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A derivation of an angular basisfor the A-body problem, suitable for the K-harmonics
method, is presented. Those angular functions are obtained from homogeneous and
harmonic polynomials, which are completely specified by labelsassociated to eigenvalues
of the Casimir invariants of subgroups of the 3(4-1)-dimensional orthogona group,
among them, the total angular momentum and its z-projection.

Constréi-se uma base angular, para o problema a A corpos, adequada para 0 método

dos K-harménicos. Essasfuncfesséo obtidas de polindmios homogéneos e harmdnicos,
completamente rotulados por nimeros associados a autovalores de operadores de
Casimir de subgrupos do grupo ortogonai em 3(4-1) dimensBes. Entre esses nimeros,
destacam-se 0 momento angular total e sua 3.2 componente.

1. Introduction

A method for obtaining the binding energy and wave function o a
system of A particles, the K-harmonics method, was introduced by
Zickendraht' and Simonov?. The starting point of the method is to
expand the wave function of the system in terms of a complete set of
angular functions(theK-harmonics) over the unit sphered the 3(4-1)-di-
mensional vector space of relative coordinates of the A particles. The
construction of the K-harmonics is, therefore, essential to the method.

Methods for constructing the K-harmonics, for A = 3 and 4, are found
in the literature. In a recent paper, Louck and Galbraith® review these
methods and present some new resultsin the framework of applications
o orthogonal and unitary group techniques to the A-body problem.
They present (their Section VII) a set of harmonic and homogeneous
polynomialsthat could be useful in the K-harmonics method. However,
these polynomials present, as they have mentioned, some difficulties,
namely: a) there are some labels which have no group theoretic
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meaning; b) the polynomialsare not, in genera, orthogonal in these
labels; c) they have no permutational symmetry.

In this paper, we present a basis of homogeneous and harmonic poly-
nomials with definite total arngular mementum and z-projection that
we hope can be useful to the K-harmonics method. The way in which
they are constructed is a generalization of the method of Ref. 4, hereby
referred to as |, for the case A=3. The results are close to those of
Louck and Galbraith, but we have solved the difficulties @) and b),
mentioned above. The permutational symmetry is, however, an open
problem. Eveninthecase A =3, it isadifficult task, ascan beseenin I.
The case A =4, can be solved (see Ref. 5) exploiting a property o the
S(4) group which have no analog for the, general, S(n), namely S(4) is
the semidirect product o the four-group D(2) by S(3), which allows to
give the solution for A=4 in terms o the one for A=3.

Most of the formulas o this paper are not new (see, e.g., Ref. 6). The
new feature of our paper is, besides given an explicit derivation of the
K-harmonics, to show, explicitly, the group-theoretic aspects involved
in the problem (whichare not transparent in the K-harmonicsliterature)
improving, in this way, the understanding o those formulas.

In Section 2, we show how the group Os4- 1, is related to the A-body
problem. In Section 3, the basis is explicitly constructed, while, in
Section 4, the chain of the 054~ subgroups involved is discussed.
Finaly, in Section 5, hypersphericai coordinates are introduced.

2. The Orthogonal Group O;4- )

In the center of massframe, the non-relativistickineticenergy operator,
for a system of A particles with equal masses reads
1 A-1.

H=-3 % % Ch=m=1) (2-1)

where the x"s are Jacobi coordinates of the relative motion. These
coordinates are defined by
1
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where ri(i=1,2,...,A) is the position vector o particlei, reative to
the laboratory frame of reference. Together with

4 1 &
X4 = I 2 (2-3)
i=1

<.
M‘

they are related to thex®s by a real orthogonal transformation.

The components o X' may be put in a one-to-one correspondence
with a 3(4-1)-dimensional vector v by, say,

U3 -1)+j =‘(Xi)j’ i=12...,A~1, (2-4)
j=123.

In this way, the RHS of (2-1) becomes proportional to the Laplacian
operator in 3(A —1) dimensionsand it is well known that thisoperator
is invariant under the group o orthogona transformations, whose
generators are here redized by

1 0 0
o — [y — B = - _ _
Az_] 2 <x1 aij .XJ ax?) > ;‘«9]@ ;335'3- . 9(A 1)’ (2 5)

where x{ is the i-component o x* It iseasy to verify that these gene-
rators satisfy the usual commutation relations o the generators of
orthogonal groups, namely,

[A%’a AR ] = ‘;‘_ (Aﬁ 53”51% ;_ AH 5ﬂv6ﬁ + Agké“véu - A.II; it 5au5ik)-(2_6)

It is clear from (2-5) that the generators of 05, - 1, maintain the degree
o homogeneous polynomialsin the variablesv; and it follows, there-
fore, that the set of homogeneous polynomias of a given degree 4, in
thevariablesv(i = 1,2, . ..., 3(4—1)), carry a represeptation of Ozu- ).
Such arepresentationis, in genera, reducible, as we shall seein Section
3. Irreducible representations (hereby denoted as irrep) are obtained
by requiring that the homogeneous polynomias be harmonicin the
3A-1) variables.

The Casmir invariant o Os4-1), namely,

Fr== Y AEAE, @7
2 e

assumes, with the redlization (2-5) of the generators, the form
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Iy = —vV: 4+ (v.V)? + (3A—-5)v. V. (2-8)

Therefore, in the space o homogeneous and harmonic polynomials,
of degreel, inv;, itisdiagonal with eigenvalueA(4 + 3A — 5). Thehigher
order invariants, either vanish identically or can be written asfunctions
of V2 and the Euler operator v. V. Thus, the label 4 is enough to cha-
racterizethe irreduciblerepresentation of O34 -1, carried by the homo-
geneous and harmonic polynomials of degree 4. This representation
IS, indeed, the so-called “most degenerate representation” of Oz - 1),
characterized by Gel'fand labels[A, O,..., G, to which we will refer
as [4].

3. Condruction of the Basis

In this section, a basis for the irrep [4] of O34-1), associated to the
A-particle system, will be constructed by induction, starting from the
basis for the O group, associated to a system o 3 particles. In this
way, we assume that we already have a bass for O;4-1), associated
to a (A—1)-particle system and, then, relate the basis of O3(4-1) toO it.
The feasibility of this procedure lies in the fact that when we go from
the Jacobi relative vectors, for A -1 particles, to thosefor A particles,
the previousvectors remain unchanged and all we haveto do issmply
add one extra Jacobi vector (whichis the only one to depend on the
position vector of the 4™ particle).

Let

PG 0L X xTY) 3-1)
be the components of the polynomial bass for the (A—1)-particle
system. [The subscript 4 —1 in the labels is to make clear that they
refer to a (A—1)-particle syssem.] They carry an irrep of O3z¢4-2), Cha-
racterized by the Ge'fand label 44-,, and have definite total angular
momentum L, _ 4, z-projection M ;_;, and a set of labels which we de-
signate, for the moment, by (¢)4-; and whose structure will become
clear as the process is developed.

In analogy to what was done in |, we make the following Ansatz for
the components of the 034-1, polynomia bases for the A-particle
system:

P%)AA]LAMA = =/VAGA(X1,-~,XA_1) Z <LA—1 MA~1IA—1mA—1lLAMA> X

Mg -1myg -y

x Plhia-1l (x4 ..., x4 @la- (x4 (3-2)

(@a-1La-1Ma-1 ma -t
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where A" 4 is a normalization constant, G4 a function to be determined
and #%,(x) = |x |'Yi(X) is a 3-dimensiona solid harmonic. Since we
want to preservethe labels A,-; and I, -, the function G4 can depend

onx',...,x*71 only through the invariants of the subgroups O3- 2
and 0;(x*71) of O3(4- 1y, Whose irreps they label. We, therefore, write
GA(X1’ LECREN | XA—l) = GA(pzzi—b xﬁ-l)a (3-3)
with
A-2 . .
pi-1= Y x.x*and xj_, =x1"t. x4, (3-4
=1

Of course, P, ., has well defined values of the total angular mo-
mentum L, and its z-projection, M 4.

Imposingthat the RHS of (3-2) be a homogeneouspolynomial of degree
A4, inthevariablesx, wefind that G 4 has to be a homogeneouspolyno-
mial of degree ny=4,4—-44-; —l4—; and, taking into account that
G, dependson x' through quadratic functions(Egs. 3.3and 3.4), we have
that n, isan even non-negative integer. We, then, obtain the branching
law

A-A—1+IA—-1=1A, /IA—2,{(1) (3-5)

On the other hand, the harmonicity of (3-2) and the fact that

[A4 - 1] ’ _
P(a)A—llLA—lMA—l and #is-: (XA 1)

ma -

are harmonic and homogeneous polynomialsaof degree A4, and 41,
tespectively, require that G4 has to satisfy the equation

oG ( oG
2 4 i, S -
NGA+4</1A_1 32, + 1y 5x,21_1> 0. (3-6)

From some of the above considerations, we can write G4 as
Gy = Y Adpi-1)(xi-1) (3-7)

2utv)y=nay

Substituting (3-7) into (3-6), we get a two-term recurrence relation,
which alows us to determine A, (u=1,2,...1n4/2) in terms of Ap.
With the appropriate choice of A, we finaly obtain
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Na
G, i = 3 (5N (PN ey

Ny—p %
: (3-8)
with
Ny= =t G ducr =Ly
A — 2 A 2 A A—1 A—1/
Oy = AA—I + %A'—‘]’, (3-9)
1
Ba=li-s + 5 -

Now, the proceduregoesdownto 4—1, 4A—2,.. ., until weget A =3,
whose solution is given in | (Egs. 4-3 to 4-5). Going through all these

seps, we get
y) Aa-1 Aderennn.. As Aa A3
P%ﬁ)‘il]LAMA ; AZA..1 lA_z./.i. 2 ........ l4 l3 lZ
MA LA LA-—I LA-—Z ........ L5 L4 L3 L2

A-1 )
= [H N 141G 1(p?, xF) Z <LiMilimi]Li+1Mi+1>@££i(x')] MZZ(XI)-
i=2 Mmi (3.10)

In (3-10), the structure o the multiplelabel (x), is explicitly exhibited.
[Since the polynomials (3-10) are homogeneous o degree 4,4, angular
functionsare obtained just dividing (3-10)by p*+.] The branchinglaws,
which regtrict the different labels, are

Ligi=Li+l, Li+L—1,.. |L-L,{=12...,4=1), @G-11)

hici+loi=4 A—2,..., {8, (i=45,...,4), (3-12)

Ly+ =23 4 —-2,...,{%, (3-13)

My=L,L,—1,..., —L,

As an immediate consequence o (3-11)-(3-13), we have
Li<l,i=34.... A. (3-15)

We tried to encode the branching laws (3-11)-(3-13)and (3-15) by con-
veniently positioningthe labels 4;, I, L;, in the ket o Eq. (3-10), in ana-
logy to what was done by Gd'fand and Zetlin™ for the unitary groups.
Let us explain it.
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In the ket (3-10), each I(i=3,..., A-1) isrelated to its neighbouring
A's by Eq. (3-12), s0 each 4; is equal or greater than its right positioned
A and 1 neighbours, as well as equal or greater than their sum. Also,
each I{i=2,..., A-1) isrelated to its Lneighbours by the triangular
relation (3-11). Finaly, each A is greater than or equal to any label
beow it and at its right.

For the A = 3 casg, the dimension o the irrep [43] is equa to the
difference between the number o linearly independent homogeneous
polynomiasdf degree4s, in Sx variables, minus this number for 4; —2.
We should, then, expect an analogousformulato hold for generd A, i.e.,
that the dimension o the irrep A, be given by

dim [14] = <l" +,‘Z’f - 4) - <'1" +34 - 6)

Ag—2
QA +34—=5) (A4+34—6
=T (3459 s (3-16)

Thisis, indeed, true and can be proved by induction using thebranching
laws (3-11) to (3-14).

From (3-16), we have

AA i=0

—_ [A4/2]
<’1A+3A 4> = § dim[A,-2i]. (3-17)

Then, by the same reasoningmade in |, we have that any homogenous
polynomial-of degree 4, in v;, PX(v;), can be writtenas a linear combi-
nation of the homogeneousand harmonic polynomias (3-10) of degrees
Al-2,...,1ie,

P l(vi) = Z C}(Q)ALAMA (pi)jP Ei);IZ‘EM 4 (vi)s (3_ 18)

J)a, La, M4

Azl
wherepi = Y x'.x. Thisshowsthat the basis of O3(4-4), carried
i1

by the homogeneous polynomials of degree 4, in v;, is reducible. The
irreducibility of the basis carried by the harmonic polynomials (3-10)
can be proved by showing that the maximum weight polynomial is
unique.

267



4. The Chain of 03(4_) Subgroups

From Section 3, we see that in each stage of the building up process
o construction o the basis (3-10) of O34-1), We have the following
links in a chain of Os¢4-;) subgraups:

Osi-1y 2 [O36-2) ® O5(x'"1)]  ,i=3,4,..., 4,
U @-1)
O;(Ly)

where 05(x'~ ') and O;(L; ) are groups of orthogonal transformations
in the three-dimensional spaces of vectors x'~! and of generators L -

(total angular momentum of physical systemad particles1,2, ..., (i—1)),
respectively. Therefore, the chain of 0541 subgroups, whose labels
were used to specify the hyperspherical solid harmonics (3-10), is

O34-1y @ [03(A~2) ® Oa(x“—x)] 2.2 [05 ® 03("3)} = [03(7‘2) ® 03("1)]
U U

U
0i3(L,) o> ... D 03(Ly) = 0;(Ls) (4-2)

U
02(M,,)

5. Hyperspherical Coordinates and Normalization

We now introduce a scalar product in the vecter space spanned by the
polynomials(3-10) in the way which isthe usua onein the K-harmonics
literature, namely,

(P, Q) = f P*QdQ, (5-1)
where d2, is the surface glement in the unit sphere imbedded in a
3(A—1) dimensional Euclidianspace, and P, Q are any two square-in-
tegrable functions of v;.

To make(5-1)explicit, weneed to introduce hyperspherical coordinates.
The radial coordinate is given by
34-1) A-1
pi= Y vt=) x.x. (5-2)

i=1 i=1

For the angular coordinates, we have a good deal o freedom. The
most convenient choiceis dictated by the building up procedure itsdf,
which we discussed in Section 3. Indeed, since we have

pi=pi-1 + xi-1, (5-3)
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it is then quite natural to write
Pi—1 = p3 SIN? 24, xi-1=pi cos® 24, (5-4)
with 0 < x4 < m/2.

With this parametrization, the function G,(Eq. 3-8) becomes

Ga(pa - 15 X5-1) = (pZ)*Pn "+ (cos 214) (5-5)
where Py® (x) is a Jacobi Polynomial'®, while a,  and N are given
by Egs. (3-9).

From (5-3),it followsan identity linking d€24 o the solid angle element
dQ,—, for A—1 particles, namely,

dQy = cos?y(sin?y )3 Tdy dQUXA " )dQu -, (5-6)

wheredQ(x# 1) is the usual solid angleelement in the three-dimensional
space of vectors x4 1.

Making use of (5-6), it isa simple matter to show that the polynomials
(3-2) are orthogonal with respect to the “new” labels 4,4, Ly, M4 and
are normalized to 1, if one chooses

_[NY e+ B+ 2N+ )T @+ g+ N+ 1) ]2
'MA_[ T+ N+ DT B+N+1) ] (5-7)

where, again, N r Ny, a=a«, and =B, are given by Egs. (3-9).
By iterating Egs. (5-1)-(54) and (5-6), for A—1, A—2,...2, weobtain
[x471] = pycos x4,
| X472 | = pysin g, co8 x4-1,
| X473 | = pysinyg,sin yq-1 COS x4-2 (5-8)
|x*| = paSingaSinys-1....SNy,cos xs,
lel:pASinXASinXA—l-A--SinX4Sinx3a Aot

dQ, = Sin? y3 cos? yadys D4 cos? y; (SN 1:)* ~ "dy; jﬂl d(x9),

with 0<y <m/2, i=34,..., A
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