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By considering as an example, the case of the conformal algebra and some of its subal- 
gebras, we demonstrate how the problem of calculating the structural parameters of 
semi-simple Lie algebras can be reduced to a set of computational prescriptions, which 
can readily be programmed. The irnportance of such computational prescriptions in 
the analysis of the structure of larger Lie algebras like the quaternionic Lie algebras is 
then pointed out. 

Demonstra-se como o problema de calcular os parâmetros estruturais das álgebras 
de Lie semi-simples pode ser reduzido a um conjunto de prescrições computacionais, 
fácilmente programáveis, considerando, como um exemplo, a álgebra conforme e al- 
gumas de suas sub-álgebras. A importância de tais prescrições na análise da estrutura 
de álgebras de Lie maiores, como as álgebras de Lie quaterniônicas, é também ressaltada. 

1. Introduction 

The important part which group theoretical arguments can play in 
the study of physical problems is well known, especially in such areas 
as high energy physics and elementary particles. By exploiting the 
structural properties and representations of Lie groups and Lie alge- 
bras, one can arrive at very important physical conclusions. Thus one 
is often required in the study of these physical problems, to analyse 
first the structure of the underlying Lie algebra. 

Now although the general procedure to be followed in the analysis of 
the structure of Lie algebras is well known and is in fact available in 
severa1 places (1-7), one still has that each algebra has to be analysed 
as a separate problem. For the larger algebras, the analysis can become 
involved and one may need to use a computer. This is possible if one 
re-states the conventional algebraic theorems (2, 3, 8), which form 
the basis for these structural analysis, in the form of readily program- 
mable ad hoc prescriptions. The prescriptions can then be applied 
to the analysis of any Lie algebra. We illustrate this point by consi- 
dering the case of the conformal algebra so(4,2). 



The technique is to exploit various theorems (see the Appendix) on the 
Killing forms of a Lie algebra, and to characterize a given Lie algebra 
by means of a set of parameters whose values provide, at a glance, 
information about the algebraic structure and Iwasawa-type decom- 
positions of the given algebra and its associated analytic group. 

2. Killing Forms of so(4, 2) 

Consider the commutation relations of the general pseudo-orthogonal 
group SO(n-s, s) with generators Zij satisfying 

[Zij, Zkl] = gjkZil - gikZjl + gilzjk - gjlZik ( I )  
and Zij = - Zji. 

We specialize to the case of SO(4, 2) by putting 

g.. = gi &. 
V 1J 

Choosing our generators as: 

We can write down the usual set of commutation relations and structure 
constants defined generally by 

[Xi, Xj] = CijkXk. (3) 

If we use the notation: 

Cij = + k, O for [X,, Xj] = + Xk, 

we can display these commutation relations and structure constants 
as elements of a 15 x 15 skew-symmetric matrix C shown in Table I. 
The corresponding 15 x 15 adjoint matrices for the generators, can 
be read off from this table. The adjoint matrix Adx, for a generator 
Xi is defined by 

(AdxJjk = - Cijk ; j, k = 1, 2, . . . , n, 

where n = 15 for SO(4, 2) and Cijk are the structure constants. 



From these adjoint matrices one deduces the values of the Killing 
forms on the generators of SO(4, 2). The defining relation is: 

B(Xi, Xj) = trace (Adxi Adxj). 

Table 1 - Matrix C 

We obtain the following results for the case of so(4, 2): 

B(Xi, X j ) =  - 8 aij for i , j =  1, 2, 3, 6, 7, 10, 15 
= + 8 aij for i, j =  4, 5, 8, 9, 11, 12, 13, 14 (4) 

These results are in fact a special case of the general result for so(n - s, s), 
namely : 

Now, according to theorem 2 of the Appendix which we now state as 
a prescription, we have that the generators of so(4, 2) can be separated 
into the two sets: 

where the elements of P are non-compact while the elements of L, 
generate the maximal compact subalgebra of so(4, 2). 

Writing down separate commutation relations for the elements of LK, 
one verifies that they close a Lie algebra which is isomorphic to the 
Lie algebra of SO(4) 0 SO(2). 



We find: 

where so(3)+ has the elements 

x: = +(X, + X,) 
x; = + ( X ,  - X,) 
x,' = S(X1 + X10) 

while so(3)- has the elements 

Usually one introduces hermitian infinitesimal generators J 1  of so(3) 
by defining Z j k  = i  cjklJ1 giving familiar commutation relations of 
the form: J x J = i J .  

This can be achieved here by putting J: = - i ~ : .  

One also checks that between the elements of P and LK we have 

so that we can write so(4, 2) = LK @ P 

3. Eigenvalue Spectrum and Eigenfunctions of so(4, 2) 

By considering further, the structure of the subset P we can cbtain the 
roots and eigenfunctions of so(4, 2). The prescription is to pick out 
those elements of P which are mutually commuting. Denoting this 
subset of P by L, and writing out the commutation relations of a11 
the elements of P, we find that we can choose: 

L, is an abelian subalgebra of P. 

The centralizer of LA in so(4, 21, defined generally by 



L0 = {X E so(4, 2) : [L*, X] = 01, 

is next deduced. Scanning through the commutation relations in 
Eq. (3) [or Table I], we obtain that I? may be chosen as: 

= (X4, x7, x121, 

which is the maximal abelian or Cartan subalgebra of 4 4 ,  2). 

Having thus extracted L', the next prescription is to construct eigen- 
functions of LA out of the remaining generators of so(4, 2). Forming 
the following linear combinations : 

Z' = X6 f X9 ; W* = X10 + X14 
P" = X1 f X8 Q* = X3 XI3 
S1 = RI + Tz ; S2 = R l  - Tz 
S3 = R2 + Ti ; S4 = R2 - TI, 

where 

R1 = XZ + X5 ; R2 = X2 - X5, 
TI = x11 + x15 ; TZ = x11 - X15, 

we find from Eq. (3) that: 

[X4, Z+] = 0 ; [X12> Z f ]  = Z+ 184 
[X,, 2-1 = o ; [X12, 2-1 = -z- (8b) 
[X,, W+] = o ; [XI2, W+] = W+ (84 
[X,, w-] = o ; [X,,, w-] = - w- 
[X,, P+] = P+ ; [XI2, P f ]  = O 

(84  
(se) 

[X,, P-] = -p- ; [X,,, P-] = o (8f) 
[X4, Q f ] =  Q + ;  [Xiz, Q + ] = O  
[X4, Q - I = - Q - ;  [Xm Q - ] = O  @h) 
[X47 SI]= SI ; [x12, S l ] = - s  1 (gi) 
[X4, s2] = -s2 ; [X127 s2] = -s2 

p 4 ,  s31 = +s3 ; p 1 2 ,  s31 = +s3 (8k) 
[x4, s41 = - s , ; rx12, s 4 ] = + s 4 .  (81) 

We conclude from Eqs. (8a)-(8d) that Z +  and Wf are degenerate eigen- 
functions of L.* with the two-component eigenvalue 

Similarly Z- and W- are degenerate eigenfunctions with the eigen- 
value 



Equations (8e)-(8h) show that P+ and Q+ are degenerate eigenfunc- 
tions with the eigenvalue 

while P- and Q- have the eigenvalue 

From Eqs. @i)-(81) we get the other eigenfunctions as 

-+ 
S3,  with eigenvalue = (1;) 

S I ,  with eigenvalue - y = + (-i) 
The roots of so(4, 2) with respect to LA are therefore given by 

2 = ( ) ; (muitipiicity 2) 

7 = ( ) ; (no degeneracy) 

= ( ) ; (no degeneracy). 



These roots may be plotted in a root diagram shown in Fig. 1. 

Fig. 1 - Roots o f  so(4, 2 )  with respect to LA. 

We can collect together these degenerate eigenfunctions by writing: 

E = (Z+, W+) ; L-" = (2-, w-) 
LB = (P+, Q') ; L - ~  = (P-, Q-) 
LY = (S3) ; L-? = (S2) 
C = (S4) ; L-" (Si). (10) 

The hyperplanes orthogonal to the roots can be deduced from Fig. 1. 
We have 



These hyperplanes are shown in Fig. 2. 

Fig. 2 - Hyperplanes in the root space of so(4, 2) 

4. The Weyl Group of so(4, 2): 

Resides the roots and hyperplanes, another structural parameter which 
one needs to compute for so(4, 2) is the Weyl reflection group. The 
preçcription is to calculate first the characteristic vectors -3 associated 
with the roots. If we denote the basis vectors of the vector space LA by 



then the vector 2; associated with any root 2 is defined generally by 
+ 

B(Hi, H:) = ai, 

where ai is the ith component of the chosen root 2. Thus for 2 = (9 

from which we conclude that 

Similarly, we fínd that 

Then, the characteristic vectors in normalized form become: 

We the get the following integers: 

from which we get for example that 

+ + n a y  - nyn - 1 + 1 
cos2 ((C<, y) = --r- - -- or cos (a, y) = - - . 

2 3 



This is consistent with the root diagram in Fig. 1. 

We now compute the Weyl reflection operators associated kith these 
roots. In general for each root 2 ,  we can define a transformation ope- 
rator S, which has the following properties: 

(i) s,H = H - a@> H,  
where 5 is aoarbigary vector in the vector space LA. For the particular 
case where H = H ,  we have: 

-+ s,&, = - fia since &(H,) = 2 for any root a'. (See reference (8)). In 
addition, we have 

(ii) S, P, = P,, 

(i i i) = I. 

We make use of these properties by writing the operator S generally as 

= (: i;) 
Then, using the properties as constraint equations for finding S ,  we 
obtain the matrix representations of the Weyl reflection operators 
for so(4, 2). Thus for the root 2 ,  the constraints take the form: 

This leads to the result 

Similarly we find : 



These matrices, together with the product matrices (S, . Sp), (Sp . S,), 
and (S, . Sp)2, and the 2-dimensional identity matrix, form a 2-dimen- 
sional representation of a finite group of order 8 which is the Weyl 
reflection group for so(4, 2). 

5. The Nilpotent Subalgebra 

Given now these structural parameters: the roots, the hyperplanes 
and the Weyl reflection operators of so(4, 2), we need to compute next 
the characteristic nilpotent sub-algebra of so(4, 2). This is deduced 
from a consideration of the hyperplanes given in Eq. (11). The pres- 
cription is to select, arbitrarily, some hyperplane and, with respect to 
it, to classify as positive a11 roots on one side of the hyperplane and as 
negative, the remaining rootson the other side. Here we may select 
the hyperplans P,. Then a', P, 7 and ri come out as positive roots 
while -a,+- P, - and -i become negative. [Strictly speaking, the 
two roots p and - t lie on the selected hyperplane P, and cannot there- 
fore be described as lying on one side or the other of P,. To get over 
this problem one should select a hyperplane which does not contain 
any of the roots]. * 

From Eq. (8), the eigenfunctions with the positive roots are: 

Then the standard theorems8 lead us to the prescription that: these 
positive root eigenfunctions form a nilpotent subalgebra of the parent 
algebra so(4, 2). This can be verified. We find L i  = 0. 

6. Iwasawa Decomposition of so(4, 2) 

Having thus identified the generators of so(4, 2) which form the subal- 
gebras LK, LA and L;, one applies the Iwasawa t h e ~ r e m ~ , ~ ,  according 
to which one can write simply: 

4 4 ,  2) = d 3 ) +  (+) so(3)- (+) so(2)x,, (+) LA (+) LN 

where LA and L$ are given by equations (6) and (15), respectively. 

At the group Ievel, this Iwasawa decomposition of SO(4, 2) becomes: 

G = K.A .N ,  (16b) 



where K, A and N are the connected analytic subgroups of SO(4, 2) 
which correspond to the Lie algebras LK, LA and L& respectively. 
These subgroups can be parametrized in the usual way as follows. 
First one constructs suitable matrix representations of the generators 
of S0(4,2). In general, we always choose for the generators of so(n-s, s), 
the representation : 

Zij = eij - eji for i, j I (n-s), 
Zij = -eij + eji for i, j > (n-s), 
Zij = +eij + eji for i 5 (n-s); j > (n-s), 

(1 7) 

Zij = -eij - eji for i > (n-s), j 5 (n-s), 

where eij is the matrix with 1 at the ith row and j'" column, but otherwise 
zero everywhere. 

We get for example: 

etc. 

One checks that these matrices reproduce the commutation relations 
in Eq. (3). 

Then, the abelian subgroup A can be parametrized as 

/coshf3 O O O sinh 0 0  \ 
1 o o o o 

A = e o ~ 4  e e ~ ~ z  = O C O S ~  cp O O [ %  O 0  
sinh cp 

1 o o 
sinh8 O O O cosh0 O 

\ 0  O sinh cp O O cosh cp / 
with - oo < 0, cp < + co. 



and using Eqs. (7) and (17), we get 



where the Ci are arbitrary real parameters with: 

- co 5 Ci I + co; i =  1, 2, . . . ,  6 

For the maximal compact subgroup, we can use Euler-type paramete- 
rization and write : 

K = ee lx~ e e 2 ~ 2  e o 3 ~ 3  e e 4 ~ 6  &x7 e o 6 ~ l o  e 0 7 ~ 1 s  , 

where 

- sino, cos O O 
eelxl = o 1 0  

o o 1  

c;@, O O sin O3 
1 0  0 



O O O O cose7 - sino7 
0 0 0 0 sin O7 cose7 I 

Putting these results (18), (19) and (20) into Eq. (16b), we arrive at the 
Iwasawa decomposition and planar parameterization of SO(4, 2). The 
results may be compared for example with those of Kihlberg, Muller 
and Halbwachs9 for the covering group SU(2, 2). 

7. Structural Parameters of Subalgebras of so(4, 2). 

Now it is well known that the conformal algebra so(4, 2) has many 
interesting subalgebras. These include the De Sitter algebras so(4, 1) 
and so(3, 2); the Lorentz algebra so(3, 1) and the Poincaré algebra 
p = so(3; 1) O Tq;  also the 2-dimensional conformal algebra so(2, 2) 
which is isomorphic to so(2, 1) @ so(2, 1). Using the structural para- 
meters already computed for so(4, 2) we can deduce the structural 
parameters of these subalgebras. A11 that is necessary is to identify 
those elements of so(4, 2) which form a given subalgebra. The identi- 
fication is not unique in some cases, in the sense that one can find different 
sets of generators of so(4, 2) which close, for example, the algebra of 
so(3, 1) or so(4, 1). 



Now, since we are working with the metric 

we can select by inspection the generators of these subalgebras as 
follows : 

In terms of the generators Xi of so(4,2), we can thus write 

Other subalgebras can similarly be considered. 

In general, having identified the generators of any subalgebra, the 
Killing forms restricted to this subalgebra can be deduced from Eq. (4). 
The same prescriptions as before, can then be used to compute the 
structural parameters of the subalgebras. The same holds for other 
semi-simple Lie algebras. We then observe generally that the entire 
analysis as set out above can readily be programmed. 

Summary 

To decompose a given semi-simple Lie algebra L, in the Iwasawa 
fashion, the following prescriptions are to be followed. 
(1) The Killing form B(Xi, Xi) of each generator Xi is calculated, using 
the known structure constants of the algebra. 
(2) The maximal compact subalgebra LK and its orthogonal comple- 
ment P are deduced. 
(3) Next we find the Cartaqsubalgebra LA of Land calculate the cor- 
responding root vectors 8, P, 7, etc. The hyperplanes P,, Pp,  P,  then 
follow. 
(4) The sets of positive and negative root eigenfunctions L$ and L; 
are next calculated, leading to the Iwasawa decomposition of the 
algebra L. 



(5) Extension to the group leve1 is made on the basis of the known 
topological properties of connected analytic subgroups. 

Appendix 

We collect together in this appendix the most important theorems which are needed 
for the structural analysis of classical Lie algebras. 

Theorem I 

A Lie algebra Lis compact if and only if its Killing form is negative definite, that is, 

B ( X ,  X j )  5 O 

for all Xi, X j  and i, j = 1, 2 .  . . . n. 

Proof: 

Let Lbe a compact Lie algebra. For such an algebra, one has that the operators Adx, 
which are the inner derivations of L, form a Lie algebra known as the algebra of inner 
derivations. This algebra is isomorphic to a subalgebra of the special orthogonal group 
SO(n), implying that 

since the generators of SO(rz) correspond to the algebra of antisymmetric matrices. 

We can then write 

as required. For further details we refer the reader to p. 123 of Helgason3. 

As a corollary to this theorem, we add that for the non-compact part of a given non-com- 
pact Lie algebra, the Killing form is positive definite. 

Theorem 2 :  

Any semi-simple Lie algebra Lwhich is of the non-compact type, has a direct sum decom- 
position of the form: 

L =  L K 9 P  

where the subsets LK and P satisfy the following conditions: 



These assertions are easily demonstrated by means of examples. Rigorous proofs are 
harder to construct. Useful discussions are given in chapter 5 of Hermann2. See also 
p. 60 of Strom4. 

Proposition 1 

With respect to a non-compact Lie algebra L, we can introduce a linear map 0 such 
that for 

we have : 

and 

0(X) = X  for a11 X  E LK, 
0 ( X )  = - X for a11 X  E P, 
B(OX, 0 Y )  = BíX,  Y )  for a11 X, Y E  L. 

This automorphism O is known as the Cartan involution of Lwith respect to L,. 

Theorem 3 

By means of the Cartan involution O, one can define a new bilinear form: 

B l ( X ,  Y )  = - B(X,  OY), 

for any two elements X  and Y  of L, where B 1 ( X ,  Y )  is symmetric, positive definite, and 
non-degenerate. 

Proof: 

The proof of this assertion follows directly from the definition of O .  Thus we have 

B l ( X ,  Y )  = - B ( X ,  OY). 

Suppose that both X and Y  belong to L,, then OY = Y  so that 

which is positive and non-degenerate from theorems 1 and 2. 

Next, suppose that both X and Y  belong to P, then 

and 

This is again positive definite from theorem 2. 
Suppose that X  E L, and Y E P,  then 

B 1 ( X ,  Y )  = - B ( X ,  - Y )  = B(X,  Y )  = O from theorem 2. 

Similarly if X  E P and Y E  LK we get that 



Bl(X, Y) = O as required. 

That Bl(X, Y) is alço always symmetric and non-degenerate follows from the basic 
properties of the Killing form B(X, Y). 

Theorem 4 

With respect to the positive-definite, symmetric and non-degenerate bilinear form 
B1(X, Y), the adjoint operators Adx for a11 X E P, are hermitian and have real eigen- 
values. 

To prove the theorem, we need to show that for a11 X E P and for any Y; Z belonging 
to L, we have 

Bi(Adx(Y), 2 )  BI(I: Adx(2)). 

Now we have: 

(i) B,(Adx(Y), Z) = BI([X, Y], Z) 
(ii) Bl(X, Y) = - B(X, &Y)) 
(iii) B([X, Y], Z) = - B(I: [ X ,  Z]) 
(iv) Adx(OZ) = [X, OZ] = ~[(BX), Z ]  

= OAd(ex,(Z) = - BAdx(Z) 
since OX = - X for X E P. 

Using these results we get that 

Bi(Adx(Y), Z) = Bi([X, YI, Z) 
= - B ([X, Y], OZ) 
= + B ( K  [ X ,  821) 
= -B (I: 0 [ X ,  Z ] )  . 
= +Bi(I: [ X ,  Z ] ) .  

That is, 

Bl(Adx(Y), Z) = B1(Y; Adx(Z)) as required. 

Proposition 2 

Since the elements of P are hermitian, and have real eigenvalues, one can introduce a 
subset of mutually commuting elements of P for which one can construct simultaneous 
eigenvectors. These eigenvectors can be labelled, as in Quantum mechanics, by the 
real eigenvalues of the mutually commuting hermitian operators. 

The required subset of mutually commuting hermitian operators can be chosen as the 
set of adjoint operators 

where (i) LA is abelian; (ii) LA C P ;  and (iii) LA is maximal among the subalgebras 
of L, satisfying conditions (i) and (ii). 



Denoting the elements of LA by H and the remaining elements of L by X, Y; . . . . , we 
can write: 

AdH(X)  = [ H ,  X ]  = u(H)X ,  

where @(H) = is a real number, the eigenvalue of the hermitian operator AdH; X is 
the eigenvector. 

If L, has dimension r, with elements Hi, where i = 1, 2 . .  . . r, then the quantities %(Hi) 
given by 

constitute the components of a vector 2 in an r-dimensional vector space. This vector 
2 is called the root vector. For a given Lie algebra L, root vectors occur in pairs, the 
total number of root vectors being equal to the number of linearly independent eigen- 
vectors. 

For detailed discussions regarding this proposition and the properties of the roots, we 
refer the reader to references (2, 3, 4). 

Proposition 3 

Given a root vector õi we can consider the set of a11 vectors which lie on a hyperplane 
orthogonal to 2. Such a hyperplane we denote by P, defined by 

With respect to a given hyperplane P,, we can divide the root space into two half-spaces 
P: and P: defined by 

P: = { H  € L A  : a(H)  > O), 
P; = { H  E LA : a(H)  < O } .  

We can, on this basis, classify a11 the roots of a given algebra Linto positive roots (4H) > 0 )  
and negative roots (a(H) < O). Also we denote by L; the set of a11 eigenvectors with 
positive roots with respect to a selected hyperplane, and by L i  the set of all eigenvectors 
with negative roots with respect to the same hyperplane. We have the following theorem: 

Theorem 5 :  

The subsets L; and L i  are nilpotent subalgebras of L. 

The proof that the algebras L$ and L; are nilpotent proceeds as follows. The parti- 
tioning into positive and negative roots is such that a11 eigenfunctions in L: have only 
positive roots, while the elements of L i  have only negative roots. Thus, if; is a subset 
of L$ with positive root 2, while L! is another subset with positive root P ,  we should 
have that 

[E, L!] c E+'J 

where L " + ~  exists if and only if (a f P )  # O. This would however lead to arbitrarily large 



positive roots. The iteration must therefore eventually terminate, implying that L$ 
and L$ are nilpotent algebras. 

Finally, we have: 

Theorem 6 

A semi-simple Lie algebra L can always be decomposed uniquely as follows 

This is known as the Iwasawa decomposition of the semi-simple Lie algebra L. Theorem 
6 can be proved on the basis of the earlier theorems. Details of the proof can be found 
in Helgason3 and Strom4. 
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