The lineár terms in T z l  anci 7'2' vanish identically. Finally, the cubic terms in the 
inverse of the relaxation times result 

-o ( X ~ O ~ L ' + X ~ O T , L ' ) I ( ~ ; ~  + + Kyl  &LI + T~;' K;' I + 
+ ( K ~ I + E s ~ ) T , L '  T,;' ( X J + x d ) + ( x S T à ~ l  + X d O ~ ~ ' ) ~ i l  T,;' <O. 

Others cubic terms in the inverse Óf the relaxation times, but not proportional to w, 
vanish identically. 

Therefore, Imx+(o)  is defínite negative and thus we have proved that power absorption, 
as derived from our phenomenological equations, is definite positive for a11 values of 
the parameters. 

Appendix B: The Isotropy Condition 

The isotropy condition means that in the static limit o -+ 0, the susceptibility reduces 
to the longitudinal one, regardless the spin lattice relaxation. This fact implies the 
equality between the adiabatic and isothermal susceptibilityiO. 

Taking w -+ O in the Eq. (3-6) and neglecting the spin diffusion terms, we obtain 

where the superscript (') means that we drop the spin lattice relaxation times in the 
Eqs. (3-5). Using these expressions in (B1) we have 

%+((I, 0) = 



Using the detailed balance condition given by the Eq. (3-8), we fínally obtain: 

x+(% 0) = 
Mso + M ~ o  

= xs" + 1:. 
H0 
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Appendix C: The Static Susceptibilities 

(C- 1 a) 

(C- 1 b) 

where 

D = (i - Â~,~:) (i - ndd 2:) - i . ' y$~d .  

Neglecting Ã , J ~  (case of strong paramagnetism), and taking into account that (e.g. in . 
CuMn) Âp2 - Jeff - 0.5, 1x3 = Âp2p, = Jerf ps - 0.1 (p, - 0.2 ev-I), it results to a good 
approximation for 1, and xd: 

xs = X: (C-4a) 

Xd E x ~ / ( I  - Xdd ~ d ) .  (C-4b) 
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