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An array o qualitative and quantitative evidence is presented to the effect that neutron-
star matter in its ground state is antiferromagnetic rather than ferromagnetic. The
energy of pure neutron matter is evaluated as a function of spin polarization by a two-
body Jastrow procedure, for densities up to five times that of ordinary nuclear matter.
The anti-ferromagnetic state is energetically preferred to states with non-zero spin
polarization, and lies considerably lower in energy than the ferromagnetic state. The
magnetic susceptibility of the material is calculated as a function of density in the same
approximation, with results which are in good agreement with independent estimates.

Apresenta-se um conjunto de evidéncias qualitativas e quantitativas de que a matéria
das estrelas de neutrons, no seu estado fundamental, é antiferromagnética em vez de
ferromagnética. Calcula-se a energia de matéria puradeneutronsem funcéo da polariza-
¢ao do spin, por um procedimento de dois corpos tipo Jastrow, para densidades de
até cinco vezes a da matéria nuclear comum. O estado antiferromagnético é energética-
mente preferido a estados com polarizagdo de spin ndo nula e esta consideravelmente
mais abaixo em energia que o estado ferromagnético. Calculase a susceptibilidade
do material em fungdo da densidade na mesma aproximagdo, obtendo-se resultados
que concordam muito bem com outros célculos independentes.

1. Introdugdo

The magnetic properties of neutron matter are of great interest for
pulsar models, since strong magnetic fields, of the order of 102 gauss,
are necessary to explain the radio emission. These fields are extremely
high compared to the magnetic fieldsin ordinary stars, which are of the
order of 10? gauss. On a qualitative leve, it is argued that during the
birth of a neutron star, the magneticflux in the original star is conserved
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in the supernova event, under compression into a volume about 10~ >
o the original volume. The magnetic field, which scales inversely
with the square of the radius, is thus increased by a factor 10'°. For a
star with an initial surface fidd of 100 gauss the resulting neutron
star would on this basis have a fidd, at its surface, of some 10'? gauss.

On a more detailed and quantitative level, it was suggested that a
ferromagnetic state in the degenerate electron gas, present in white
dwarfs and neutron stars, might arise from the LOFER (Landau
orbital ferromagnetism) mechanism.* In this description, the sum
o the magnetic moments associated with the system o electrons,
all in their respective Landau levels, gives rise to a self-consistent
macroscopic magnetization, the corresponding field in turn maintai-
ning the Landau levelsof the electrons. (A Landau level is a quantized
orbit of a free electron in a crystal in a magnetic field.) The LOFER
state was predicted to take over below a certain transition temperature
(~10*°K) and to generate a field as high as 10'? gaussin a neutron
star.

Both the above pictures yield magnetic fields for white dwarfs of about
10° to 107 gauss. This is puzzling because, observationally, most
white dwarfs have magnetic fields smaller than 10° gauss [Ref.2].
In addition, it can be argued that the creation of a ferromagnetic state
in a neutron star, by whatever means, would take too long a time to
have observable effects due to the extremely high conductivity (very
long mean-free-paths of the relativistic electrons) inside the neutron
star.?

Another early proposal for the source of the pulsar magnetic field
was neutron ferromagnetism. According to Browndl and Callaway
(Reference 4, hereafter called BC), the neutrons, numericaly predomi-
nant in the star, may align their spins, thus undergo a ferromagnetic
transition, at sufficiently high density: Feeling the strong short-range
repulsion in the neutron-neutron interaction, neutrons can take advan-
tage of the Pauli principle to keep further apart from each other by
occupying triplet states of spin rather than singlet states; consequently
the potential energy is reduced. Of course, the kinetic energy will
increase due to the fact that some particles are forced to higher wave-
vector states, as the occupation of lower wave-vector states is cut in
half. Even so, at high densities, it may become energetically advan-
tageous for the particles to aign their spins.
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In this paper, we investigate by microscopic theory the possibility of
a ferromagnetic transition in pure neutron matter. First we use a
t-matrix criterion due to BC, which is derived in Section 1, to assess
the role of a nucleon-nucleon hard core in ferromagnetism. The hard
core is seen to favor ferromagnetism o neutron matter, as already
indicated by the qualitative argument just given.

In Section 2, we incorporate the effect of the attractive component
o the nuclear force. This effect isfound to vitiate the conclusion drawn
with the hard core alone. Thereis no sign of aferromagneticinstability
of the pure neutron system in the density range up to twice the equi-
librium density o symmetrical nuclear matter.

In Sections3 and 4, we study the magnetic properties of neutron matter
more thoroughly by performing a many-body calculation for the
ground-state energy of a system of neutrons with arbitrary spin polari-
zation. For densities up to five times that of ordinary nuclear matter,
we find that the antiferromagnetic state is energeticaly preferred to
states with nonzero spin polarization. A calculation of the magnetic
susceptibility within the same scheme provides a further check of the
now-popular contention that neutron matter does not undergo a
ferromagnetic transition at neutron-star densities.

A microscopic description of the intense field of a neutron star must
therefore be sought elsewhere than in the mechanism of neutron fer-
romagnetism.> Nevertheless, the general magnetic properties of neu-
tron matter, explored here, remain of much interest, being vital to acom-
prehensive picture o the structure and dynamics o the interior of
the star.

2 t-Matrix Criterion for Ferromagnetism

In this section, we derive the t-matrix criterion for the onset of a fer-
romagnetic transition, following BC. Consider a system of N identical
fermions with small spin polarization,

ny —n-

s = : (1)

_n++n—’

wheren, and n_ are respectively the partial densities of particleswith
spin up and spin down relativeto a tiny external magneticfield. These
partial densities satisfy the condition n, T n_ =n where n is the
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number density of the system. Equivalently, we can write n,. and n-
as functions of n and s:

ne =3 (1+s). @

Wetreat thesystemat 7= 0°K and the particlesare assumed to interact
through a two-body potential »(1,2). Because of the singular nature
o u(1,2), which is supposed to contain a strong repulsive core, it is
necessary to introduce a t-matrix or other effective potential approxi-
mation. In the t-matrix formalism, the operator t is defined as®

_ Y
t=v-v W—Hot’ 3
where the Pauli operator Q projectsout o the Fermi sea, Wisa starting
energy, and H, is the Hamiltonian for two independent particles. The
total energy per particle can be written in a two-body approximation
as the sum o the free kinetic energy per particle ¢, and a two-body
interaction energy per particle,

8=80+%Z @] =), @)
i>j

wherethe sumsgo over spaceand spin quantum numbersad the occupied
(Fermi sea) orbitals, and the starting energy is taken as the sum of
self-congistent single-particle energies for Fermi sea orbitals i and j.
Wearedf courseinterested only in the lowest state of given spin polariza-
tion. The interaction energy due to the small uniform field is neglected.

Define average t-matrix elements by
3\ e
lois) = <m§> j kid®k0er —&)0(er—e;) G | t | ij—ji), (5)

where 0 is the unit step function, kr = (3n?n)'/? is the radius of the
Fermi sphere, ¢r is the Fermi energy, and ¢;, k;, and o; are respectively
the energy, wave number, and spin o orbital i. It is convenient to
suppose that the N particles occupy unit volume, so that N = n. Now,
(4) can be written as

i .
€ =gy + —N:(t+ ot 4+ 2ty _non_ +t__n?), (6)
where “+” means spin up and “~” means spin down.
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Introducing average t operators for singlet and triplet pairs of par-
ticles, 1 and ),

t++=1¢__ =19,

and
1 1
fo-=1t_, =7t“’+—2-t", (7
we have

1
6=t + 5 [P (n% + nen- +n2) + t¥nin]

3 1 1 ©
= 20 e L 206 40
—80+N[4t+4t 4s(t t)]
Denote the density of Fermi-gas single-particle states of a given spin
direction by G(E). The Fermi energy uo of the non-interacting system
is defined by

F GEdE =5 ©)
. .

Letting u. be the Fermi energies a particles of up and down spins
in the paramagnetic state of spin polarization s, we have

J uiG(E) dE = 2 N(1 + 5).

0
Subtracting (9) from (10), we get

- S 1
( G(E)dE = + - Ns. (11)
Juo

Assuming s to be small, we can expand G(E) in a Taylor series about wo.
Keeping the first two terms, (11) becomes

J “[6lao) + G'(uo) (E - po)] dE = + TN, (12)

where G'(E) denotes the derivative of the density of states. Carrying
out the integration in (12), we find

_ . Ns Gl
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To second order in s, (13) is equivalent to
_ Ns N2s2G' (uo)
He K= 2 56 () T 867 (ko -

The total energy o the non-interacting system can be calculated as

H 4 "
Negg = j EG(E)dE + j EG(E)dE. (15)
0 0
In the absence of spin polarization, u. = x_ = po, and the total energy
o the antiferromagnetic state o the non-interacting system is

Ho
Ne, =2 f EG(E)dE . (16)
0
Again expanding G(E) in a Taylor series about po, EQ. (15) yields, to

leading order in s,
N2%s?
&y = & + Zm (17)
From Eg. (8)we then have, for the approximateenergy of theinteracting
system with (small) spin polarization s,

E=¢+n it(”ﬁ-it(”-i—ﬁ L ool (18)
“ 4 4 4 1 Gluo)

Accordingly, the antiferromagnetic state is unstable against spin flips
which increases s, when the following criterion is satisfied:

| = Gluo) [t — 1] = 1. (19)

Note that in the derivation of this criterion we have ignored three-
and higher-body cluster effects in the sense of Brueckner theory®,
aswdl asany intrinsic s-dependence of the averaget-matrix elements.®:’

Treating neutron matter as a system of hard spheresof diameter ¢ and
neglecting the attractive nuclear forces, BC have calcul ated the t-matrix
elements of (5) by means of a reference spectrum method.® The cri-
terion (19) for an instability toward ferromagnetismin neutron matter
is found to be satisfied at krc = 0.86. Assuming a hard-core radius
(hard sphere diameter) ¢ = 0.4 — 0.5 fm, this implies a " critical” Fermi
wave number k = 215 1.72fm™!, thus a"critical" density 2-1 times
the equilibrium density of symmetrical nuclear matter. From this
result, BC concluded that throughout the major portion o a typical
neutron star, the neutron component is likely to be ferromagnetic.
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3. Effect of Attractive Nuclear Forceson the Onset of Ferromagnetism
in Neutron Matter

Theconclusiondrawn by Brownell and Callaway is based on the assump-
tion that the interaction of two neutronsin the density range of interest
is dominated by the repulsive core. However, the spin dependence
of the extracore component of the two-neutron potential has an
essential effect on the onset of a ferromagnetic transition in neutron
matter. This was first pointed out by Clark and Chao.® As indicated
by the t-matrix criterion (19) for an instability toward ferromagnetism,
the ferromagnetic ground state is favored by a strong triplet attraction
(wesk triplet repulsion) and weak singlet attraction (strong singlet
repulsion). Sincethe extra-core component o the two-neutron potential
is known to have practically the opposite characteristics, being strongly
attractive in singlet-even states and weak in triplet-odd states, it is
to be expected that the inclusion of the extra-core potential may push
the critical density for instability of the s =0 state of neutron matter
to ahigher density than that predicted by BC. To put it more physicaly,
note that in a realistic hard-core two-neutron interaction potential,
there is a deep, narrow attractive wel in singlet states just outside the
(essentidly) state-independent repulsive core. This well opposes the
tendency toward spin aignment: to take fullest advantage of the
attraction, a pair of neutrons should approach farly closely, with
zero total spin. Thusin the moderate density range in which a t-matrix
calculation may be considered reliable, the ground state of neutron
matter may in fact be antiferromagnetic rather than _ferromagnetic.
This should also betruefor arealisticsoft-corepotential , asconsidered
by Clark!®.

An empirical indication of the importance of the attractive forces (or
more generally, extra-core interactions) for the occurence or absence
of a ferromagnetic transition in a system of condensed fermions can
be seen in liquid He®. Liquid He® is the (bulk) system which most
closely resembles neutron matter among terrestrial materials. Suppose
we treat liquid He® in the same way as BC treated neutron matter,
and to this end replace the interatomic interaction by a hard core of
radius c = 1.73A. This radius is taken from the work of Cole'!, who
has treated helium as a system of hard spheres. (Colededuced an effec-
tive hard-sphere diameter from the experimental zero-point density
and pressure relations of solid He* and He?, upon the premise that
it is the strong short-range repulsive component of the two-body
interaction in these systems which governs the behavior of the wave

175



function, the attractive component having little influence on the wave
function o the system at high density.) The equilibrium density of
liquid He® corresponds (in the absence of ferromagnetism) to a Fermi
wave number ky = 0.78 A~1. Thus x = kgc = 1.35. According to BC,
the critical value of x for an instability toward ferromagnetism, for a
system of hard spheres, is x, = 0.86, so that liquid He?, on this basis,
would be expected to be ferromagnetic, in contradiction to experiment.
It may further be noted that, in the presence of attraction, the situation
in liquid He® should perhaps be more favorable for the occurence of
ferromagnetismthan that in neutron matter, sincein the former system,
as opposed to the latter, the triplet-state attraction (which aids align-
ment of the spins)is just as strong as the singlet-state attraction (which
inhibits, alignment o the spins).

We now give quantitative evidence o the importance of the attraction,
in terms of the BC criterion (19) for the occurence of ferromagnetism.
However, we will interpret ¢ and t® in (19) more generaly as the
appropriate diagonal matrix elementsof an effective two-body interac-
tion, not necessarily the reaction operator. At kr = 2fm~!, which
corresponds to a density near the criticaldensity for the ferromagnetic
transition as predicted by BC, one has G(uo) = mkg/2n?h* = 244 x 1073
MeV~! fm~3, so that satisfaction of (19) requires t® —t® > 410
MeV fm3. To see whether this condition is still satisfied when the
proper attractive forces (extracore interactions) are incorporated, we
extract an estimate (probably an over-estimate) of ® —:® from a
Jastrow evaluation of the energy per particle of the lowest nonmagnetic,
normal state of neutron matter, for two reasonable neutron-neutron
potentials. The calculationa procedure is the same as that employed
for nuclear matter by Bickman, Chakkalakal, and Clark!?. The
result for the energy per particle is of the form

E=2¢ + & + &3, (20)

where ¢; is the ground-state energy per particle of the Fermi gas with
Fermi number kr, and ¢, and &; are, respectively, the two-body and
three-body cluster contributions to the Jastrow energy expectation
value per particle. To the extent that higher cluster contributions are
negligible, e may be considered an upper bound on the true energy
per particle. Numerical results for the Iwamoto-Yamada'® (1Y) and
Hamada-Johnston'* (HJ) potentials, as compiited by Chakkalakal®®,
are presented in Table I. Notethat n = k3/3n*. The three-body correc-
tion ¢; is quite small in magnitude for all densities considered and
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will be discarded in the present analysis. The two-body contribution
may be decomposed thus:

— 3 @) 1 (s)
&y = n[ft +2—t (2])

Accordingly,

4er _

19— = 40, 22)

In the case of the 'Y potential, the odd-state interaction consistsof the
core alone, so that t® > 0; for more redistic potentias like the HJ
potential, the net energetic contribution of the *p states and more
generadly the odd states is expected to be rather small in the density
region under study'®. Thus we take

4ex

n

t® — 0 » (22a)

Over the density ranges considered, this is aways negative, athough
it does increase as ky increases. Evidently, the system is still far too
dilute to experience a ferromagnetic transition, if prepared in the
antiferromagnetic state. It is true that the core term of t® — @ is
large and positive, but thisis more than compensated by the attractive
contribution. At kr=2fm™!, we find t© — t® < -300 MeV fm® (HJ).
Table | providesa summary o our estimates for ¢ — :® and the |&ft-
hand side | of condition (19).

: ke 33 £3 E (t® = D)o L,
Potential m™1)  (MeV) (MeV)  (MeV) (MeVimd)

IY 0.9 ~421 0.09 595  —680  —068
13 ~775 015 1311 -420  -086

17 855 004 2742 -210  -073

HJ 0.9 ~429 0.10 588 —700  —0.69
13 ~966  -006 1128  -520 107

1.7 ~1651 022 1919  —400  -140

21 2269 020 3233  -290 —156

Table | - Ground-state properties of antiferromagnetic neutron matter, as calculated
by Chakkalakal'®, and associated estimates for ingredients of the ferromagnetic cri-
terion (19).
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From the foregoing analysis we conclude that, in the framework of
a two-body cluster treatment, the effect of the extra-core compo-
nent of the two-neutron potentia is to push the critical density for
the onset of ferromagnetism in neutron matter to a value substantially
higher than that predicted in the presence of the repulsive core aone.
To further uncover the magnetic properties of neutron matter, we
carry out, in the following sections, calculations of its paramagnetic
susceptibility and of its ground-state energy for arbitrary spin pola-
rization.

4. Preiminary Discusson of Magnetic Susceptibility

The energy of a system of identical spin—+ fermions is a function of
the spin polarization parameter s defined in (1). Asin the earlier con-
Siderations, we shall be concerned only with the lowest state of given s,
whose energy we denote by e(s). We would in fact like to know what
value of s the system takes in its ground state. The ground state is
said to be antiferromagnetic if s =0 minimizes ¢(s) and ferromagnetic
if s=+1ors=—1minimizes&s). (Note that in Section 3 all energy
quantities referred to s=0.)

It is generally useful to calculate the magnetic susceptibility . This
quantity measuresthe energy required to prodiicea small spin polariza-
tion, starting from s=Q i.e., starting from the antiferromagnetic state.
We consider a system with a small spin polarization s due to a small
perturbing magnetic fiedd of strength H. The unperturbed energy
(meaning the energy with the field off) is approximated by a Taylor
series expansion about s =0, truncated at the s? term:

J¢(s)

0els) 1 o
0s

&(s)
o OS Ty e

2, (23)

s=0

a(s) = &0) +

Becaused spatia isotropy, the energy of the unperturbed system cannot
depend upon the sign of the spin polarization. Thus &(s) = &-s) and
the energy of the unperturbed system at s = 0 must be an extremum,
in that de(s)/ds l.=o = Q For the rest of the discussion, we will consider
only the case s > 0.
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Thetotal energy &(s) of the system is the sum of the unperturbed energy
and the energy o interaction with the (weak) applied magnetic
field H. Thus,
2
s) = #(0) + % %?Si) §2 — yHs, (24)

s=0

where v is the neutron magnetic moment. This approximation to #s)
assumes a relative extremum with respect to s at

yH

5= 0%e(s) ’
aS s=0

This extremum is a relative minimum if and only if %(s)/0s[s=¢ iS
positive (which implies that energy must be added to polarize the
unperturbed system). Otherwise it is a (physically irrelevant) relative
maximum at s < 0. The magnetic susceptibility is defined as the ratio
o the induced magnetization per unit volume in the direction o the
fidd, nys, to the fild magnitude H. Thus we have, using (25),

(25)

- 26)

=3 &(s) '
0s? =0

Strictly speaking, this formula is meant to apply only when (25) mini-
mizes the perturbed energy, that is, when the antiferromagnetic state
of the unperturbed system is locally stable, d%e(s)/ds*|s=o > 0. But
it is useful to evaluate y of (26) in any case. A result x > O indicates
the antiferromagnetic state is at least locally stable. On the other hand,
a singularity of x(x — oo) with increase of some parameter (say den-
sity) followed by negative values of y with further increase o this para-
meter, signals the onset and prevelance o an instability of the anti-
ferromagnetic state against spin flips leading toward ferromagnetism.

These considerations on y and its sign bear on the behavior o the
unperturbed system at and near s = O; the behavior at finite s remains
to beexamined. It ispossiblethat the unperturbed energy o the system
is not a monotonic function of s. Therefore, a plot of &(s) against s
may have relative minima in the interval O <s< 1. In particular,
the ferromagnetic state may conceivably have lower energy than the
antiferromagnetic state, even if y > 0. It is thus necessary to calculate
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g(s)asafunction of s for 0 < s < 1toconcludedeinitely that the ground
state is antiferromagnetic or ese to find the finite polarization for
which the system has its lowest energy,

5. Magnetic Susceptibility and Spin Polarization Energy of Neutron
Matter

We now perform a two-body Jastrow calculation of the energy of a
system of N interacting neutrons with arbitrary spin polarization s.

In the framework of the method of correlated basis functions'”-18,
the trial ground-state wave function for a many-Fermion system is
written as

Y(12...N)= F(12...N)®(12...N). 27)

Here the model wave function @ is taken to be a Slater determinant
describing the ground state of N non-interacting neutrons. For a
uniform system, the appropriate single-particle wave functions are
plane waves, unit-normalized and satisfying periodic boundary con-
ditions in a cubic box. Asin Section 2, it is convenient to assume a
unity normalization volume, for the N-particle system. Thus the
spatial portion o a given single-particle wave function is smply
exp(ikr), where k is the corresponding wave vector. A number or
number density n,. of particles is assigned to up-spin orbitals, and
n-, to down-spin orbitals, in accordance with Eq. (2). The correlation
factor F is taken to be a product

F= T[] fmy (28)

1<i<j<N

of two-body correlation factors f, one for each pair of particles.

The expectation value of the energy per particle with respect to the
delineated trial wave function, called &(s), is cliister expanded!?:18 in
the effectsdf the correlations introduced by F. Stopping at the leading
correlation effect, i.e., assuming rapid convergence of the cluster ex-
pansion (cf. Table I), we set

&(s) = &1(5) + &as) . (29)

The one-body term &,(s) is just the kinetic ena-gy per particle of the
noninteracting system, in which n. particles o spin up fill a Fermi
sphere o radius kr+ and n_ particlesof spin down fill a Fermi sphere
of radius kr—. We make use o the relations
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Figure 1- Energy per particlee(s) of neutron rnatter asafunction
of the spin-polarization parameter s, for kx = 1,2,3 fm~* and
odd-state choice (a) (rnixed Serber potential).
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Figure 2 - Magnetic susceptibility » of neutron matter in units
of the magnetic susceptibility of the non-interacting neutron
systern, plotted against Fermi wave nurnber k. The solid
curves labeled "' Pure Serber" and "*Mixed Serber” arethe results
of the present work.



k3
ne = “Wf L ak, =3 30

From (2) we see that
kes = ke(1 + 5)'3. (31)
The two-body term &, is the sum over all pairs of occupied plane-wave

orbitals, of matrix elements of an effective two-body potential w(1, 2),
that is,

Neyls) = Z (ij | wa(1,2) l ij — i)
i>]
with
wal.2) =V (1 )2 + 1, 2001.2), (3

(1, 2) being the bare two-body potential. Separating the contributions
to &,(s) according to the spin projections of the particles, we have

N82(8)=7 S Gadwwalivjs —juic)+ % (ajo|walivj- —j-i4)
igsit Pgaj—
1 (34)
t5 % g walicjo—jei)
i_ J_
whereof coursethe“+ ” sign tagsorbitals with spin up and the“—" sign
tags orbitals with spin down.

To performthe spin sums, we rewritethe abovein termsof orthonormal

two-particle spin functions X¥s which are 5| multaneous eigenfunctions
of the operators S? and S,, where S=s(1)+ s(2). As usual, eigenvalues
of S? are denoted by S( s+ 1), and o S, by Ms. For neutrons, we have
triplet spin states with S=1 and singlet spin states with S =0, thus
the familiar expressions

X1 =a(a)
Xt =ﬁ[a(1)ﬁ(2)+/3(1)<x(2)], ’_ X8=ﬁ[a(1)ﬂ(z)—ﬁ(1>a(z)], 63)

= pPR),

where o« and f denote respectively the usual normalized one-body
spin-up and spin-down functions. The mixed-spin states in the middle
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term of (34) are expressed as linear combinations of X§ and X§

1
«DBQR) = — [X? + XS],
2
v (36)

B()(2) = X9].

N
We assume the two-body neutron-neutron interaction potential to
be spin dependent,

0(12) = vo(ry,2)Ao + v1(r1,2)Ay, (37
where v, is the singlet and v, the triplet potential, while Ao and A, are
the singlet and triplet spin projection operators

A1=3+21.0'2 (38)

1-— 1.0
4 ’
Summing over spins, Eq. (34) becomes

kpy kp
Ney(s) = > f i (kik; | ulry,2) + f201(r1,2) | kik; — k)

ki=0 k;j=0

A():

[y

kry kp.

+ Z Z {(kk,|u(r12)|kk,)+ (kik; |1 200(r1.2) | kik; + k ko)

+ 7 (kik; leU1(7‘1,2) | kk; — kk;)}

1 kr— kg
+ 3 k-Zo kz (kikj [ U(Vl,z) +f201(7’1,2) l kikj - kjki)a

with u(ry ,) = (B2/M)(Vf(r, 2))>. We next carry out the spatial inte-
grations over the center-of-mass coordinate and the finally the wave
vector summations. Using the well-known formula'® for summation
(integration) over a Fermi sphere,

kFi

Y. exp[iks.r] =ns Ukpsr), (40)

k+ =0
where I(t) = (3/t3) (sintt — t cos t), we arrive at the following result for
the energy per particle of a system of neutrons with spin polarization s:

h2k? ®

e(s) = 10 ZMF [+ + (1-5)°] + n(l + 9)2J [u(r) +

+f20,()] [1 - Plkpsn)]r? dr+
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+ mn(1-s?) Jw {u(r) +%fzvo(r) [1.+ kp+r) kg -1)] +

+ _;_f*ZUl(r) [l - l(kF+r) l(kF"r)]} r2 dr

+ %n(l —s)? j‘” [ur) + f20(r)] [1-Plhp_r)]r?* dr. 41
0

It is convenient to express the magnetic susceptibility x in units o
1, the magnetic susceptibility of the non-interacting system. The latter
is easly found to be

ny? My
=7 81(9) nh?
T 05t

—57 kr. 42)

s=0

(Notethis"unit" depends on the density.) A straightforward calculation
then yields the desired quantity,

6282 0281 _
(e/or)™ _1+[69 /W s=0_

-1 0 |
'H&(%) J {=2u+f 200 [14+PO] + [2u+f 0] [1-P0] -
0

al(t)

2 A
L[ (4 S0 2.40)

_ —2—t2 (%)2]} r? dr, (43)
9 ot

where t = kpr.

[u+fzvl] )=~

For the purpose o numerical evaluation, we choose a potential of the
Ohmura type?° for the neutron-neutron interaction. This potential
has, in even states, the following expression

volry,2) = <0, r <c,
=-Ao exp[-ao(r-c)], r>c,

where ¢ = 04 fm, 4o = 235414 MeV, oy =2.03435 fm~!. It fits the
singlet scattering length and effective range and reproduces, approxi-

(44)
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mately, the energy dependence of the 'Swave phase shift. We consider
two possibilitiesfor the odd-statecharacter : (a)amixed Serber potential,
in which the hard core is assumed to be state-independent but the
extra-core portion of the odd-state interaction is set to zero, and (b)
a pure Serber potential, in which the odd-state interaction is set iden-
ticaly zero.

In case (@), the two-body correlation factor is taken as
f(r) =0, r<c,
= 1-exp [-V(r—¢)], r>c, 45)

independent of parity state. The density-dependent variational para-
meter v is determined by minimization o ¢, o (41), with s put zero.
In case (b), the two-body correlation factor should obviously be unity
in odd states. Withf =1 in odd states and retaining the form (45) in
even states, the two-body correlation factor becomes state- (parity-)
dependent. However, Egs. (41), (43) were derived assuming a state-
-independent correlation factor. Some straightforward modifications
of them are required, to deal adequately with choice (b). For the parity-
-dependent correlation factor just prescribed, one needs only write uin
the form (37), with the even-state componetit u, computed trom the r
derivative of (45), and u; = Q Correspondingly, all u terms appearing
in (41), (43) are to be dropped, while f2v, is to be replaced by v, T u,.
Thef's that appear finaly refer to form (45), all odd-state potential
contributions being zero, as in case (). Again, the parameter v is
determined by minimizing the two-body energy contribution (still
called ¢;) at s=0.

Having chosen the potential and fixed the two-body correlations as
described, we find that for kr values up to k=3 fm™!, ie., densities
up to 0.91 neutrons per fm3, the minimum o &(s) of (41), as a function
o s, aways occurs at s=0. This result provides clear support for
the proposition that the ground state of neutron-star matter is anti-
ferromagnetic. Further, &(s) is found to increase monotonicaly with s.
The results obtained would not be significantly affected if we redeter-
mined v at each s > 0 by minimization of &, at that s. The optimal
value of v remains near 5 fm~! in all cases. In Figure 1, curves of
é(sy vs s for kp = 1, 2,and 3fm ™! are displayed, for odd-state choice (a).
The corresponding curvesfor potential choice (b) are smilar, but their
upward curvature is somewhat less. The magnetic susceptibility is
found to bepositive (asexpected), with(/xr) ~* increasing monotonically

185



as the density increases. There is no hint of a lerromagnetic instability
of the material.

Plots of (x/xr)~' vs kr for odd-state potential choices (a) and (b) are
shown in Figure 2. Included for comparison are the results of magnetic
susceptibility calculations of Clark,'® (stgaard.® and Pfarr.?! Their
results seem to begeneraly in line with those of the present investigation.
Clark, using Brueckner theory to evaluate ¢2¢(s)/s? |~ for the realistic
Reid soft-core potential, finds no sign of a ferromagnetically favorable
instability at densities below 5 x 10'* g/cm®. (stgaard, also using
Brueckner theory, but for the semi-redlistic potential of Moszkowski
and Scott, obtains essentially the same results as those of Clark at
low densities. However, at high densities the quantity (y/yz) " " rapidly
decreases and passes through zero at kr=4.1 fm™*, indicating the
onset of a ferromagnetic instability at th¢ corresponding density.
Pfarr, employing a unitary transformation method?* to define the
effective-potential matrix elements, has calculated the magnetic sus-
ceptibility of neutron matter for thc Gammel-Christian-Thaler potential
and the Eikemeier potential. Contrary to Dstgaard’s result, Pfarr
detects no evidence for a ferromagnetic instability, up to kr = 4 fm ™.
@stgaard’s deviant finding is due to his incorzect use of unity for the
effective mass and to the complete neglect of odd-state interactions.

Pearson and Saunier®® have calculated the spin-polarization energy for
neutron matter using their effective interaction potential and a first-
-order perturbation method. Their results show that the energy per
particle increases monotonically with the polarization for densities
up to kp = 1.8 fm™*, the highest Fermi wave number considcred. Thus,
they also found ferromagnetism to be energetically unfavorable in
neutron inatter.

The most refined calculation of neutron-matler susceptibility is pro-
bably that of Bickman, Killman. and Sjoberg?*, who carried out a
microscopic evaluation of the Landau Fermi-liquid parameters, using
Brueckner theory. Their results are in agreement with ours and also
with those of Clark and Pfarr.

6. Concluson

Our arguments and supporting calculations have provided a strong
basisfor thecurrently held view that theground state of ncutron matter is
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antiferromagnetic in the density range of interest foi- neutron stars.
The absence of a ferromagnetic transition in neutron matter may be
traced to tlie extra-core component of the neutron-neutron potential.
which opposes thc onset of ferromagnetism. Aithough the repulsive
core of the potential acts to promote ferromagnetism, this effect is
dominant only at very high densities. For kr up to 3 fm™?!, correspon-
ding to densities up to about five times the equilibrium density ng
of ordinary, symmetric nuclear matter, it appears that the system is
still much too dilute to undergo a fcrromagnetic transition. At twice
ng, the antiferromagnetic state is energeticaly preferred over the
ferromagnetic state by of the order of a hundred MeV. There is really
not much point in calculating k; values beyond about 3 fm ™! because
of (i) inherent inadequacies of the two-body potential representation
of the neutron-neutron force, which become increasingly apparent,
(i) importance of three-body and other corrections to the cluster
method, and (iii) contamination of pure neutron matter by protons
and hypei-ons.
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