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An array of qualitative and quantitative evidence is presented to the effect that neutron- 
star matter in its ground state is antiferromagnetic rather than ferromagnetic. The 
energy of pure neutron matter is evaluated as a function of spin polarization by a two- 
body Jastrow procedure, for densities up to five times that of ordinary nuclear matter. 
The anti-ferromagnetic state is energetically preferred to states with non-zero spin 
polarization, and lies considerably lower in energy than the ferromagnetic state. The 
magnetic susceptibility of the material is calculated as a function of density in the same 
approximation, with results which are in good agreement with independent estimates. 

Apresenta-se um conjunto de evidências qualitativas e quantitativas de que a matéria 
das estrelas de neutrons, no seu estado fundamental, é antiferromagnética em vez de 
ferromagnética. Calcula-se a energia de matéria pura de neutrons em função da polariza- 
ção do spin, por um procedimento de dois corpos tipo Jastrow, para densidades de 
até cinco vezes a da matéria nuclear comum. O estado antiferromagnético é energética- 
mente preferido a estados com polarização de spin não nula e está considerávelmente 
mais abaixo em energia que o estado ferromagnético. Calcula-se a susceptibilidade 
do material em função da densidade na mesma aproximação, obtendo-se resultados 
que concordam muito bem com outros cálculos independentes. 

1. Introdução 

The magnetic properties of neutron matter are of great interest for 
pulsar models, since strong magnetic fields, of the order of 1012 gauss, 
are necessary to explain the radio emission. These fields are extremely 
high compared to the magnetic fields in ordinary stars, which are of the 
order of 102 gauss. On a qualitative level, it is argued that during the 
birth of a neutron star, the magnetic flux in the original star is conserved 
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in the supernova event, under compression into a volume about 10-l5 
of the original volume. The magnetic field, which scales inversely 
with the square of the radius, is thus increased by a factor 10''. For a 
star with an initial surface fíeld of 100 gauss the resulting neutron 
star would on this basis have a field, at its surface, of some 1012 gauss. 

On a more detailed and quantitative level, it was suggested that a 
ferromagnetic state in the degenerate electron gas, present in white 
dwarfs and neutron stars, might arise from the LOFER (Landau 
orbital ferromagnetism) mechanism.' In this description, the sum 
of the magnetic moments associated with the system of electrons, 
a11 in their respective Landau levels, gives rise to a self-consistent 
macroscopic magnetization, the corresponding field in turn maintai- 
ning the Landau levels of the electrons. (A Landau level is a quantized 
orbit of a free electron in a crystal in a magnetic field.) The LOFER 
state was predicted to take over below a certain transition temperature 
(- 104"K) and to generate a field as high as 1012 gauss in a neutron 
star. 

Both the above pictures yield magnetic fields for white dwarfs of about 
106 to 107 gauss. This is puzzling because, observationally, most 
white dwarfs have magnetic fields smaller than 105 gauss [Ref.2]. 
In addition, it can be argued that the creation of a ferromagnetic statq 
in a neutron star, by whatever means, would take too long a time to 
have observable effects due to the extremely high conductivity (very 
long mean-free-paths of the relativistic electrons) inside the neutron 
~ t a r . ~  

Another early proposal for the source of the pulsar magnetic fíeld 
was neutron ferromagnetism. According to Brownell and Callaway 
(Reference 4, hereafter called BC), the neutrons, numerically predomi- 
nant in the star, may align their spins, thus undergo a ferromagnetic 
transition, at sufficiently high density: Feeling the strong short-range 
repulsion in the neutron-neutron interaction, neutrons can take advan- 
tage of the Pauli principle to keep further apart from each other by 
occupying triplet states of spin rather than singlet states; consequently 
the potential energy is reduced. Of course, the kinetic energy will 
increase due to the fact that some particles are forced to higher wave- 
vector states, as the occupation of lower wave-vector states is cut in 
half. Even so, at high densities, it may become energetically advan- 
tageous for the particles to align their spins. 



In this paper, we investigate by microscopic theory the possibility of 
a ferromagnetic transition in pure neutron matter. First we use a 
t-matrix criterion due to BC, which is derived in Section 1, to assess 
the role of a nucleon-nucleon hard core in ferromagnetism. The hard 
core is seen to favor ferromagnetism of neutron matter, as already 
indicated by the qualitative argument just given. 

In Section 2, we incorporate the effect of the attractive component 
of the nuclear force. This effect is found to vitiate the conclusion drawn 
with the hard core alone. There is no sign of a ferromagnetic instability 
of the pure neutron system in the density range up to twice the equi- 
librium density of symmetrical nuclear matter. 

In Sections 3 and 4, we study the magnetic properties of neutron matter 
more thoroughly by performing a many-body calculation for the 
ground-state energy of a system of neutrons with arbitrary spin polari- 
zation. For densities up to five times that of ordinary nuclear matter, 
we find that the antiferromagnetic state is energetically preferred to 
states with nonzero spin polarization. A calculation of the magnetic 
susceptibility within the same scheme provides a further check of the 
now-popular contention that neutron matter does not undergo a 
ferromagnetic transition at neutron-star densities. 

A microscopic description of the intense field of a neutron star must 
therefore be sought elsewhere than in the mechanism of neutron fer- 
r~magnetism.~ Nevertheless, the general magnetic properties of neu- 
tron matter, explored here, remain of much interest, being vital to a com- 
prehensive picture of the structúre and dynamics of the interior of 
the star. 

2. t-Matrix Criterion for Ferromagnetisrn 

In this section, we derive the t-matrix criterion for the onset of a fer- 
romagnetic transition, following BC. Consider a system of N identical 
fermions with small spin polarization, 

where n+ and n- are respectively the partial densities of particles with 
spin up and spin down relative to a tiny externa1 magnetic field. These 
partial densities satisfy the condition n+ + n- = n, where n is the 



number density of the system. Equivalently, we can write n+ and n- 
as functions of n and s: 

We treat the system at T =  0°K and the particles are assumed to interact 
through a two-body potential v(1,2). Because of the singular nature 
of v(l,2), which is supposed to contain a strong repulsive core, it is 
necessary to introduce a t-matrix or other effective potential approxi- 
mation. In the t-matrix formalism, the operator t is defined as5 

where the Pauli operator Q projects out of the Fermi sea, Wis a starting 
energy, and H. is the Hamiltonian for two independent particles. The 
total energy per particle can be written in a two-body approximation 
as the sum of the free kinetic energy per particle c, and a two-body 
interaction energy per particle, 

where the sums go over space and spin quantum numbers of the occupied 
(Fermi sea) orbitals, and the starting energy is taken as the sum of 
self-consistent single-particle energies for Fermi sea orbitals i and j. 
We are of course interested only in the lowest state of given spin polariza- 
tion. The interaction energy due to the small uniform field is neglected. 

Define average t-matrix elements by 

where 8 is the unit step function, kF = (37~~n3"~ is the radius of the 
Fermi sphere, EF is the Fermi energy, and ci, ki, and oi are respectively 
the energy, wave number, and spin of orbital i. It is convenient to 
suppose that the N particles occupy unit volume, so that N = n. Now, 
(4) can be written as 

where "+" means spin up and "-" means spin down. 



Introducing average t operators for singlet and triplet pairs of par- 
ticles, t(') and &'), by 

t + +  = t--  = t@), 

and 

we have 

Denote the density of Fermi-gas single-particle states of a given spin 
direction by G(E). The Fermi energy po of the non-interacting system 
is defined by 

Letting p* be the Fermi energies of particles of up and down spins 
in the paramagnetic state of spin polarization s, we have 

1 1'"qE) ciE = - 2 N(í  t r). 

Subtracting (9) from (10), we get 

Assuming s to be small, we can expand G(E) in a Taylor series about po. 
Keeping the first two terms, (11) becomes 

1 
L'[G(~') + GIOiO) (E - L)] dE = + Ns, (12) 

where G'(E) denotes the derivative of the density of states. Carrying 
out the integration in (12), we find 



To second order in s, (13) is equivalent to 

The total energy of the non-interacting system can be calculated as 

In the absence of spin polarization, p+ = p- = po, and the total energy 
of the antiferromagnetic state of the non-interacting system is 

N E , = ~  EG(E)dE.  lOW0 (16) 

Again expanding G(E) in a Taylor series about po, Eq. (15) yields, to 
leading order in s, 

From Eq. (8) we then have, for the approximate energy of the interacting 
system with (small) spin polarization s, 

Accordingly, the antiferromagnetic state is unstable against spin flips 
which increases s, when the following criterion is satisfied: 

I = G(po) [t'" - t'"] 2 1. (19) 

Note that in the derivation of this criterion we have ignored three- 
and higher-body cluster effects in the sense of Brueckner theory5, 
as well as any intrinsic s-dependence of the average t-matrix e l e m e n t ~ . ~ , ~  

Treating neutron matter as a system of hard spheres of diameter c and 
neglecting the attractive nuclear forces, BC have calculated the t-matrix 
elements of (5) by means of a reference spectrum m e t h ~ d . ~  The cri- 
terion (19) for an instability toward ferromagnetism in neutron matter 
is found to be satisfied at kFc = 0.86. Assuming a hard-core radius 
(hard sphere diameter) c = 0.4 - 0.5 fm, this implies a "critical" Fermi 
wave number kF = 2.15 - 1.72 fm-l, thus a "critical" density 2-1 times 
the equilibrium density of symmetrical nuclear matter. From this 
result, BC concluded that throughout the major portion of a typical 
neutron star, the neutron component is likely to be ferromagnetic. 



3. Effect of Attractive Nuclear Forces on the Onset of Ferromagnetism 
in Neutron Matter 

The conclusion drawn by Brownell and Callaway is based on the assump- 
tion that the interaction of two neutrons in the density range of interest 
is dominated by the repulsive core. However, the spin dependence 
of the extracore component of the two-neutron potential has an 
essential effect on the onset of a ferromagnetic transition in neutron 
matter. This was first pointed out by Clark and C h a ~ . ~  As indicated 
by the t-matrix criterion (19) for an instability toward ferromagnetism, 
the ferromagnetic ground state is favored by a strong triplet attraction 
(weak triplet repulsion) and weak singlet attraction (strong singlet 
repulsion). Since the extra-core component of the two-neutron potential 
is known to have practically the opposite characteristics, being strong1:y 
attractive in singlet-even states and weak in triplet-odd states, it is 
to be expected that the inclusion of the extra-core potential may push 
the critica1 density for instability of the s = O state of neutron matter 
to a higher density than that predicted by BC. To put it more physically, 
note that in a realistic hard-core two-neutron interaction potential, 
there is a deep, narrow attractive well in singlet states just outside the 
(essentially) state-independent repulsive core. This well opposes the 
tendency toward spin alignment: to take fullest advantage of the 
attraction, a pair of neutrons should approach fairly closely, with 
zero total spin. Thus in the moderate density range in which a t-matrix 
calculation may be considered reliable, the ground state of neutron 
matter may in fact be antiferromagnetic rather than ferromagnetic. 
This should also be true for a realistic soft-core potential

g
, as considered 

by Clark lo. 

An empirical indication of the importance of the attractive forces (or 
more generally, extra-core interactions) for the occurence or absence 
of a ferromagnetic transition in a system of condensed fermions can 
be seen in liquid He3. Liquid He3 is the (bulk) system which most 
closely resembles neutron matter among terrestrial materials. Suppose 
we treat liquid He3 in the same way as BC treated neutron matter, 
and to this end replace the interatomic interaction by a hard core of 
radius c = 1.73 A. This radius is taken from the work of Cole1', who 
has treated helium as a system of hard spheres. (Cole deduced an effec- 
tive hard-sphere diameter from the experimental zero-point density 
and pressure relations of solid He4 and ~ e ~ ,  upon the premise that 
it is the strong short-range repulsive component of the two-body 
interaction in these systems which governs the behavior of the wave 



function, the attractive component having little influence on the wave 
function of the system at high density.) The equilibrium density of 
liquid He3 corresponds (in the absence of ferromagnetism) to a Fermi 
wave number kF = 0.78 A-'. Thus x = kFc = 1.35. According to BC, 
the critica1 value of x for an instability toward ferromagnetism, for a 
system of hard spheres, is x, = 0.86, so that liquid He3, on this basis, 
would be expected to be ferromagnetic, in contradiction to experiment. 
It may further be noted that, in the presence of attraction, the situation 
in liquid He3 should perhaps be more favorable for the occurence of 
ferromagnetism than that in neutron matter, since in the former system, 
as opposed to the latter, the triplet-state attraction (which aids align- 
ment of the spins) is just as strong as the singlet-state attraction (which 
inhibits, alignment of the spins). 

We now give quantitative evidence of the irnportance of the attraction, 
in terms of the BC criterion (19) for the occurence of ferromagnetism. 
However, we will interpret t(" and t(') in (19) more generally as the 
appropriate diagonal matrix elements of an effective two-body interac- 
tion, not necessarily the reaction operator. At kF = 2 fmP1, which 
corresponds to a density near the critica1 density for the ferromagnetic 
transition as predicted by BC, one has G(po) = mkF/2n2h2 = 2.44 x 10-3 
MeV-I fm-3, so that satisfaction of (19) requires t'" - t(') > 410 
MeV fm3. To see whether this condition is still satisfied when the 
proper attractive forces (extracore interactions) are incorporated, we 
extract an estimate (probably an over-estimate) of t(" - 6') from a 
Jastrow evaluation of the energy per particle of the lowest nonmagnetic, 
normal state of neutron matter, for two reasonable neutron-neutron 
potentials. The calculational procedure is the same as that employed 
for nuclear matter by Backman, Chakkalakal, and Clark12. The 
result for the energy per particle is of the form 

where is the ground-state energy per particle of the Fermi gas with 
Fermi number kF, and and e3 are, respectively, the two-body and 
three-body cluster contributions to the Jastrow energy expectation 
value per particle. To the extent that higher ciuster contributions are 
negligible, E may be considered an upper bo~ind on the true energy 
per particle. Numerical results for the ~wamoto-Yamada13 (IY) and 
Hamada-Johnston14 (HJ) potentials, as compiited by Chakkalakalls, 
are presented in Table I. Note that n = k?/37c2. The three-body correc- 
tion is quite small in magnitude for a11 dtmsities considered and 



will be discarded in the present analysis. The two-body contribution 
may be decomposed thus : 

Accordingly, 

In the case of the I Y potential, the odd-state interaction consists of the 
core alone, so that t(') > 0; for more realistic potentials like the HJ 
potential, the net energetic contribution of the 3p  states and more 
generally the odd states is expected to be rather small in the density 
region under study16. Thus we take 

Over the density ranges considered, this is always negative, although 
it does increase as kF increases. Evidently, the system is still far too 
dilute to experience a ferromagnetic transition, if prepared in the 
antiferromagnetic state. It is true that the core term of 6" - 6') is 
large and positive, but this is more than compensated by the attractive 
contribution. At kF = 2 fm- l ,  we find 6") - t(') < -300 MeV fm3 (HJ). 
Table I provides a summary of our estimates for t(" - t(') and the left- 
hand side I of condition (19). 

k~ e2 E 3  E (P - t(t))est I,st, Potential (fm-') (MeV) (MeV) (MeV) (MeV fm3) 

Table I - Ground-state properties of antiferromagnetic neutron matter, as calculated 
by Chakkalakal15, and associated estimates for ingredients of the ferromagnetic cri- 
terion (19). 



From the foregoing analysis we conclude that, in the framework of 
a two-body cluster treatment, the effect of the extra-core compo- 
nent of the two-neutron potential is to push the critica1 density for 
the onset of ferromagnetism in neutron matter to a value substantially 
higher than that predicted in the presence of the repulsive core alone. 
To further uncover the magnetic properties of neutron matter, we 
carry out, in the following sections, calculations of its paramagnetic 
susceptibility and of its ground-state energy for arbitrary spin pola- 
rization. 

4. Preliminary Discussion of Magnetic Susceptibility 

The energy of a system of identical spin-4 fermions is a function of 
the spin polarization parameter s defined in (1). As in the earlier con- 
siderations, we shall be concerned only with the lowest state of given s, 
whose energy we denote by ~(s) .  We would in fact like to know what 
value of s the system takes in its ground state. The ground state is 
said to be antiferromagnetic if s = O minimizes c(s) and ferromagnetic 
if s = + 1 or s = - 1 minimizes E(s). (Note that in Section 3 a11 energy 
quantities referred to s = 0.) 

It is generally useful to calculate the magnetic susceptibility X. This 
quantity measures the energy required to prodiice a small spin polariza- 
tion, starting from s = O, i.e., starting from the antiferromagnetic state. 
We consider a system with a small spin polarization s due to a small 
perturbing magnetic field of strength H. The unperturbed energy 
(meaning the energy with the field 08) is approximated by a Taylor 
series expansion about s = 0, truncated at tlne s2 term: 

Because of spatial isotropy, the energy of the unperturbed system cannot 
depend upon the sign of the spin polarization. Thus ~ ( s )  = e(-s) and 
the energy of the unperturbed system at s = O must be an extremum, 
in that de(s)/ds l s = o  = O. For the rest of the discussion, we will consider 
only the case s 2 O. 



The total energy E(s) of the system is the sum of the unperturbed energy 
and the energy of interaction with the (weak) applied magnetic 
field H. Thus, 

where y is the neutron magnetic moment. This approximation to E(s) 
assumes a relative extremum with respect to s at 

This extremum is a relative minimum if and only if a2~(s)/as2(s=o is 
positive (which implies that energy must be added to polarize the 
unperturbed system). Otherwise it is a (physically irrelevant) relative 
maximum at s < O. The magnetic susceptibility is defined as the ratio 
of the induced magnetization per unit volume in the direction of the 
field, ny,s, to the field magnitude H. Thus we have, using (25), 

Strictly speaking, this formula is meant to apply only when (25) mini- 
mizes the perturbed energy, that is, when the antiferromagnetic state 
of the unperturbed system is locally stable, d2~(s)/ds2 I s = ,  > O. But 
it is useful to evaluate x of (26) in any case. A result 31 > O indicates 
the antiferromagnetic state is at least locally stable. On the other hand, 
a singularity of x (X -+ a) with increase of some parameter (say den- 
sity) followed by negative values of x with further increase of this para- 
meter, signals the onset and prevelance of an instability of the anti- 
ferromagnetic state against spin flips leading toward ferromagnetism. 

These considerations on x and its sign bear on the behavior of the 
unperturbed system at and near s = 0; the behavior at finite s remains 
to be examined. It is possible that the unperturbed energy of the system 
is not a monotonic function of S. Therefore, a plot of ~ ( s )  against s 
may have relative minima in the interval O < s < 1. In particular, 
the ferromagnetic state may conceivably have lower energy than the 
antiferromagnetic state, even if x > O. It is thus necessary to calculate 



E(S) as a function of s for O I s I 1 to conclude deiinitely that the ground 
state is antiferromagnetic or else to find the finite polarization for 
which the system has its lowest energy, 

5. Magnetic Susceptibility and Spin Polarization Energy of Neutron 
Matter 

We now perform a two-body Jastrow calculation of the energy of a 
system of N interacting neutrons with arbitrary spin polarization S .  

In the framework of the method of correlatetl basis f u n c t i ~ n s ' ~ * ~ ~ ,  
the trial ground-state wave function for a many-Fermion system is 
written as 

$(12.. . N) = F(12.. . N)@(12.. . N). (27) 

Here the model wave function @ is taken to be a Slater determinant 
describing the ground state of N non-interacting neutrons. For a 
uniform system, the appropriate single-particle wave functions are 
plane waves, unit-normalized and satisfying pexiodic boundary con- 
ditions in a cubic box. As in Section 2, it is convenient to assume a 
unity normalization volume, for the N-particle system. Thus the 
spatial portion of a given single-particle wave function is simply 
exp(ikr), where k is the corresponding wave vector. A number or 
number density n+ of particles is assigned to up-spin orbitals, and 
n-, to down-spin orbitals, in accordance with Eq. (2). The correlation 
factor F is taken to be a product 

of two-body correlation factors f, one for each pair of particles. 

The expectation value of the energy per particle with respect to the 
delineated trial wave function, called ~(s),  is cliister expanded12,18 in 
the effects of the correlations introduced by F. Stopping at the leading 
correlation effect, i.e., assuming rapid convergence of the cluster ex- 
pansion (cf. Table I), we set 

The one-body term cl(s) is just the kinetic enei-gy per particle of the 
noninteracting system, in which n+ particles of spin up fill a Fermi 
sphere of radius kF+ and n- particles of spin down fíll a Fermi sphere 
of radius kF-. We make use of the relations 
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Figure 1 - Energy per particle e(s) of neutron rnatter as a function 
of the spin-polarization parameter s, for kF = 1,2,3 fm-I and 
odd-state choice (a) (rnixed Serber potential). 

Figure 2 - Magnetic susceptibility x of neutron matter in units 
of the magnetic susceptibility of the non-interacting neutron 
systern, plotted against Fermi wave nurnber kF. The solid 
curves labeled "Pure Serber" and "Mixed Serber" are the results 
of the present work. 



k~ * 
- '" iok" 

k; k 
" I =  C 1 + ~  k: dk+ = p . 

k+ = O  

From (2) we see that 

k F I  = kF(l  ) s)'I3. 

The two-body term is the sum over a11 pairs of' occupied plane-wave 
orbitals, of matrix elements of an effective two-body potential w(l,2), 
that is, 

NE~(s) = C (ij I w2(1,2) [ ij - ji) 
i >  j 

with 

v(l,2) being the bare two-body potential. Separating the contributions 
to Q(S) according to the spin projections of the particles, we have 

where of course the " + " sign tags orbitals with spin up and the " -" sign 
tags orbitals with spin down. 

To perform the spin sums, we rewrite the above in terms of orthonormal 
two-particle spin functions X$ which are simultaneous eigenfunctions 
of the operators S2 and S,, where S = s(l) + s(2). As usual, eigenvalues 
of S2 are denoted by S(S + I), and of S,, by Ms. For neutrons, we have 
triplet spin states with S = 1 and singlet spin states with S = 0, thus 
the familiar expressions 

where a and p denote respectively the usual normalized one-body 
spin-up and spin-down functions. The mixed-spin states in the middle 



t e m  of (34) are expressed as linear combinations of Xy and Xg 

We assume the two-body neutron-neutron interaction potential to 
be spin dependent, 

412) = vo(r1,z)Ao + ul(rl,z)Al, (37) 

where uo is the singlet and ul the triplet potential, while Ao and A1 are 
the singlet and triplet spin projection operators 

Summing over spins, Eq. (34) becomes 

with ~ ( r ~ , ~ )  - ( h 2 / ~ )  ( V '  (r1,2))2. We next carry out the spatial inte- 
grations over the center-of-mass coordinate and the finally the wave 
vector summations. Using the well-known formula19 for summation 
(integration) over a Fermi sphere, 

+ 
2 exp [ik+ . r] = nr l (k~+ r), 

k + = O  
(40) 

where l(t) = (3/t3) (sint t - t cos t), we arrive at the following result for 
the energy per particle of a system of neutrons with spin polarization s: 



It is convenient to express the magnetic susceptibility x in units of 
xn the magnetic susceptibility of the non-interacting system. The latter 
is easily found to be 

(Note this "unit" depends on the density.) A straightforward calculation 
then yields the desired quantity, 

where t = kFr. 

For the purpose of numerical evaluation, we choose a potential of the 
Ohmura type20 for the neutron-neutron interaction. This potential 
has, in even states, the following expression 

uo(r1,2) = m, r 5 c, 

= -Ao exp [- ao(r - c)], r > c, (44) 

where c = 0.4 fm, Ao = 235.414 MeV, ao = 2.03435 fm-'. It fits the 
singlet scattering length and effective range and reproduces, approxi- 



mately, the energy dependence of the 'S-wave phase shift. We consider 
two possibilities for the odd-state character : (a) a mixed Serber potential, 
in which the hard core is assumed to be state-independent but the 
extra-core portion of the odd-state interaction is set to zero, and (b) 
a pure Serber potential, in which the odd-state interaction is set iden- 
tically zero. 

In case (a), the two-body correlation factor is taken as 

independent of parity state. The density-dependent variational para- 
meter v is determined by minimization of c2 of (41), with s put zero. 
In case (b), the two-body correlation factor should obviously be unity 
in odd states. With f = I in odd states and retaining the form (45) in 
even states, the two-body correlation factor becomes state- (parity-) 
dependent. However, Eqs. (41), (43) were derived assuming a state- 
-independent correlation factor. Some straightforward modifications 
of them are required, to deal adequately with choice (b). For the parity- 
-dependent correlation factor just prescribed, one needs only write u in 
the form (37), with the even-state componetit uo computed irom the r 
derivative of (45), and ul 5 O. Correspondingly, a11 u terms appearing 
in (41), (43) are to be dropped, whilef?vo is to be replaced byf 'vo + uo. 
The f ' s  that appear finally refer to form (45), a11 odd-state potential 
contributions being zero, as in case (a). Again, the parameter v is 
determined by minimizing the two-body energy contribution (still 
called E ~ )  at s = 0. 

Having chosen the potential and fixed the two-body correlations as 
described, we find that for kF values up to kF = 3 fm-l, i.e., densities 
up to 0.91 neutrons per fm3, the minimum of E(S) of (41), as a function 
of s, always occurs at s =O.  This result provides clear support for 
the proposition that the ground state of neutron-star matter is anti- 
ferromagnetic. Further, ~ ( s )  is found to increase monotonically with S. 
The results obtained would not be significantly affected if we redeter- 
mined v at each s > O by minimization of E Z  at that S. The optimal 
value of v remains near 5 fm-I in a11 cases. In Figure 1, curves of 
E(.>) vs. s for kF = 1, 2, and 3 fm-' are displayed, for odd-state choice (a). 
The corresponding curves for potential choice (b) are similar, but their 
upward curvature is somewhat less. The magnetic susceptibility is 
found to be positive (as expected), with (z/zF)- increasing monotonically 



as the density increases. There is no hint of a lerromagnetic instability 
of the material. 

Plots of (2/xF)-' VS. kF for odd-state potential choices (a) and (b) are 
shown in Figure 2. Included for comparison are the results of magnetic 
susceptibility calculations of Clark,' (2~tgaa:rd:~ and Pfarr.' ' Their 
results seem to be generally in line with those of i:he present investigation. 
Clark, using Brueckner theory to evaluate ?2c(s)/?s2 Is=, for the realistic 
Reid soft-core potential, finds no sign of a ferroinagnetically favorable 
instability at densities below 5 x 10'" gkm'. Ostgaard, also using 
Brueckner theory, but for the semi-realistic potential of Moszkowski 
and Scott, obtains essentially the same results as those of Clark at 
low densities. However, at high densities the quailtity ( x / x ~ ) -  ' rapidly 
decreases and passes through zero at kF = 4.1 fin-l, indicating the 
onset of a ferromagnetic instability at thç corresponding density. 
Pfarr, employing a unitary transformation rnethod2' to define the 
effective-potential matrix elements, has calculated the magnetic sus- 
ceptibility of neutron matter for thc Gammel-Christian-Thaler potential 
and the Eikemeier potential. Contrary to @stgaard's result, Pfarr 
detects no evidence for a ferromagnetic instability, up to kl; = 4 fin-'. 
Ostgaard's deviant finding is due to his incorxct use of unity for the 
effective mass and to the complete neglect of odd-state interactions. 

Pearson and S a ~ n i e r ~ ~  have calculated the spiii-polarization energy for 
neutron matter using their effective interaction potential and a first- 
-osder perturbation method. Their results show ihat the cnergj per 
particle increases monotonically with the polaii~ation for demities 
up to liF = 1.8 fm-', the highest Fermi wave nimber considcred. Thus, 
they also found ferromagnetism to be energctically uilfal orable in 
neutron inatter. 

The most refined calculation of neutron-matler susceptibility is pro- 
bably that o i  i35clíman, Kiillman. 2nd S jobe~- ,e~~ ,  who carried out a 
microscopic ewl~iatioii of the Landuu Fermi-iiquid parameters, using 
Hriicckner tlieor~. Thcir results are in agieement with ours and also 
with those of Clark and Pfarr. 

6. Conclusion 

Our argumeiits and supporting calculations havc prolided a strong 
basis for the currently held view thaí the ground state of ncutron matter is 



antiferromagnetic in the density range of interest foi- neutron stars. 
The absence of a ferromagnetic transition in neutro11 matter may be 
traced to tlie extra-core componeiit of the neutron-neutron potential. 
which opposes thc onset of ferromagnetism. Aitliough the repulsive 
core of the potential acts to promote ferromagnetism, this effect is 
dominant only at very high densities. For kF up to 3 fmpl, correspon- 
ding to densities up to about five times the equilibrium density no 
of ordinary, symmetric nuclear matter, it appears tliat the system is 
still much too dilute to undergo a fcrromagnetic transition. At twice 
no, the antiferromagnetic state is energetically preferred over the 
ferromagnetic state by oi' the ordei of a hundred MeV. There is really 
not much point in calculating k+ vdues beyond about 3 fm- ' because 
of (i) inlierent inadequacies of the two-body potential representation 
of the neutroil-iieutron force, wbich become increasingly apparent, 
(ii) irnportance of three-body and other corrections to the cluster 
method, and (iii) contamination of pure neutron matter by protons 
and hypei-ons. 
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