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A derivation of an angular basis for the A-body problem, suitable for the K-harmonics 
method, is presented. Those angular functions are obtained from homogeneous and 
harmonic polynomials, which are completely specified by labels associated to eigenvalues 
of the Casimir invariants of subgroups of the 3(A-1)-dimensional orthogonal group, 
among them, the total angular momentum and its z-projection. 

Constrói-se uma base angular, para o problema a A corpos, adequada para o método 
dos K-harmônicos. Essas funções são obtidas de polinômios homogêneos e harmônicos, 
completamente rotulados por números associados a autovalores de operadores de 
Casimir de subgrupos do grupo ortogonai em 3(A-1) dimensões. Entre esses números, 
destacam-se o momento angular total e sua 3.= componente. 

1. Introduction 

A method for obtaining the binding energy and wave function of a 
system of A particles, the K-harmonics method, was introduced by 
Zickendrahtl and Simonov2. The starting point of the method is to 
expand the wave function of the system in terms of a complete set of 
angular functions (the K-harmonics) over the unit sphere of the 3(A-1)-di- 
mensional vector space of relative coordinates of the A particles. The 
construction of the K-harmonics is, therefore, essential to the method. 

Methods for constructing the K-harmonics, for A = 3 and 4, are found 
in the literature. In a recent paper, Louck and Galbraith3 review these 
methods and present some new results in the framework of applications 
of orthogonal and unitary group techniques to the A-body problem. 
They present (their Section VII) a set of harmonic and homogeneous 
polynomials that could be useful in the K-harmonics method. However, 
these polynomials present, as they have mentioned, some difficulties, 
namely: a) there are some labels which have no group theoretic 
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meaning; b) the polynomials are not, in general, orthogonal in these 
labels; c) they have no permutational symmetry. 

In this paper, we present a basis of homogeneous and harmonic poly- 
nomials with definite total afigular momentum and z-projection that 
we hope can be useful to the K-harmonia method. The way in which 
they are constructed is a generalization of the method of Ref. 4, hereby 
referred to as I, for the case A = 3. The results are close to those of 
Louck and Galbraith, but we have solved the difficulties a) and b), 
mentiorred above. The permutational symmetry is, however, an open 
problem. Even in the case A = 3, it is a difficult task, as can be seen in I. 
The case A = 4, can be solved (see Ref. 5) exploiting a property of the 
S(4) group which have no analog for the, general, S(n), namely S(4) is 
the semidirect product of the four-group D(2) by S(3), which allows to 
give the solution for A = 4 in terms of the one for A = 3. 

Most of the formulas of this paper are not new (see, e.g., Ref. 6). The 
new feature of our paper is, besides given an explicit derivation of the 
K-harmonia, to show, explicitly, the group-theoretic aspects involved 
in the problem (which are not transparent in the K-harmonics literature) 
improving, in this way, the understanding of those formulas. 

In Section 2, we show how the group 03(*.- is related to the A-body 
problem. In Section 3, the basis is explicitly constructed, while, in 
Section 4, the chain of the 03(A-1) subgroups involved is discussed. 
Finally, in Section 5, hypersphericai coordinates are introduced. 

2. The Orthogonal Group 03(* - I ,  

In the center of mass frame, the non-relativistic kinetic energy operator, 
for a system of A particles with equal masses reads 

where the xi,s are Jacobi coordinates of the relative motion. These 
coordinates are defined by 

x' = 1 
J m [ $ r j - i ~ + l ]  , i = 1,2,. . . , (A-11, (2-2) 



where ri(i = 1,2,. . . , A) is the position vector of particle i, relative to 
the laboratory frame of reference. Together with 

they are related to the xi9s by a real orthogonal transformation. 

The components of xi may be put in a one-to-one correspondence 
with a 3(A-1)-dimensional vector v by, say, 

In this way, the RHS of (2-1) becomes proportional to the Laplacian 
operator in 3(A - 1) dimensions and it is well known that this operator 
is invariant under the group of orthogonal transformations, whose 
generators are here realized by 

where xq is the i-component of xa. It is easy to verify that these gene- 
rators satisfy the usual commutation relations of the generators of 
orthogonal groups, namely, 

It is clear from (2-5) that the generators of OifA- maintain the degree 
of homogeneous polynomials in the variables vi and it follows, there- 
fore, that the set of homogeneous polynomials of a given degree A, in 
the variables vi(i = 1,2, . . . , 3(A- I)), carry a represeptation of 1). 

Such a representation is, in general, reducible, as we shall see in Section 
3. Irreducible representations (hereby denoted as irrep) are õbtained 
by requiring that the homogeneous polynomials be harmonic in the 
3(A - 1) variables. 

The Casimir invariant of O3(A-1), parnely, 

assumes, with the realization (2-5) of the generators, the form 



Therefore, in the space of homogeneous and harmonic polynomials, 
of degree 1, in vi, it is diagonal with eigenvalue A(A + 3A - 5). The higher 
order invariants, either vanish identically or can be written as functions 
of V2 and the Euler operator v .  V. Thus, the label 1 is enough to cha- 
racterize the irreducible representation of 0 3 ( ~ -  carried by the homo- 
geneous and harmonic polynomials of degree 1. This representation 
is, indeed, the so-called "most degenerate representation" of 0 3 ( ~ -  
characterized by Gel'fand labels [A, 0, . . . , O], to which we will refer 
as [A]. 

3. Construction of the Basis 

In this section, a basis for the irrep [L] of O3(A-1), associated to the 
A-particle system, will be constructed by induction, starting from the 
basis for the O6 group, associated to a system of 3 particles. In this 
way, we assume that we already have a basis for 03(~-2) ,  associated 
to a (A- 1)-particle system and, then, relate the basis of 03(A- to it. 
The feasibility of this procedure lies in the fact that when we go from 
the Jacobi relative vectors, for A-  1 particles, to those for A particles, 
the previous vectors remain unchanged and a11 we have to do is simply 
add one extra Jacobi vector (which is the only one to depend on the 
position vector of the Ath particle). 

Let 

P & ~ ? L - ~ < ~ ~ ~ ~ ~ -  (xl, x2,.  . - 7  xA-') 
. - -  (3-1) 

be the components of the polynomial basis for the (A- 1)-particle 
system. [The subscript A-1 in the labels is to make clear that they 
refer to a (A- 1)-particle system.] They carry an irrep of 03(~-  2), cha- 
racterized by the Gel'fand label AA- l, and have definite total angular 
momentum L,- z-projection MA- and a set of labels which we de- 
signate, for the moment, by and whose structure will become 
clear as the process is developed. 

In analogy to what was done in I, we make the following Ansatz for 
the components of the 03(A-1) polynomial bases for the A-particle 
system : 



where .NA is a normalization constant, GA a function to be determined 
and tYm(x) = I x l ' ~ i ( X )  is a 3-dimensional solid harmonic. Since we 
want to preserve the labels A,- and 1,- the function GA can depend 
on xl, .  . . ,xA-I  , only through the invariants of the subgroups 03(A- 2) 

and 03(xA-l) of whose irreps they label. We, therefore, write 
2 2 GA(xl, . . . , xA-') E GA(pA- 1, XA- I), (3-3) 

with 
A- 2  

P A - l  = E xi.xi and xAPl = x A - ' . x A - l .  
i =  1 

(3-4) 

Of course, P ~ ~ P A ] ~ , ~ ,  has well defined values of the total angular mo- 

mentum LA and its z-projection, MA. 

Imposing that the RHS of (3-2) be a homogeneous polynomial of degree 
ÂA, in the variables d, we find that GA has to be a homogeneous polyno- 
mia1 of degree nA = ÂA - AA- -.lA- and, taking into account that 
GA depends on xi through quadratic functions (Eqs. 3.3 and 3.4), we have 
that nA is an even non-negative integer. We, then, obtain the branching 
law 

On the other hand, the harmonicity of (3-2) and the fact that 
[ Ã A  - 11 

'(C+, - ~ L A  - I M A  - I and +Yk;:L(xA-l) 

are harmonic and homogeneous polynomials of degree AA- and lA- 
t.espectively, require that GA has to satisfy the equation 

From some of the above considerations, we can write GA as 

Substituting (3-7) into (3-6), we get a two-term recurrence relation, 
which allows us to determine A,@ = 1,2,. . . nA/2) in terms of Ao. 
With the appropriate choice of A,, we finally obtain 



with 

Now, the procedure goes down to A- 1, A -  2, ..., until we get A = 3, 
whose solution is given in I (Eqs. 4-3 to 4-5). Going through a11 these 
steps, we get 

Â-A Â-A-2 . . . . . . .  
[ÁAI 

.A5 Â-4 Â-3 

. . . . . . . . . .  lA-l lA-2.. l4 l3 l2 - P W ~ L ~ M A  = - - 
MA LA LA-1 LA-2.. . . . . .  .L5 L4 L3 L2 

In (3-10), the structure of the multiple label is explicitly exhibited. 
[Since the polynomials (3-10) are homogeneous of degree AA, angular 
functions are obtained just dividing (3-10) by p".] The branching laws, 
which restrict the different labels, are 

As an immediate consequence of (3-11)-(3-13), we have 

..... L i < & ,  i=3,4 A. (3- 15) 

We tried to encode the branching laws (3-11)-(3-13) and (3-15) by con- 
veniently positioning the labels ;Ei, li, Li, in the ket of Eq. (3-10), in ana- 
logy to what was done by Gel'fand and Zetlin

g 
for the unitary groups. 

Let us explain it. 



In the ket (3-10), each &(i = 3, . . . , A-  1) is related to its neighbouring 
L's by Eq. (3-12), so each Ai is equal or greater than its right positioned 
A and 1 neighbours, as well as equal or greater than their sum. Also, 
each li(i = 2, . . . , A-  1) is related to its Lneighbours by the triangular 
relation (3-11). Finally, each A is greater than or equal to any label 
below it and at its right. 

For the A = 3 case, the dimension of the irrep [A,] is equal to the 
difference between the number of linearly independent homogeneous 
polynomials of degree A3, in six variables, minus this number for A3 -2. 
We should, then, expect an analogous formula to hold for general A, i.e., 
that the dimension of the irrep AA be given by 

This is, indeed, true and can be proved by induction using the kanching 
laws (3-1 1) to (3-14). 

From (3-16), we have 

= dim [AA-2il. 
i = O  

Then, by the same reasoning made in I, we have that any homogenous 
polynomiakf-degree 2, in-vi, P"vi), can be written as  a linear combi- 
nation of the homogeneous and harmonic polynomials (3-10) of degrees 
A, 1-2,. . ., i.e., 

A-  1 

where p j  = E xi . xi. This shows that the basis of 03(A- carried 
i= 1 

by the homogeneous polynomials of degree 2, in vi, is reducible. The 
irreducibility of the basis carried by the harmonic polynomials (3-10) 
can be proved by showing that the maximum weight polynomial is 
unique. 



4. The Chain of 03(,, - )  Subgroups 

F?m Section 3, we see that in each stage of the building up process 
of construction of the basis (3-10) of O,(,-,), we have the following 
links in a chain of 03(A-1) subgr~ups: 

where 03(xi- l )  and 03(Li- are groups of orthogonal transformations 
in the three-dimensional spaces of vectors xi- ' and of generators Li- 
(total angular momentum of physical system of particles 1,2, . . . , (i - I)), 
respectively. Therefore, the chain of 031A- subgroups, whose labels 
were used to specify the hyperspherical solid harmonics (3-10), is 

5. Hyperspherical Coordinates and Normalization 

We now introduce a scalar product in the vecter space spanned by the 
polynomials (3-10) in the way which is the usual one in the K-harmonics 
literature, namely, 

(P, Q) = PLQdQr, (5-1) 
J 

where dSZA is the surface element in the unit sphere imbedded in a 
3(A- 1) dimensional Euclidian space, and P, Q are any two square-in- 
tegrable functions of vi. 

To make (5-1) explicit, we need to introduce hyperspherical coordinates. 
The radial coordinate is given by 

For the angular coordinates, we have a good deal of freedom. The 
most convenient choice is dictated by the building up procedure itself, 
which we discussed in Section 3. Indeed, since we have 

2 P A  = P A - 1  + XA-1, v-3] 



it is then quite natural to write 
2 2 2 pA - = PA sin xA, X; - = p; cos2 XA, (5-4) 

with O,< XA < 7112. 

With this parametrization, the function GA(Q. 3-8) becomes 
2 GA (PA - 1, xA - 1) = (P;)~~PN a(aA " A )  (COS 2xA) (5-5) 

where (x) is a Jacobi P~lynomial'~, while a, j? and N are given 
by Eqs. (3-9). 

From (5-3), it follows an identity linking dSZ, b the solid angle element 
dQA- for A - 1 particles, namely, 

doA = 7dxAdfi(~A - ')daA - 1 , (5-6) 

where dC2(xA-l) is the usual solid angle element in the three-dimensional 
space of vectors xA-'. 

Making use of (5-6), it is a simple matter to show that the polynomials 
(3-2) are orthogonal with respect to the "new" labels AA, LA, MA and 
are normalized to 1, if one chooses 

where, again, N r NA,  a = MA and f 3  = PA are given b y  Eqs. (3-9). 
By iterating Eqs. (5-1)-(5-4) and (5-6), for A-  1, A-2, . . .2, we obtain 

............................................................ 
I x2 I = pA sin xA sin xA- . . . . sin x4 cos x3, 
I x' I = pA sin zA sin xA- 1 . . . sin x4 sin x3, 

A A-  1 

daA = sin2 x3 cos2 x3dx3 n cos2 xi (sin2 ~ ~ ) ~ ~ - ~ d ~ ~  n d.<xj), 
i=4 j = l  

with O < xi < 7112, i=3,4 ,..., A. 
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