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Some aspects of the PCDC hypothesis are discussed and criticized in a framework 
in which one considers a first order expansion in the parameters that break SU(3) x SU(3) 
chiral and dilational symmetries. It is shown that Eliezer's and Dutt's mass formula2, 
for the ao  is valid for any dimension, d. It is also shown that PCDC, in the case of two 
poles, may have some dificulties if one makes some physical assumptions about the 
order of magnitude of (Jn - fK) and of the breaking symmetry term in the ao-meson- 
meson coupling constant. An alternative assumption which retains the basic features 
of PCDC is presented: the hypothesis of the dominance of the o particle in the process 
which involve the scalar current uo. A mass formula for the o particle is obtained for 
any value of d. 

Discutem-se e criticam-se alguns aspectos da hipótese de PCDC em um ponto de vista 
que considera expansões, em 1." ordem, nos parâmetros que quebram as simetria!$, 
SU(3) x SU(3) quiral, e dilatacional. Mostra-se que a fórmula de massa de Eliezer e 
Duttz, para o o,, vale para qualquer valor da dimensão, d. Mostra-se também que PCDC:, 
no caso de dois polos, pode apresentar algumas dificuldades se fazemos algumas hipó- 
teses acerca da ordem de grandeza de Cf, - fK) e do termo de quebra na constante de 
acoplamento ao-meson-meson. Apresenta-se uma hipótese alternativa que mantern 
as características da hipótese de PCDC. a saber. a dominância da partícula a nos proces- 
sos que envolvam a corrente escalar uo. Obtem-se, então, uma fórmula de massa, para 
a partícula a, em qualquer dimensão, d. 

1. Introduction 

In this paper, we wish to make some comments on the PCDC hypo- 
thesis. In our calculations, we follow the philosophy excellently expres- 
sed in de Alwis' article'. In Sec. 2, we shall mention only some of the 
important points of that paper, while giving close attention to some 
of the generalizations of the theory therein. In Sec. 3, this generalized 
theory is applied to the specific case of PCDC. We consider the two 
poles case, distinguishing two different situations: a) both poles are 
due to Goldstone bosons; b) only one is due to the Goldstone boson. 
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We obtain, in case a), a unacceptable result, namely, d = 4, if we assume 
V;I - fK) O(Â, E) and F,,, - FK,, O@, e), 1 and e being breaking 
parameters. h case b), one does not have the above difficulty but, 
nevertheless, it is necessary to introduce, when d # 2, an explicit 
breaking term in the os-meson-meson coupling. Finally, in Sec. 4, 
we present an alternative physical assumption which retains some of 
the good aspects of PCDC and, at the same time, gives rise to some 
improvements over PCDC. The assumption we make is the one of 
dorninance of the dilaton c in the processes which involve the scalar 
current uo, while u8 couples with o without exclusiveness. We expect 
that there exist other intermediate states thatacouple with this current. 
We assume that their contribution is SU(3) parametrizable. For d = 2. 
our hypothesis can be identified with case b), of Sec. 3, when assum- 
ing the existence of some effective field. Our results are, basically, 
identical to those obtained when using PCDC. 

2. Generalities 

In this paper, we assume, for the Hamiltonian density, the expression 

ooo = 800 + 3'6 + eouo + E ~ U * ,  (2-1) 

where is invariant under SU(3) x SU(3) chiral transformations and 
dilations, as we11.6 is a c-number, world scalar, invariant under 
SU(3) x SU(3), but breaking dilational symmetry; its dimension is zero. 
The ui are scalar currents, world scalars, which break SLí(3) x SU(3) 
chiral and dilational symmetries. They belong to the (3  x 3") 0 (3" x 3) 
representation of SU(3) x SU(3). It is assumed, for simplicity, that 
they have the same, integral, dimension 1 I d < 3. 

The Hamiltonian density (2-1) permits the realization of both 
SU(3) x SU(3) chiral and dilational symmetries in the Nambu-Goldstone 
way with a simultaneous symmetry limit. As a consequence, there 
appears a particle, a o dilaton, i.e., a Goldstone boson, associated 
with dilational symmetry. 

Following Ref. 1, let us consider now the Ward identities: 



and 

- i@T,(k, p) = W ,  P)  - 

- i .f d4x eiqx &XO)  ( O  1 [A&), Q(0)I 1 di~)), 
where 

9, = X v  e; 
is the dilational current and 

T',,(k, p) = - i 1 d4x eikx ( O  I F ( ~ A ( x ) A , ( O ) )  I n(P)), 

T,(k, p) = - i j d4x e'"" ( O  I 9(0(x)A,(O))  1 n(p)), 

T(k ,  p) = - i r d4x eikx ( O  I F(8(x)dpA,(0))  I ~ ( p ) ) ,  

where F is the time-ordering operator.' 

In the evaluation of expressions (2-5) - (2-7), there appear matrix 
elements such as 

( 0  I '%v 1 o(k) ) ,  ( 4 P )  I 0," I x(q)),  

( 4  1 ,  1 0 ,  ( d k )  I dMA,(0) I Z ( P ) ) .  

In Ref. 1, it is assumed that the pion pole and the pole from one o furnish 
important contributions, at low energies, to these matrix elements. 
This suggests to make explicit those pole contributions. We thus have: 



In this way, quantities (2-5) - (2-7), basic ingredients of Eqs. (2-2) - (2-3), 
become calculable. 

Next, a limiting procedure is applied to Eq. (2-2), according to the 
following prescriptions : 

- during the limiting process, the relation q = p - k always holds; 

- first, it is performed the limit q2 -+ 0; 

next, one takes k -4 O. 

In this way, we obtain the relation 

fn = f u  F n u  + O(& 4. (2- 1 3) 

In a similar way, a limiting procedure is applied to Eq. (2-3), following 
another set of prescriptions : 

- during the limit process the relation q = p - k always holds; 
- one takes q -+ O; 
- p is kept on the mass shell, what implies k2 -+ p2 = m:. 

We obtain, in this way, the relation 

fXfbgunn -fUm% = (d - 2) mRfn + W 2 ,  L&, E ~ ) .  (2- 1 4) 

By combining (2-13) and (2-14), the Kleinert-Weisz relation5, 

fõgunn = m26 + (d - 2)m; + 0(Â2, ÂE,  E'), (2- 15) 

is obtained. During the calculation, one can see that 

Table 1. 

Now, we shall consider the generalization of these results to the case 
of two o poles. In the presence of two poles, we must distinguish two 



different situations: a) both particles are Goldstone bosons; b) one 
is a Goldstone boson, but the other is not. Let us fix our attention 
on the following particles: 
a o,, SU(3) singlet - Goldstone boson, 
a os, eighth component of an SU(3) octet, which may be a Goldstone 
boson or not. To understand better this choice, we discuss briefly 
the relation of possible dilatons with the properties of vacuum. 

One of the ways of formulating Goldstone's Theorem3 is to assume 
that : 

There exists a current jE(x), such that dMjE(x) = O; 

Qa = { d3x j ~ ( x )  is the generator of some symmetry transformation; 

the vacuum is not invariant under such symmetry transformation, i.e., 
(0 I CQa, 4iI I 0) f 0. 

Then, the theorem asserts that 4i is the field of some particle of zero 
mass, the Goldstone boson. 

In the case of dilational transformations, the current jg(x) is given by 

%(x) = xYe;(x), 

and the generator of the transformation, Qa, is given by 

Then, in order to have oi as a Goldstone boson, we must have 
(O I [D, 10) # O. In discussing PCDC, we shall take as an illus- 
tration the simple model where we identify the fields of scalar mesons 
with the scalar currents ui. We, then, have 

We know that 

[D, ui] = - i ui d. 

Then, to have oi as a Goldstone boson, we must have 

(O I ui 1 O) f 0, 

even when 3 9 ,  = O ;  = 0. 



It is an accepted idea that (O I uo ( O )  # O (this condition ensures, 
for example, a Goldstone status for the pion). Then, ao will be a Golds- 
tone particle. 

However, (O ( U ,  1 O), in the real world, is smaller than (O I uo 10) and, 
its behaviour in the limit of the symmetry may be questionable. If 
(O / u8 10) remains different from zero in this limit, we must consider 
o, as a Goldstone boson, but, otherwise, not. 

Let us return to the discussion of the cases which may occur with 
two dilatons. In case a), when both dilatons are Goldstone bosons, 
we can repeat Table 1 for each of the dilatons. We show next that 
this is really possible. 

The order of magnitude of,f, and mi do not change when one introduces 
a second Goldstone particle. Both fao and f,, must be of order 0(1), 
because of the hypothesis that ò, and are Goldstone bosons (cf. 
Goldstone's theorem). g,,,, and g,,,,, each of them, separately, must 
be of order 0(Â, E). This can be seen by taking Eq. (2-12) for q2 = 0, 
obtaining thus 

For simplicity, we assume PCAC realized in an exact way. This implies 
that dZoi = O. It is expected that FZui is of order O(1). Then, as n and 
o, are Goldstone bosons (m: - O(A, E) and m2,i - 0(L, E)), it follows 
that gUi,, - O@,&). As a consequence, we can also conclude that 

if different from zero, is of order 0(Â, E). On the other hand, m,20 
and rn;, are both of order O(?,, E) by the very hypothesis that lhey are 
Goldstone bosons. In order to show that Ff(k2) - O(A, E) and 0,(k2) - - O(A, E), we must consider Eq. (2-9) generalized for the case of,two 
poles : 

As we have already determined the orders of magnitude of g,,,, and 
ga8,,, we can apply the same procedure that was developed in the case 
of oneGoldstone boson, obtaining the expected result,i.e., Ff(k2) - O(),, E) 
and 0,(k2) - 0(Â, E). 



Finally, as we have already mentioned, it is assumed that FnOi - O(1). 
In this case, analizing Eq. (2-12), generalized for two dilatons, and 
using a srnoothness hypothesis, we get G ~ ( ~ ~ )  - O(?&, E) .  

Now, in case b), when os is not a Goldstone boson, we have: 

Table 2. 

It is easy to see why there appear differences between Tables 1 and 2. 
Let us talte 

(O I 1 = -f08 mz8' 
By the viria1 theorem, we have O - O(),, E). Then, f,, mz, - O@, E). 
But, by hypothesis, g8 is not a Goldstone particle. This means that 
m2 - O(1). We can, then, conclude that fua - O@, E). os 

On the other hand, we have 

2mH =fo0 g,,,, +fu, g,,zz + . . . 
We have, however, accepted, in the beginning, the fact that rnn - O(Â, E). 
This imposes the constraint that f,, g,,,, - 0(A, E). But we have shown 
that f,, - O(Â, E). Then, g ,,,, - O(1). 

Now, taking Eq. (2-12), for o,, we shall have the relation: 
- 

f z  &azz - a = ~ , ( q ~ )  = (m", - d )  K,,(q2) + q2 8GR(q2). (2- 1 6) 
- 

In this last equation, a,,, is the regular part of the matrix element 
(6s I dlrAp 1 71). It can, then, be assumed that its order of magnitude 
& the same as the one of ôpAp, which is 0(A, e). Then, we shall have 
dz,, - O@, 4. 



On the other hand, analyzing Eq. (2-16), in the light of the smoothness 
hypothesis, we expect to have 8GR(q2) ff O(Â, E). But, as fngusnn and 
and m& are of order one, it follows immediately, from Eq. (2-16), that 
F,,, - O(1). This completes our discussion of Table 1. 

In general, we have to interpret the results of Tables 1 and 2 as upper 
bounds to the quantities there exhibited. For example, in case a), it 
may, as we shall see later, happen that F,,, - 0(Â, E). 

In case a), as well in case b), the generalizations of Eqs. (2-13) and 
(2-14) are: 

fao FnaO +fo8 F n a g  =fn + O(A 6) (2- 17) 

and 
2 

fdaogaonn + fdasgasnn -foo mõo F n a o  -fos m&, Fria, 

= (d - 2)m: f, + 0(Â2, ÂE, E ~ ) .  (2- 18) 

This can easily be verified if we observe that in the Ward identities, 
the terms which originate from dilaton poles, appear linearly. In 
introducing a new dilaton (o,), we have only to add a corresponding 
term in Eqs. (2-13) - (2-14), which themselves follow from the Ward 
identities. 

In case b), however, it can be seen from Table 2 that f,,F,,, - O(2, E). 

Eq. (2-17) takes, then, the form of Eq. (2-13). 

Combining Eqs. (2- 13) and (2- 18), we shall have 

fnkJaonn - m& - (d-2)m;l 

=fo8[m~/Tu8 -fngagnn] + E ~ ) -  (2- 19) 

By using Eq. (2-16) and the results of Table 2, we obtain 

m",Fnu8 -fngasnn O(Â7 6). (2-20) 

Since f,, is 0(Â, E), then the right hand side of (2-19) will be 0(Â2, 34 c2). 
This in mind, we obtain the Kleinert-Weisz relation, Eq. (2-15), for ao: 

In case a), it can be seen that it is impossible to obtain, the Kleinert- 
Weisz relation, starting from Eqs. (2-17)-(2-18). 



3. PCDC 

We shall, here, make some considerations about the PCDC hypothesis 
with the dilational current dominated by two poles. We shall separately 
analize cases a) and b) of last section. 

Let us first consider case a), where ao and as are, both, Goldstone 
bosons. We want to show that, if we assume 

fn - f ~  O@, 4 (3-1) 

and 

then PCDC will get in trouble (for case a)). First of all, we must show 
that the hypothesis made in (3-1) - (3-2) are plausible ones. Condition 
(3-1) is not obvious for the case of vacuum broken by SU(3). We shall, 
however, show that this condition is not incompatible with a broken 
vacuum and, consequently, is compatible with the existence of the 
õs dilaton as a Goldstone boson. To show that this is so, let us consider 
the expression 

2 (O 1 0 1 a s )  = - f a s  mas. (3-3) 

By using the viria1 theorem, we can write 

(O 10 1 ó s )  = (O 146 1 ~ s )  + (4-4 (O I couo + w s  1 õ s )  
2 

= - fas  mo*. (3-4) 

From (3-4), one can see that, if rnz, -+ 0, then it must follow that 
EO -+ O and, simultaneously, ES -+ O. This is so because the vacuum 
has an Sth-component of the SU(3) octet, and the matrix element 
(O I uo ( as) can be different from zero. 

Following standard calculations and using the PCAC hypothesis 
(only for simplifying the calculations), we obtain: 

where 

ai = (O I Ui 1 O) 

and 
C = 



As an illustration, let us consider the case where a, is not a Goldstone 
boson. We can, then, perform the symmetry limit by letting, first, 
e ,  -+ O and, after (not simultaneousIy), r. -+ O. The limit c, -+ O 
will imply that 

c -+ o, 

m: + mK -+ O. 

In this limit, Eq. (3-5) turns into 

Yet, as a, is not a Goldstone boson, we expect the vacuum to be in- 
variant under SU(3) and this means that )L8 = O. h this way, we obtain 
the familiar result 

fZ,!AK = 1 i. (3-1 1) 

The same procedure cannot, however, be applied to the case when 
ú8 is a Goldstone boson, just becairse of the simultaneous limit in 
E,, and c,, which we mentioned a while ago. The "simultaneous limit" 
can be performed in a somewhat arbitrary fashion. The essential 
point of it is that c = E ~ / E ~  must not go to zero. ãhis al!ows us to have 
an SU(3) broken vacuum (with ?v8 # 0) and, at the same time, to have 
the equality f, = fK. 

A conclusion that we reach, from the above discussion, is that the 
assumption thatf, - f, - O(Â, E )  does not entail i, = O ;  in other words, 
such an assumption does not contradict the idea of two Goldstone 
bosons. 

On the other hand, the similarity between f, and jK in the real world and, 
also, the search for maximum symmetry, moeivated our acceptance 
of (3-1) as a working hypothesis. 

As to Eq. (3-2), we expect, using group theoretic argurnents, ta have 

and 

thus obtaining Eq. (3-2). 



It we now take Eq. (2-17) for pions and kaons, and subtract one from 
the other, we obtain 

fuo[Fnu0 - F ~ o o ]  +fU8[FZU8 - FKU~] =fX - f ~  + 0(A 8). 

Using Eqs. (3-1) - (3-2), we conclude that 

fU8(F7CU8 - F ~ u s )  o(Â-, E), (3-14) 

and, therefore, 

(FRus - F K ~ J  O(A E). (3- 15) 

From group theoretic arguments, we expect to have something like 

Fnu8 d833, FKU, d844. (3-16) 

From Eqs. (3-15) - (3-16), we conclude that 

FnU8 - o(Â, E), F K ~ ~  0 ( 4  E). (3- 1 7) 

Once we know that, we can take Eq. (2-18) for pions and kaons. Sub- 
tracting one from the other, we get 

Using the results obtained so far, we can simplify Eq. (3-18) and write 

In this equation, the term with g u s ~ ~  may be of greater order in (A, E). 

This can be sem by considering Eq. (2-12) for o8 and taking q2 -, 0, 
the following relation being obtained : 

.- 

- f n  C7usnn + anu8(0) = - (m?, - m2,) Fn,,(O). 
.- 

(3-20) 

If PCAC is exact, then aU8,,(0) = 0 and, consequently, 

gosnn O(A2, ÂE, c2). (3-21) 

In this case, Eq. (3-19) takes a simpler form. 

Let us turn to the PCDC hypothesis. It can be summarized by the 
equation 



In this case we shall have 

from which we can write 

By comparing Eqs. (3-24) and (3-19), we conclude that d = 4, a result 
which cannot be accepted. The discussion presented here cannot 
be considered as raising a serious difficulty for the PCDC hypothesis 
with the dilational current density dominated by two Goldstone bosons, 
but it should be taken into account. 

We discuss now PCDC for case b) of last Section, the case in which o. 
is a Goldstone boson but o8 is not. This situation was studied in 
the paper of Eliezer and Dutt2. It is interesting to observe that, in 
that paper, the authors were forced to assume d = 1. This is due to 
the fact they used the PCAC hypothesis realized in an exact way. 
This is not, however, necessary, as we have already seen in the last 
Section [see, e.g., Eq. (2-21), which is the same as the one derived by 
Eliezer and Dutt]. 

Let us consider Eq. (2-21), assume PCDC [cf. Eqs. (3-22) and (3-23)] 
and make the reasonabk assumption2 that 

g a s ~ i ~ j  = g8 d8ij. (3-25) 

We obtain 

mbo = (113) (2mK + mi) (4 - d), (3-26) 

which coincides with Eliezer's and Dutt's result, with an arbitrary 
d, however. 

We return, now, to the analysis of Eq. (2-21). The dilaton o, is, by 
hypothesis, an SU(3) singlet. This suggests that the simplest form 
for the ~ u , M , M ,  coupling, in terms of ~ ( 3 )  parameters, will be 

This relation, however, is incompatible with Eq. (2-21) for d # 2. This 
fact forces us to accept an explicit breaking term in the ooMiMj coupling. 
Then, instead of (3-27), we must have 



This hypothesis is accepted by Eliezer and Dutt. Let us first shour 
that (3-28) is a plausible hypothesis. In spite of the fact that SU(3) 
is realized a lu Wigner, it is still an explicitly broken symmetry. WÉ: 
can, therefore, expect that the pure SU(3) parametrization will not 
be directly applicable to the case of the coupling constant. Moreover, 
as we are treating here the case where ã8 is not a Goldstone boson, 
we can take -, 0, keeping = const.. In this case, if h - O(&& 
Eq. (3-28) will turn into (3-27). On the other hand, we know that foi- 
this kind of limit, the octet of pseudoscalar mesons displays the same 
mass. Eq. (2-21) becomes then compatible with (3-28), for any d. 

Our objection to (3-28) is related to the order of magnitude of the 
breaking term. We would like it to be of greater an order in (A, E),  

our wish being motivated by the spurion mechanism of the breaking. 

There is yet one more problem related to the difficulty in explaining, 
physically, the mechanism of the dependence of the parameter h[cf: 
Eq. (3-28)] on the dimension d. We, however, postpone the discussiori 
of the problem to next Section, where we shall consider an alternativí: 
physical hypothesis that retains the basic characteristics of PCDC, 
leads to analogous results and does not need the assumption of Eq. (3-28). 

4. Dorninance of the Dilaton o in Processes Involving the Scalar Current 
u o 

We assume now that instead of two dilatons (oo and os), there is only 
one, we cal1 it o, which is relevant for the pole part (singular part) 
of the matrix elements. The o dilaton may be a pure SU(3) singlet 
or a mixture of an SU(3) singlet and the eighth component of an SU(3) 
octet. As a dynamical hypothesis, we assume that uo acts only through 
the dilaton o, in this region of energy. We also assume that u8 couples 
to o, but without exclusiveness. The matrix elements which involve 
u8 will, therefore, contain the pole terms and regular terms as well, 
which we suppose SU(3) parametrizable. The same does not, however, 
happen with the matrix elements which involve the current uo which 
will contain only terms due to the o pole. 

The parametrization of regular and connected matrix elements is 
given by 

[(Mk I ~i I Mj)REG]CONN = P dijk, (4- 1) 

for i , j ,  k = l ,  . . . ,  8. 



To simplify the discussions that follow, we introduce a few linguistic 
conventions. We shall speak of the dominafzt aspect of some field when 
this field acts, with exclusiveness, in some process. So, for PCDC, 
the dominant aspect of c,, is that it couples to uo so that the field d,, 
can be directly related to uo thuough some convenient constant. In an 
analogous way, we can speak about 08. 

When making the hypothesis of dominance, the dominant aspect of 
the o dilaton is similar to that of the o. for the PCDC hypothesis. 
A11 processes, in which the current uo participates, can be described by 
the field of the o dilaton. The difference here is that we cannot identify 
uo with the field of o, because 4 ,  has more degrees of freedom than 
uo, a consequence of its SU(3)  transformation properties. 

As to the u8 current, this current is not, strictly speaking, dominated 
by any field, which was the case in PCDC. u8 can also couple to the 
G dilaton. We, besides, believe that there exist other intermediate 
states that can couple to this current. We expect to meet, among them, 
a second dilaton which is another independent linear combination of 
the non physical o, and os constituents from which our physical o 
dilaton is composed. 

In writing the matrix elements, we include, in the fogaMiMJ term, the 
contributions of o to the currents uo and ug, The part which is due 
to other intermediat states is described by a regular term that is expressed 
by SU(3) parameters (cf., e.g., Eq. (4-I)]. For d = 2, the dilaton is an 
SU(3) singlet because of the Kleinert-Weisz relation, Eq. (2-21). In 
this case, we can identify our model with the PCDG hypothesis in 
which the second particle (not a Goldstone boson) is represented by 
an effective field that describes a11 intermediate states that couple to 
u8. Such an effective field will not be of the Coidstone type. 

For d # 2, our model will not be so similar to PCDC, but the results 
will still be the same. To show this, we consider Eq. (4-1). Proceeding 
in the spirit of the dorninance model, we obtain 

These equations, together with the Kleinert-Weisz relation, (2-15), 
written for pions and kaons, give 

m; = (1/3) (2mi + m:) (4 - d).  (4-4) 



The numerical values for the mass of the o dilaton are: 

717 MeV, for d = 1, 
585 MeV, for d = 2, 
414 MeV, for d = 3. 

With the dominance hypothesis, the following widths are obtained : 

for c = -- 1.25 and f~ , l  fn = 1, 

653 MeV, 

135 MeV, 

and, for c = - 1.29, fK/fn = 1.28, 

i 427 MeV, 
r, = 239 MeV, 

88 MeV, 

for d = 1, 
for d = 2, 
for d = 3 ;  

for d = 1, 
for d = 2, 
for d = 3. 

Since, experimentally, there is no observed resonance with masses 
close to those predicted by our formula, Eq. (4-4) (experimentally, 
one observes resonances near lBeV), we prefer to interpret the o dilatoni 
as an effective particle that describes an average interaction in the 
energy region considered. 

It is interesting to observe that Le Guillou, More1 and Navelet4 has 
found, for the dilaton, the values 

m, = 420 MeV, r, = 380 MeV, 

values which are consistent with the calculations of the model depen- 
dent s-wave amplitudes, of z - z  scattering, based on analyticity, 
unitarity and crossing. The above values are slightly dependent on 
the variation of the parameters involved. The phase shift does noi. 
pass through 90" but over a nearby value. 

We would, of course, be interested on the possibility of formulating 
some different kind of PCDC, with two poles, which would avoid the: 
necessity of introducing the explicit breaking in the coupling constant, 
Eq. (3-28). This is, however, an impossible task. It is necessary, to 
avoid Eq. (3-28), to propose some sort of PCDC, with two particles, 
only one of then being a Goldstone boson. The first would be a mixture 
of an SU(3) singlet and an eighth component of an SU(3) octet. The 
existence of such a Goldstone boson would imply the existence of' 
another Goldstone boson, orthogonal to the first one, which, however, 



cannot be the seccmd relevant particle in PCDC. We shall, therefore, 
go to a theory wi~h there particles. 

Before finishing our paper, let us return to the problem raised in Sec. 3, 
which concerns the physical meaning of the breaking term in the 
õ o ~ i ~ j  coupling. In PCDC, we must admit, in order to have con- 
sistency between (3-21) and (3-28), that h [see (3-28)] depends strongly 
on d, with the condition h = O for d = 2. 

None of the fundamental physical properties of this model change 
explicitly with the dimension d. The group-theoretic nature of o0 

and of the vacuum stays the same, with some variation in d. In order 
to explain the breaking mechanism in the coupling constants it will, 
then, be necessary to imagine a rather involved mechanism. 

In the dominance model, however, the properties of the dilaton depend 
directly on the parameter d. Then, for d = 2, we deduce, using the 
Kleinert-Weisz relation that o must be a singlet. From the same relation, 
we obtain an invariant coupling constant and so on, for other dimensions. 

The author is indebted to Prof. A.H. Zimerman for suggesting the 
theme of this work and for stimulating discussions. 
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