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Spectral theory is employed to determine whether the states are localized or nonlocer- 
lized. The one-dimensional random Anderson model nearest-neighbor interaction Es 
assumed. Eigenfunctions are numerically calculated and how the properties of eigens- 
tates vary with the spread of random variables is examined. One striking feature is 
reported in the behavior of the degree of localization, which seems to support the Mott - 
C.F.O. conjecture. 

A teoria espectral é empregada para determinar se os estados são localizados ou não. 
E usado o modelo uni-dimensional aleatório com interações entre vizinhos mais pró- 
ximos, de Anderson. As auto-funções são calculadas numéricamente e examina-se 
como as propriedades dos auto-estados variam com a distribuição das variáveis aleatórias. 
Um ponto crucial é abordado no comportamento do grau de localização, o qual parece 
justificar as hipóteses de Mott - C.F.O.. 

1 1. Introduction 

In recent years much attention has been paid to the research on amor- 
phous materials. On the experimental side there are a number of 
properties that are characteristic of such disordered structuresl. On 
the theoretical side, since the pioneer work of Anderson2, a challenging 
problem to construct quantum mechanics of disordered systems still 
remains unsolved3. Real physical systems are obviously in three 
dimensions, but nevertheless the importance of one-dimensional sys- 
tems cannot be ignored. Not only because it is quite desirable to 
undgrstand such problems as the Mott-C.F.O. mode14 even in one- 
dimensional theories, but also because one is required to investigate 
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organic materials which constitute the physical realization of the 
one-dimensional disorder5. 

During past years one of the main theoretical questions in disordered 
systems has been whether the eigenstates are extended or localized6. 
In one-dimensional systems it is known that a11 eigenstates are locali- 
zed in the sense that the amplitudes of the states decrease exponen- 
tially at large distance. The result of analyses for higher dimensional 
systems is that a11 states are localized or the tails of localized states 
are separated from the band of extended states by a critica1 energy depen- 
ding upon the degree of disorder. There is however some controversy 
about the exact value of this critica1 energy7. 

Quite naturally, the next questions are more detailed quantitative 
studies concerning the precise behavior of the density of states and 
the eigenstates. There have been many c a l c ~ l a t i o n s ~ - ~ ~  in the last 
few years and results obtained spread over a wide range of qualifications, 
which seem strongly dependent upon both the method and the model 
specifically employed. There may be, therefore, no need to explain 
much to justify any special motivation for our present research. However, 
it appears to us particularly that many research works thus far have 
leaned very much towards the analytical methods with formalistic ma- 
thematical arguments and are l e s ~  practical in the sense that a group of 
states with exceedingly small leve1 distance and binding energies are 
strictly distinguished as the localized states. On the other hand, nu- 
merical calculations on finite lattices are likely to prove useful for 
studying the properties of the localized states. Clearly any separation 
of the eigenstates of a finite system into a localized group and a non- 
-1ocalized group is rather optional. 

The interesting question, and the one which concerns us here, is to 
determine how the spatial extent of the eigenstates varies with eigen- 
values and with the degree of randomness of the system, and where 
non-localized states appear in the energy spectrum if they do. It seems 
exceedingly difficult to answer these quantitative questions by analytical 
methods, while a pure numerical study has its own defect in the sense 
that the results obtained largely depend upon the ways of calculation. 
It is sometimes not easy to distinguish systematic trends from the 
results. In this article, therefore, we take a somewhat intermediary 
method between those two. We use spectral theory instead of the 
usual self-energy calculation to determine whether the states are locali- 
zed or nonlocalized. The one-dimensonal random Anderson model with 



nearest-neighbor interaction is assumed. Eigenfunctions for this model 
are numerically calculated, and how the properties of eigenstates vary 
with the spread of random variables (site energies, possessing the 
Cauchy distribution) is examined. We discuss the results in the Section 3. 
Section 2 is devoted to present the spectral theory. 

2. Spectral Theory 

The idea of our computation is rooted in the method of spectral reso- 
lution. It is convenient to collect some well-known results about 
finite matrices which are fundamental for our subsequent analysis. 

The Hamiltonian for the one-dimensional random Anderson model 
with nearest-neighbor interactions may be written as 

H..  = ci 8.. + v.  
1J V ' J ,  

where the indices, i and j(= 0,1, . . . , n - I), label the n sites of the lattice, 
ci is the energy associated with site i, and K j  is the matrix element for 
hopping between sites, giving - V for nearest neighbors and zero other- 
wise. The quantities ei are independent random variables possessing 
a distribution function p(ci). To simplify numerical calculation, we 
use the Cauchy distribution; = (y/n)/[y2 + E; ] .  The Schroedinger 
equation H$, = E$,, (p = 42, . . . , n), is written as 

where C- = C, = 0, and we suppressed the superscript p in Eq. (1) 
for simplicity. In order that these simultaneous equations may be 
solved, the determinant of the coefficients, designated by Pn(E) should 
vanish. The equation Pn(E) = O determines eigenvalues E("). Upon 
expanding PJE) with respect to the last row or ~olurnn,~one fínds 

Ps(E) - (E-&,- 1)  Ps- 1(E) + V2 Ps-2(E) = O, (2) 

which is valid for s 2 2, if one defines P,(E) = 1 and P1(E) = E - 80. 

The existence of the recurrence relation (2) enables us to establish a 
number of facts about the E(",'hich will be needed Iater''. For example, 
the general behavior of these eingenvalues are investigated in tems 
of the following arguments: if P,(E) be a sequence of polynomials 
defined by equation (2), with (-8)'s and V2 positive quantities such 



that P,(O) > 0, the roots of P,(E) = O are a11 distinct and negative, 
and separated by the roots of Pn- l(E) = O. The inequality, P,(O) > O, 
can be examined and it it turns out that under the condition 
(V2 /~ i~ i - l )  5 114 for any i, it is satisfied even for the limit n --+ o~ 

(Ref. 12). 

To explain how to get the energy spectrum, let us first consider the 
simplest example where the random variables = W are constant. 
The recurrence relations are then satisfied by the Chebyshev polyno- 
mials, 

Pn(E) = v" sin {(n + l)o)/sin o 

where coso = (E - W)/2'CÍ The zero points of P,,(E) are obtained as 
(I$) = pn/(n+ 1); p = 1,2, . . . , n. Eigenfunctions corresponding to 
eigenvalues E:") = W+ 2Vcos {pc/(n  + 1)) are denoted by 

$,' = {e:"')- 'I2 (P~(E:)), Pl(EF))/ I/: . . . , Pn- (EF))JV" - l) (3) 

Here the normalization factor is evaluated as 

O r )  = [(n + 1)/2] sin2 {c@)). (4) 

We define a spectral function p(")(E) as follows: p(")(E) is to be a non- 
-decreasing step-function defined for - o~ < E < m, with discontinuity 
1/0$" at E = EP), (p = 1,2, . . . , n). Explicitly, it is written as 

Upon writing A o  = n/(n + 1), we find that 

(Or)) - ' = (2/n)sin2 ((I$')) . A o  

and by a formal limiting process n -, co, we get 



The spectrum is hence continuous over the interval W- 2V5 E 5 W+ 2V 
and the density of states is given by dp(E)/dE. It is also observed 
that as n goes to infínity, if any 81") remains fínite, there is a discontinuity 
at that point in the energy spectrum. This gives us a criterion for dis- 
tinguishing localized and nonlocalized states. 

We now return to the disordered case by allowing to be independent 
random variables commonly possessing the Cauchy distribution at 
each site. If we define Z,(t) = P,(t)/VP,- l(t), the recurrence formula 
(2) leads to 

{z,-~(<)]-~ = ( t -&s-l)v- l  -Z&) . (5 )  

Since Z,(EF)) = O, we can successively get a11 Z's and therefore P's. 
To have orderly indices, let us introduce 

and relabel E,- . . . , EO as E,, . . . , E,- As it is easily recognized 
in the course of calculation, quantities with the dimension of energy 
appear only through the ratio with V (such as E& y/K a/F/; A/V etc.) 
and hence the choice of V can be regarded as one of energy scale. 
This choice may therefore be made for computational convenience 
and hereafter we consider those quantities as measured in units of Vl 

We first treat a case E, = 0, the center of the band; here we fix the 
origin of energy in the distribution function p(~).  Since the E, are random 
variables, the quantities t, become random variables with distributions 
,f,(t,) determined by8 

a, 

.rlM = t;2J-P(ts-l + t;l);rl-L(ts-l) df-1, (6) 

where f (to) = d(to) and p ( ~ )  = (y/n)/[y2 + c2]. For this distribution of 
p(~),  contour integration shows that 

while a, = l/(a,- + y) for s 2 1 and ao = O. As s goes to infinity, a, 
tends to a limit a given by a positive root of a(a + y) = 1, which is smaller 
than unity. One disadvantage of the Cauchy distribution is that with 
it the average value is zero and the root-mean-square deviation does 
not exist. It is therefore usual to calculate its average through the 
average of log t, as < = exp. {m,), and 



The recurrence relation of Chebyshev polynomials U,(x) enables 
us to establish a simple result for a,; 

where U,(x) = sin [(s + l)O]/sin O and x = cos O. It follows from defi- 
nition of Z,(g  that 

As n increases towards infinity, the normalization factor tends to a 
limit, O(0) r limQ(n)(0) = a2/(a2 - 1) and since a=(y/2) + [I + ( ~ / 2 ) ~ ] " ~ ,  it 
it is finite unless y = O  (Ref. 13). 

When the consideration moves away from the center of the band, 
i.e. E;) = 5 1 0 ,  the equation (6) should be modified as 

Again, for the Cauchy distribution p ( ~ ) ,  we obtain 

. f s ( t s )  = (asl.)l[as" + (ts - where 

and ao = Ao = 0. 

3. Results of Numerical Computation 

It is natural to inquire a little more closely into the nature of the spectral 
function which has appeared in the preceding section. We recall that 
the roots of P,(o = O (n 2 1) are distinct and negative and are separated 
by the roots of P,- = 0, provided that P,(O) > O. (Remind that 
we shift the origin of energy later upon introducing the distribution 
P(E).) It then follows from our definition of E?) that for fixed r 2 1, 
E?) > E$",. If we assume that E?) tends to a limit as n goes to infinity, 
say E? -+ E,, it is clear that El > E2 > . . . . Then p(E) is a step 
function with discontinuity 110, at E,, where 1/0, = lim 1/01'. Of 

n+ rr. 

course, unless any restrictions are put on gi, nothing can be said about 
the energy spectrum, and they cannot be easily related to the function 
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p(E). However, it may happen that 8, is infinite and the discontinuity 
at E, is zero. This is our present concern for the Cauchy distribution 
of gi. The advantage of the present analysis is that we are always able 
to deal with the infinite lattice, even though we need not calculate. 
As is well known, to obtain results by analytical methods it is necessary 
to make some very restrictive arguments using the limit n + co whose 
validity is extremely difficult to prove mathematically rigorously. 
It is therefore important that numerical results be available even if 
only for simple models. 

We may be allowed to regard y and 118, as parameters designating 
degree of randomness and degree of localization, respectively. Fig. 
la and lb demonstrate rather rapid convergence of a, and AS in Eq. (8) 
with respect to the site number. This is true for relatively large y, but as 
y becomes smaller, the rate of convergence decreases very sharply. 
For example, 60 sites are required to converge for y = 0.1 and at least 
120 sites are necessary for y = 0.05 before approximate convergence. 
It is illustrated in Fig. 2 that the average wavefunctions decrease quickly 
with the distances as the degree of randomness increases, but their 
tails become longer and longer as y becomes exceedingly small. It 
is thus confirmed that for a far smaller degree of randomness (y = 0.01 
or less) the wavefunctions spread progressively over a huge number 
of sites. This extremely long tail is due to the Cauchy distribution. 
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We calculate 1/8(0) for these wavefunctions. Fig. 3 shows that the 
discontinuity at 5 = O  (the center of the band of p(8)) becomes bigger 
and bigger as y increases. 

Our snalysis is related to the previous work8 in which its authors 
examined convergence of the self-energy in the perturbation series. 
The uniform convergence of the distribution ,f,(x) to f (x) as n --, co 
is reduced to that of two continued fractions (8) since the Cauchy 
distribution forms a closed system under the convolution. For 5 = 0, 
a11 A, are zero and a, tends to a limit a as s -+ co. As was already 
shown, the limit @(O) is finite unless y = 0. 

Fig. 3 j 

The next step is to find any systmatic trends of O(5) with 5 .  The con- 
vergence of the continued fractions (8) is numerically confirmed up 
to y = 0.05. For fíxed y, the speed of convergence in a, and A, increases 
with the magnitude t. To calculate O(;), however, we have to surmount 
the difficulty (of the Cauchy distribution) in defining its average value. 
It is easy to find that the average lies between I a, - 2, I and I a, + A, 1. 
We also take into account the intermediate value (a; + A;)112 and 
draw figures of 1/8(<) for these three values (I a, - A, 1, (a; + A:)112, 1 a, + A, I) 
classifying A, B and C, respectively. It is shown in Fig. 4 (case A) that 
states become more localized as the eigenvalue increases. Since the 
minimum value is assumed for the wavefunction, the rate of increase 
is very sharp, while we see in Fig. 5 for case B that the curves keep 
constant up to a given energy and then increase outside this value. 
It is clear that the degree of randomness augments localization of 
states. A striking feature, however, appears in the curves for case C. 
The function 1/8(5) decreases once and then rises again somewhere 
around 5 = 1.1. Fig. 6 illustrdtes that the discontinuity becomes very 
small for those values of y below 0.5, and the region of vanislíingly 



Fig. 4a 

Ç ís i tes)  
Fig. 4b 

small values of 1/8(t) increases with decrease of y. As we assume the 
maximum value for the wavefunctions, this does not seem to occur 
with appreciable probability in the infinite system. Actually, for almost 
a11 members of the ensemble the results of case B or the ones close 
to them should be applied. As a general trend, however, our result 
clarifies how and where the localization of states increases with the 
degree of randomness. *The result indicating the increase of localization 
at the center of band is hard to explain, but similar situations have 
been reported in numerical studies of another model. Its interpretation 
is attempted there by the author

g 
in terms of the effects of the lattice 

size. In our analysis we have one end point even after we take the 
limit n -, oo. This may cause some effects. 
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