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Some aspects of the PCDC hypothesis are discussed and criticized in a framework
in which one considersa first order expansion in the parametersthat break SU(3) x SU(3)
chiral and dilational symmetries. It is shown that Eliezer’s and Dutt's mass formula?,
for the g, is valid for any dimension, d. It isaso shown that PCDC, in the case of two
poles, may have some difficulties if one makes some physical assumptions about the
order of magnitude of (f; - fx) and of the breaking symmetry term in the ap-meson-
meson coupling constant. An alternative assumption which retains the basic features
of PCDC is presented: the hypothesis of the dominance of the o particle in the process
which involve the scalar current uy. A mass formula for the o particle is obtained for
any value of d.

Discutem-se e criticam-se alguns aspectos da hipdtese de PCDC em um ponto de vista
gue considera expansdes, em 1.* ordem, nos pardmetros que quebram as simetrias,
SU(3) x SU(3) quiral, e dilatacional. Mostra-se que a formula de massa de Eliezer e
Dutt?, parao ¢, valeparaqual quer valor dadimensio,d. Mostra-se também que PCDC,
no caso de dois polos, pode apresentar algumas dificuldades se fazemos algumas hipo-
teses acerca da ordem de grandeza de (f; — fx) e do termo de quebra na constante de
acoplamento ap-meson-meson.  Apresenta-se uma hipdtese alternativa que mantern
as caracteristicasda hip6tesede PCDC. a saber. a dominancia da particula anos proces-
sos que envolvam a corrente escalar »,. Obtem-se, entdo, uma formula de massa, para
a particula a, em qualquer dimensdo, d.

1. Introduction

In this paper, we wish to make some comments on the PCDC hypo-
thesis. In our calculations, we follow the philosophy excellently expres-
sed in de Alwis article. In Sec. 2, we shall mention only some o the
important points of that paper, while giving close attention to some
d the generalizationsof the theory therein. In Sec. 3, this generalized
theory is applied to the specific case of PCDC. We consider the two
poles case, distinguishing two different situations: a) both poles are
due to Goldstone bosons; b) only oneis due to the Goldstone boson.
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We obtain, in case @), a unacceptable result, namely, d = 4, if we assume
(fe—f)~ 0, m and Fryy - Figy ™~ O(4,¢€), 2 and e being breaking
parameters. In case b), one does not have the above difficulty but,
nevertheless, it is necessary to introduce, when d # 2, an explicit
breaking term in the og-meson-meson coupling. Finally, in Sec. 4,
we present an alternative physical assumption which retains some o
the good aspects of PCDC and, at the same time, gives rise to some
improvements over PCDC. The assumption we make is the one of
dorninance of the dilaton o in the processes which involve the scalar
current u,, while ug couples with o without exclusiveness. We expect
that there exist other intermediate states that«couple with this current.
We assume that their contribution is SU(3) parametrizable. For d =2
our hypothesis can be identified with case b), of Sec. 3, when assum-
ing the existence of some effective field. Our results are, basically,
identical to those obtained when using PCDC.

2. Generalities

In this paper, we assume, for the Hamiltonian density, the expression
oo = B0 + 20 + Eoltg + Egllg, (2-1)

where 6, is invariant under SU(3) x SU(3) chira transformations and
dilations, as well .6 is a c-number, world scalar, invariant under
SU(3) x SU(3), but breaking dilational symmetry; itsdimension is zero.
The u; are scalar currents, world scalars, which break SU(3) x SU(3)
chiral and dilational symmetries. They belong to the (3 x 3")® (3* x 3)
representation of SU(3) x SU(3). It is assumed, for simplicity, that
they have the same, integral, dimension 1<d< 3

The Hamiltonian density (2-1) permits the realization o both
SU(3) x SU(3)chiral and dilational symmetriesin the Nambu-Goldstone
way with a simultaneous symmetry limit. As a conseguence, there
appears a particle, a o dilaton, i.e., a Goldstone boson, associated
with dilational symmetry.

Following Ref. 1, let us consider now the Ward identities:
— ik*Ty,{k, p) = Tk, p) -
—ifd*x ™ 5(xo) (0| [Do(x), 4,0)] | 7(p)> (2-2)
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and
—ig"Ty(k, p) = T(k, p) -
_ifd* &% 8(xo) {0][Ao(x), 8O)]|n(p)), (2-3)
where |
2,=x,8 (2-4)
is the dilational current and
Tl p) = _ i [d*x € (0] T(Z:0A0)| 7)), (25
Tk, p)=—i [d*X €% (0| T (B(x)A40) | n(p)), (2-6)
Tk, p)=—i{d* €% (0]|T(0(x)0"4.0)|nlp)y,  (2-7)
where 7 is the time-ordering operator..

In the evaluation of expressions (2-5)-(2-7), there appear matrix
elements such as

00, | o)), {nlp) Ou 7(9)),
(otk) | Au|m(p)y, (olk)| 2"4,(0) n(p)).

In Ref. 1, itisassumed that the pion poleand the polefrom one o furnish
important contributions, at low energies, to these matrix elements.
This suggests to make explicit those pole contributions. We thus have:

(0160)] o) =22 ik, ~ K2g,0), (-9)
2 _
(nlp) | 00) | m(@)) = P23 Y252 1 5,67
= 2m? F,(k?) — "—sz"_iz—’;’"‘— 342 FE(k?),(2-9)

(k) | A0) | 7(p)) = i[(k + D)y Frolg®) + (k—D)y Grolgd],  (2-10)
‘where

Gurld?) = ~ 152255 + 6N, @-11)
(ok) ] *4,(0) | n(p)) = f—% + Buola?)
= —(mZ - m2)Fr,(q*) - ¢* [* g%—‘(ii;‘ﬁr + GR(qz)J - (2-12)
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In thisway, quantities (2-5) - (2-7),basicingredientsof Egs. (2-2)- (2-3),
become calculable.

Next, a limiting procedure is applied to Eq. (2-2), according to the
following prescriptions:

— during the limiting process, the relation q=p - k aways holds;
— firgt, it is performed the limit g2 — O;
next, onetakes k — 0.

In this way, we obtain the relation
Jr =15 Fre + 04, ¢). (2-13)

In asimilar way, a limiting procedure is applied to Eq. (2-3),following
another set of prescriptions:

— during the limit process the relation q=p - k aways holds;
— one takes q — 0

— p is kept on the mass shell, what implies k? — p? = m2.
We obtain, in this way, the relation
SofoGonn —fot2F e = (d _2) m2 f, + O(12, Je, &2). (2-14)

By combining (2-13) and (2-14), the Kleinert-Weisz relation®,

foorn = m2 T (d-2m2 002, Ze, &), (2-15)
is obtained. During the calculation, one can see that

S~ O, F3(k*) ~ O(¢),
fa ~ 0(1)9 GR(qz) ~ O(A’ 8),
Goun ~ O, ¢), Folq®) ~ 0(),
m2  ~ 0@, e), 0.(k*) ~ O e),
m2  ~ O, ¢), Oreq ~ 0 ¢)
Table 1

Now, we shall consider the generalization of these results to the case
o two o poles. In the presence of two poles, we must distinguish two
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different situations: a) both particles are Goldstone bosons; b) one
is a Goldstone boson, but the other is not. Let us fix our attention
on the following particles:

a g0 SU(3) singlet - Goldstone boson,

a o, eighth component of an SU(3) octet, which may be a Goldstone
boson or not. To understand better this choice, we discuss briefly
the relation o possible dilatons with the properties of vacuum.

One of the ways o formulating Goldstone's Theorem?® is to assume
that:

There exigts a current ji(x), such that ¢%ji(x) = Q
0° = [ d3x j3(x) is the generator of some symmetry transformation;

the vacuum is not invariant under such symmetry transformation, i.e.,

/[0~ 4l |0y 0.
Then, the theorem asserts that ¢; is the field of some particle of zero
mass, the Goldstone boson.
In the case of dilational transformations, the current ji(x) is given by
Dux) = x,0ux),
and the generator of the transformation, @, is given by
D = { d*xD(x).

Then, in order to have ¢; as a Goldstone boson, we must have

(0 |[D, ¢+:]1|0) # Q In discussing PCDC, we shal take as an illus-
tration the smple model where we identify the fields of scalar mesons
with the scalar currents u;. We, then, have

We know that
[D, ;] = - i u; d.
Then, to have ¢; as a Goldstone boson, we must have
(0]u;]0) #0,

even when 0*2, =04 = 0.
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It is an accepted idea that (0 |uo (0) # 0 (this condition ensures,
for example, a Goldstone status for the pion). Then, o, will bea Golds-
tone particle.

However, (0 |ug | O), in the real world, is smaller than (0 |u, | 0) and,
its behaviour in the limit of the symmetry may be questionable. If
(0] |u8 | 0> remains different from zero in this limit, we must consider
0, as a Goldstone boson, but, otherwise, not.

Let us return to the discussion of the cases which may occur with
two dilatons. In case a), when both dilatons are Goldstone bosons,
we can repeat Table 1 for each of the dilatons. We show next that
this is really possible.

Theorder of magnitude of £, and m2 do not change when one introduces
a second Goldstone particle. Both f,, and f,, must be of order O(1),
because of the hypothesis that o, and og are Goldstone bosons (cf.
Goldstone's theorem). gooxr aNd goern, €8Ch of them, separately, must
be of order O(/, ). This can be seen by taking Eqg. (2-12) for ¢?> =0,
obtaining thus

fn Jeinn + 51ro'i(0) = (mczri - mi)Fndi(O)'

For simplicity, we assume PCAC redlized in an exact way. Thisimplies
that 0., =Q It is expected that F,,; is of order O(1). Then, as © and
0, are Goldstone bosons (m2 ~ O(4, 5 and m2; ~ O(, ), it follows

that goinn ~ O(4,€). As a consequence, we can aso conclude that

Onis I dlfferent from zero, is of order O(4, §. On the other hand, m2,
and m2« are both of order O(4, g) by the very hypotheﬂsthat they are
Goldstone bosons. In order to show that F5(k?) ~ O(4, ) and 0,(k%) ~
~ O(A, £), we must consider Eqg. (2-9) generdized for the case of two
poles

{n(p) | 0(0) | n(q))

. fa‘o mo‘o go'onn fa‘g mo‘s gdsnﬂ.’ 2
=T -ml, K- ey

2
— zm%Fl (kZ) kk fﬂ—o Goonn kk{as gasm: 3k2F12((k2)
As we have already determined the orders of magnitude of g,,.. and
Josnns WE CaN apply the same procedure that was developed i |n the case
o one Goldstone boson,obtaining the expected result, i.e., F5(k (4,E)
and 0,(k?) ~O(4, ).
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Finaly, as we have aready mentioned, it is assumed that F,,; ~ O(1).
In this case, analizing Eq. (2-12), generaized for two dilatons, and
using a srnoothness hypothesis, we get GX(g?) ~ O(Z, ).

Now, in case b), when og is not a Goldstone boson, we have:

Ja ~ 0(),

fﬂo ~ 0(1)7 fd'g ~ O(’L 8):
Yoonn ~ 0(/13 8): Jagnn ™~ 0(1)9
m2 ~ O}, e), .

m; ~ O ¢), my,  ~ O,
FR(k?) ~ 00, o

OGR ~ 0, ¢), 8GR~ 04 e),
Enao ~ O(I)a Fnas ~ 0(1),
Qn(kz) ~ O(’L 8)7 —

Orneso ~ 04,58, Ones  ~ O, ¢).
Table 2

It is easy to see why there appear differences between Tables 1 and 2.
Let us take

<0 ’ 0 | Gs> = _fca mgs'

By the virial theorem, we have 6 ~ O(1,€). Then, f,, mZ, ~ O(4, E).
But, by hypothesis, o5 is not a Goldstone particle. This means that
rrg8 ~ O(1). We can, then, conclude that f,, ~ O(4, &)

On the other hand, we have

2m72t =fa'o go'oTETE +f<‘1‘s go'gn'n + s

We have, however, accepted, in the beginning, the fact that m2 ~ O(/, €).
This imposesthe constraint that f,, g, ~ O(4, E). But we have shown
that f,, ~ O(4, £). Then, Qsenr ~ O(1).

Now, taking EQ. (2-12), for o,, we shall have the relation:

oo Goann — Crael@®) = (M2 — m2) E,(q?) + ¢* *GX(g?). (2-16)

In this last equation, 5,,,,8 is the regular part of the matrix element
(o5 ]0"A, | 7). It can, then, be assumed that its order of magnitude
is the same as the one o ¢"4,, which is O(4, €). Then, we shall have
O ~ O(4, €).
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On the other hand, analyzing Eq. (2-16), in the light of the smoothness
hypothesis, we expect to have ®G%(g?) ~ O(4, 5. But, &S fygsern and
and m2, are of order one, it followsimmediately, from Eq. (2-16), that
Frss ~ O(1). This completes our discusson of Table 1.

In general, we have to interpret the results of Tables 1 and 2 as upper
bounds to the quantities there exhibited. For example, in case @), it
may, as we shall see later, happen that F,, ~ O(4, )

In case a), as wdl in case b), the generalizations o Egs. (2-13) and
(2-14) are:
Joo Froo t fos Fros = fu + O(4, &) (2-17)
and
Sscoorn + fefosdaser = oo Meq Fran — foa Maq Fray
= (d-2)m2f, T 042, Ag &2). (2-18)

This can easlly be verified if we observe that in the Ward identities,
the terms which originate from dilaton poles, appear linearly. In
introducing a new dilaton (o, ), we have only to add a corresponding
term in Egs. (2-13) - (2-14), which themselves follow from the Ward
identities.

In case b), however, it can be seen from Table 2 that f;,F 7o, ~ O(4, B).
Eq. (2-17) takes, then, the form o Eq. (2-13).

Combining Egs. (2-13) and (2-18), we shall have

SelfooGoomn — mgo - '2)7”12:]
=f0'8[m§gF"08 _fngo'smt] + 0(12, ’18’ 82)- (2-19)

By using Eq. (2-16) and the results of Table 2, we obtain

misF nos ~ falognn ~ O(4, €). (2-20)

Sincef,, isO(J, £), then the right hand side of (2-19)will be 0(A2, 1, £2).
Thisin mind, we obtain the Kleinert-Weisz relation, Eq. (2-15), for a;:

fao JooMM = m¢2,0 + (d—2)m§4 (2-21)

In case @), it can be seen that it is impossible to obtain, the Kleinert-
Weisz relation, starting from Egs. (2-17)-(2-18).
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3. PCDC

We shall, here, make some considerations about the PCDC hypothesis
with thedilational current dominated by two poles. Weshall separately
analize cases @) and b) of last section.

Let us first consider case a), where o, and og are, both, Goldstone
bosons. We want to show that, if we assume

Jo—fe ~ O, €) (-1
and
Fnao - FKoo ~ 0(}'7 8): (3'2)
then PCDC will get in trouble (for case @)). First of all, we must show
that the hypothesismade in (3-1)- (3-2) are plausible ones. Condition
(3-1)is not obviousfor the case of vacuum broken by SU(3). We shall,
however, show that this condition is not incompatible with a broken
vacuum and, consequently, is compatible with the existence of the
o dilaton asa Goldstone boson. To show that thisis so, let usconsider
the expression
(@ 18] 0g) = — frgm3, (3-3)
By using the virial theorem, we can write
(0]0)as) =<0]48|05) * (4—d) O] eouo + esus | o5
— ~fog 1y (-9

From (3-4), one can see that, if m2, — O, then it must follow that
& — 0 and, simultaneoudly, ¢g — 0. This is so because the vacuum
has an 8"-component of the SU(3) octet, and the matrix element
(O |uo|osy can be different from zero.

Following standard calculations and using the PCAC hypothesis
(only for simplifying the calculations), we obtain:

2 (2 /i) — (\/2_+C)[\/g"1°+/18] .3‘5
Gelfi” /) = & o [ do— (2] O

where
A= (0 |u|0) (3-6)

and
C= 88/80. (3'7)
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As an illustration, let us consider the case where ¢ is not a Goldstone
boson. We can, then, perform the symmetry limit by letting, first,
¢g — 0 and, after (not simultaneously), ¢o — 0. The limit &g — 0
will imply that

c — 0, (3-8)
m?+t mi: — 0. (3-9)

In this limit, Eq. (3-5) turns into

. /20 + 2
(fxlfx)” = JE o —(1 /2)828

Yet, as oz is not a Goldstone boson, we expect the vacuum to be in-
variant under SU(3) and this meansthat ig = 0. In thisway, we obtain
the familiar result

Salfk = 1. (3-11)

The same procedure cannot, however, be applied to the case when
og is a Goldstone boson, just becairse o the simultaneous limit in
&0 and g, which we mentioned a while ago. The "simultaneous limit"
can be performed in a somewhat arbitrary fashion. The essential
point of it is that ¢ = eg/e, must not go to zero. ahis allows us to have
an SU(3) broken vacuum (with g 5 0) and, at the same time, to have

the equality f, = /.

A conclusion that we reach, from the above discussion, is that the
assumption that £, — fx ~ O(4, ) does not entail i3 = O; in other words,
such an assumption does not contradict the idea of two Goldstone
bosons.

On the other hand, the similarity between £, and fx in the real world and,

also, the search for maximum symmetry, motivated our acceptance
o (3-1) as a working hypothesis.

As to Eq. (3-2), we expect, using group theoretic argurnents, ta have

Foon = Hdo3s + O, &) (3-12)
and
Fox = A doaa + O, €), (3-13)

thus obtaining Eg. (3-2).
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It we now take EQ. (2-17)for pions and kaons, and subtract one from
the other, we obtain

fO‘nljFTm'n - FKan—| +fas|:F7ws - FKag—l =fn ‘fK + 0()% 8)-
Using Egs. (3-1)- (3-2), we conclude that

JosFras = Fxox) ~ O(4, €), (3-14)
and, therefore,
(Fres — Fran) ~ O(4, €). (315
From group theoretic arguments, we expect to have something like
Froe ~ dg33, Fxoy ~ dgaa. (3-16)
From Egs. (3-15)- (3-16), we conclude that
Frga ~ O(4, €), Fxgy ~ O, ¢). (3-17)

Once we know that, we can take Eqg. (2-18) for pions and kaons. Sub-
tracting one from the other, we get

falfocGoonn + fouGagnn] — fxlfoodookk + fosdexx]
“fo'omtzm[Fnao — Fxeol _fagmczrg [Froe — Fiagl
= (d-2) [fumz - fmg]. (3-18)
Using the results obtained so far, we can smplify Eq. (3-18) and write
JoolGoonn = Gookx] + fos [Gasnn — Goskx ]
= (d—2) (m2 — m) + O(A%, Je, €%). (3-19)
In this equation, the term with g,y May be of greater order in (4, .

This can be seen by considering Eq. (2-12) for ¢ and taking q? — O,
the following relation being obtained:

fn go'gn'ﬂ.' + a7'I.'a';q(0) (maR - mn) FTEG’R(O) (3-20)
If PCAC is exact, then 608,”,(0) =0 and, consequently,
Jownn ~ O(A%, A, €). (3-21)

In this case, EQ. (3-19) takes a simpler form.

Let us turn to the PCDC hypothesis. It can be summarized by the
equation

6” =" @ fﬂo mdo (rbao +f0's mas ¢ag (3'22)
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In this case we shall have
2m12t = fao gaomr + fag gasmra

2mi = foo Jokk T fos oK (3-23)
from which we can write
fo'o(goonn - gaoKK) + ‘fag(gosnn - go'SKK) = 2('"1% - mlz() (3'24)

By comparing Egs. (3-24) and (3-19), we conclude that d = 4, a result
which cannot be accepted. The discussion presented here cannot
be considered as raising a serious difficuity for the PCDC hypothesis
with thedilational current density dominated by two Goldstone bosons,
but it should be taken into account.

We discussnow PCDC for case b) of last Section, the casein which a4
is a Goldstone boson but gz is not. This situation was studied in
the paper of Eliezer and Dutt?. It is interesting to observe that, in
that paper, the authors were forced to assume d =1. This is due to
the fact they used the PCAC hypothesis realized in an exact way.
This is not, however, necessary, as we have already seen in the last
Section [see, e.g., EQ. (2-21), which is the same as the one derived by
Eliezer and Duitt].

Let us consider Eq. (2-21), assume PCDC [cf. Egs. (3-22) and (3-23)]
and make the reasonable assumption? that

GosMiMj = Jg dgij- (3-25)
We obtain
ma, = (1/3) @mg t m2) (4-d), (3-26)
which coincides with Eliezer's and Dutt's result, with an arbitrary
d, however.

We return, now, to the analysis of Eq. (2-21). The dilaton o, IS, by
hypothesis, an SU(3) singlet. This suggests that the simplest form
for the g,,mm; coupling, in terms of SU(3) parameters, will be

JooMiMj = Jo0ij (3-27)

This relation, however, isincompatible with Eq. (2-21)for d # 2. This
factforcesusto accept an explicit breaking term in the 6,M;M ; coupling.
Then, instead of (3-27), we must have

JooMiM;j = Jo0ij+ h dg;. (3-28)
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This hypothesis is accepted by Eliezer and Dutt. Let us first show
that (3-28) is a plausible hypothesis. In spite of the fact that SU(3)
is realized a la Wigner, it is still an explicitly broken symmetry. We
can, therefore, expect that the pure SU(3) parametrization will not
be directly applicable to the case of the coupling constant. Moreover,
as we are treating here the case where o3 is not a Goldstone boson,
we can take ¢g — O, keeping &, =const.. In this case, if h~ Oeg),
Eq. (3-28) will turn into (3-27). On the other hand, we know that foi-
this kind of limit, the octet of pseudoscalar mesons displays the same
mass. Eq. (2-21) becomes then compatible with (3-28), for any d.

Our objection to (3-28) is related to the order of magnitude o the
breaking term. We would like it to be of greater an order in (4, g),
our wish being motivated by the spurion mechanism o the breaking.

There is yet one more problem related to the difficulty in explaining,
physically, the mechanism o the dependence of the parameter hfcf.
Eq. (3-28)] on the dimension d. We, however, postpone the discussiori
o the problem to next Section, where we shall consider an aternativi:
physical hypothesis that retains the basic characteristics of PCDC,
leadsto anal ogous resultsand does not need the assumption of Eq. (3-28).

4. Dominance of the Dilaton o in Processesinvalving the Scalar Current
Up

We assume now that instead of two dilatons (¢, and o3), there is only
one, we call it o, which is relevant for the pole part (singular part)
of the matrix ements. The o dilaton may be a pure SU(3) singlet
or a mixture of an SU(3) singlet and the eighth component of an SU(3)
octet. Asadynamical hypothesis, we assume that u, acts only through
the dilaton o, in this region of energy. We also assume that ug couples
to o, but without exclusiveness. The matrix e ements which involve
ug Will, therefore, contain the pole terms and regular terms as well,
which we suppose SU(3) parametrizable. The same does not, however,
happen with the matrix elements which involve the current u, which
will contain only terms due to the o pole.

The parametrization of regular and connected matrix elements is
given by

[(M | | MpYRESJONN — B, @1
for i, j, k=1, ..., 8.
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To smplify the discussions that follow, we introduce a few linguistic
conventions. We shall speak of the dominant aspect of somefield when
this fidd acts, with exclusiveness, in some process. So, for PCDC,
the dominant aspect of o, is that it couples to «, so that the field ¢,,
can be directly related to u, through some convenient constant. In an
analogous way, we can speak about os.

When making the hypothesis o dominance, the dominant aspect of
the o dilaton is similar to that of the ¢, for the PCDC hypothesis.
All processes, in which the current u, participates, can be described by
the field of the o dilaton. The difference hereis that we cannot identify
uo with the fidd of o, because ¢, has more degrees o freedom than
uo, & consequence o its SU(3) transformation properties.

As to the ug current, this current is not, strictly speaking, dominated
by any field, which was the case in PCDC. ug can aso couple to the
c dilaton. We, besides, believe that there exist other intermediate
states that can couple to this current. We expect to meet, among them,
a second dilaton which is another independent linear combination of
the non physical g, and o5 constituents from which our physica o
dilaton is composed.

In writing the matrix elements, we include, in the f,g,.;m; term, the
contributions of o to the currents u, and ug. The part which is due
toother intermediat statesisdescribed by aregular term that isexpressed
by SU(3) parameters (cf., e.g., EQ. (4-1)]. For d =2, the dilaton is an
SU(3) singlet because o the Kleinert-Weisz relation, Eq. (2-21). In
this case, we can identify our model with the PCDG hypothesis in
which the second particle (not a Goldstone boson) is represented by
an effective fidd that describes all intermediate states that couple to
ug. Such an effective field will not be o the Coidstone type.

For d # 2, our model will not be so similar to PCDC, but the results
will still be the same. To show this, we consider Eq. (4-1). Proceeding
in the spirit of the dominance model, we obtain

2% = famn + (4=d) (14/3) &P, (4-2)

2m% = fogock — (4 =d) (1/2,/3) esp. (4-3)

These equations, together with the Kleinert-Weisz relation, (2-15),
written for pions and kaons, give

m2 = (1/3) @mg T m2) (4- d). (4-4)
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The numerical vaues for the mass of the o dilaton are:

717 MeV, for d=1,
m, = < 585 MeV, for d = 2,
414 MeV, for d=3

With the dominance hypothesis, the following widths are obtained:

for c = - 125 and fk/fx = 1,

[ 653 MeV, for d
I, = < 363 MeV, for d
' 135 MeV, for d

and, for c=- 129, fx/f. = 1.28,

® 427 MeV, for d=1,
I', = § 239 MeV, for d=2,
88 MeV, for d = 3.

Since, experimentaly, there is no observed resonance with masses
close to those predicted by our formula, Eq. (4-4) (experimentally,
one observes resonancesnear 1BeV), we prefer to interpret the o dilatoni
as an effective particle that describes an average interaction in the
energy region considered.

1,
2,
3

ki

It is interesting to observe that Le Guillou, Morel and Navelet* has
found, for the dilaton, the values

m, = 420 MeV, I', =380 MgV,

values which are consistent with the calculations of the model depen-
dent swave amplitudes, of =—= scattering, based on analyticity,
unitarity and crossing. The above values are dightly dependent on
the variation of the parameters involved. The phase shift does noi.
pass through 90° but over a nearby value.

We would, of course, be interested on the possibility of formulating
some different kind of PCDC, with two poles, which would avoid the:
necessity of introducing the explicit breaking in the coupling constant,
Eq. (3-28). This is, however, an impossible task. It is necessary, to
avoid Eq. (3-28), to propose some sort of PCDC, with two particles,
only one of then being a Goldstone boson. The first would bea mixture
of an SU(3) singlet and an eighth component of an SU(3) octet. The
existence of such a Goldstone boson would imply the existence of
another Goldstone boson, orthogonal to the first one, which, however,
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cannot be the second relevant particle in PCDC. We shall, therefore,
go to a theory with there particles.

Beforefinishing our paper, let usreturn to the problem raised in Sec. 3,
which concerns the physical meaning of the breaking term in the
ag.mim; coupling. In PCDC, we must admit, in order to have con-
sistency between (3-21) and (3-28), that h [see (3-28)] depends strongly
on d, with the condition h=0 for d = 2.

None o the fundamental physical properties of this model change
explicitly with the dimension d. The group-theoretic nature o o,
and of the vacuum stays the same, with some variation in d. In order
to explain the breaking mechanism in the coupling constants it will,
then, be necessary to imagine a rather involved mechanism.

In the dominance model, however, the properties of the dilaton depend
directly on the parameter d. Then, for d=2, we deduce, using the
Kleinert-Weiszrelation that o must beasinglet. Fromthesamerelation,
weobtain aninvariant coupling constant and so on, for other dimensions.

The author is indebted to Prof. A.H. Zimerman for suggesting the
theme of this work and for stimulating discussions.
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