Revista Brasileira de Fisica, Vol. 5 N.° 1, 1975

Gradient Formulafor the Four-Dimensional Hyper spherical
Harmonics

M. BALLESTER SANTOS
Ingtituto de Fisica Gleb Wataghin*, UNICAMP, Campinas, SP.
P. LEAL FERREIRA

Instituto de Fisica Tedrica**, Sdo Paulo, SP.

Recebido em 12 de Novembro de 1974

The gradient formula for the hyperspherical harmonics in 4 dimensions is derived, a result
which is here obtained in two distinct ways. either by differentiation of a closed expression
for the hyperspherica harmonics or by making use of the Wigner-Eckart theorem for the
R, group. The result is useful for physical applicationsin view of the significance of the R,
group in several physical problems.

Deriva-sea formula do gradiente para os hiperesféricosharmdnicosem 4 dimensdes. O re-
sultado é obtido de duas maneiras distintas: por diferenciacdo de uma expressdo fechada
para os hiperesférims harménicosou pela aplicacdo do teorema de Wigner-Eckart para o
grupo R,. O resultadoé Util paraaplicagbesem vistada relevanciado grupo R4 emdiversos
problemas fisicos.

I ntroduction

The gradient formulafor the spherica harmonics Y;,,(0, ¢) in 3 dimensions
iswdl known from textbookson the quantum theory d angular momen-
tum®. It providesan ussful expression for V[F(r) Y0, )], where F(r) is
an arbitrary differentiable function of the scalar distance r.

In the present work, the corresponding formula for the 4-dimensond
hyperspherical harmonics %, () is derived in two different ways In the
first, we start from a closed expresson for the solid hyperspherica har-
MONICS” ¥yum (X1, X2, X3, X4), Making extensive use of their elementary
properties. Asan alternative,thesarneformulaisobtainedfromtheWigner-
Eckart theorem for the rotation group in 4 dimensions® (Ry).
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The resultsare of specid relevance for applications, in view of theintrinsic
interest of the R, group in several physica problems®.

1. The Gradient Formula for V[F(R)Y ()]

Thesolid hyperspherica harmonics in 4 dimensions, @y, (X1, X2, X3, X4), e
homogeneousand harmonic polynomiasadf degreek which carry a class of
irreducible representations of the R, group in the Ry > R3 = R, chain,
namely, those irreducible representations o the type [k/2, k/2], in the
notation of Ref. 3.

They can be expressed in the form?

Wram (X1, X2, X3, Xa) = Clk, ) G (R, X4) Wi (X1, X2, X3), (1-1)

4
where R denotes the hyperdistanceR?* = ) xZ, the %, (x1, x3, x3) are

a=1

solid hannonics in 3 dimensions and Gy (R, x4) are functions given by
[%21]
( k ,U)'Rquk I—-2u
le(R X4) 2 22/.L __l 2#) ' (1-2)

For a given k (a non-negative integer), [ assumes the values 0,1, 2, ..., k
Normadlization to one, over the unit hypersphere, gives®

T2k D k—DI
Clh, 1) = 24(—i) [%-{ZT)I(;U—”,]’ (1-3)

The surface hyperspherical harmonics are defined by

Y;clm(Q) = Xclm(ga q)a /1) = R—k@klm(xb X2, X3, X4), (1'4)
where 0, ¢ and A are the well-known angles of the polar parametrization
of E4:

x; = R dn 4 sin 6 cos ¢,
x; =Rdn Zd9n 6 d9n ¢,
x3 = R 9n A cos 0,

xs =R cos 4,

with

0<i<n 0<f<n and O0< o< 2m
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On utilizing the property? of the function Gyu(R, x.)
I _
Gu(R, x4) = =T R1CH <%> ,
where the CL*} are Gegenbauer polynomias®, one readily obtains the
expression
. 2k+1)(k—D B .
Vi) = (~ 2001 [;(%{H?—, 0, @) Ci* Hcos ) sints. (1-5)

The functions (1-5) saisfy the rule
Bim@) = (=) Y1, -m ().

As shown in Rd. 2, the function G(R, x,) aso obeys the following pro-
perties, which follow from (1-2):

XaGg = 2Gyy1,1 — k+14+1)Gy -y, (1-6a)

R*Gy = 4[Gy42,1 — k+2) Gys1,1-1], (1-6b)
1

0iGy = — 3 Xi Gk—1,1+ 1, (1-6¢)

0uGa = 3 (k14 1) Gy 1 (1-6d

The components of the 4-dimensiona gradient V are defined as

V = (=iV, Vi) (1-7)
with
V4 = 64,
1
— = (01 410,), (= +1
v, - NG (01 +10,), (q )
s, (q=0)

+\%(al—i Lg=—1).

The defmition (1-7) is a consequence of the vector character of the gra-
dient V, as an irreduciblevector operator T},, of the R, group, associated
toitsirreduciblerepresentationof dimension 4,inthechan Ry = R3 = R,.
Infact, by a straightforward calculation, it can be shown from the Racah's
defmition of T},

[y Tinl = Y (1n|g,|1im) Ty,
I'm’
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intermsaf thewell known matrix elementsof thegenerators ¢, = <ﬁq> of
the R, group?, in the chain R,> R;> R,, that if !

T(I)O = aa‘b
Tie = By Vo
then necessaily iff = a, where § = .1 = o = fi-,. Settinga =1, then
p = —i, a fact which justifies the choice of the relative phases in (1-7).
Similarly, the components of the vector operator x are defined as
X= (—ixg; Xa) (1-8)
with
= 7 (X1 +ix3), (g=+1)
Xg = x3’ (q = 0)
1 .
+ % (x1 —ixy), (g= —1).

Our arn now is to compute V [F(R) Y] From (1-4), (1-7) and (1-8), it
follows that

dF k

*k+1)
VIR You] = R (G~

> xgklm + FR™ "V@k,,,, (1-9)

and we see that our task is then to compute x #,,,, and V%,,,,.

In view o the distinguished role played by the variable x, in (1-1), the
calculation of those quantitities proceeds separately for their fourth and
g-components.

From (1.6a) and (1.6b) it follows that

k—1+1 1k+1+1
k+1 G"+1’+4 k+1

R? Gk—l,z‘ (1-10)

Xe Gy =

Therefore, from (1-1) and (1-3), one can write

1 [Gk=1+) (k+1+2) |5
Xa YWim = 3 I:W Yr1,m +

+ [("—Jr%—)’f—lﬂ R2 @y . (1-11)
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Similarly, from (1-6d) one gets

V4 @klm = [(k+ 1) (k __kl) (k+1+ 1)}%@’(— 1,Im- (1'12)

Hence, for the fourth component o V in (1-9), one gets

V[FR) Yar] = 5 (dF F> [(""“) “‘*’“’}% Yoot +

iR "R G+D) (k+2)
+ 1 (jﬁ#‘;zp) [("ij;;{gf;")}f Yoot (1-13)

To calculatethe ¢-component of the gradient, we make use o the result*

I+1\3
Xq@lm = <—2-l—:_—3>7(lmlq|l+l, m+q) @l+1,m+q (1'14)

— 7 <2ll >7(lm1q|l—1 Mm+Q) Y -1, mrg

vdidfor the 3-dimensonal solid spherical harmonics#,, (x4, X2, X3), Where
= ; (—)xgx—g.

In order to obtain
— Xy Yam = Clk, D) G (R, x4) (~ix)) Y, (1-15)

one sees, from (1-14), that one has to caculate Gy #+1,m+, ad 12 Gy
W,_1,m+q This can be esdly done by noting that, from (1-6b),

RZ
Gu k—!— i Giv1,141 — e+ 1) Gr-1,1+1- (1-16)

Further, we note that > = R? — x and, from (1-6a) and (1-16), one gets

xﬁ le = 4Gk+2,l — 2(2k + 21 + 3) Gk+1,l—1 +

k+14+1) (k R?
+ (—_F’]%FI)F—Q[GHH 1 _TGk 1,0- 1] (1-17)



Hence,

k+1+1) k+1)
4k + 1)

R2Gk“1,l—1 - (k_l+k21_(k1—l+1) Gk+1,l—1 (

r’Gy =

and we finally get from (1-3), (1-15), (1-16) and (1-18),

- in @klm =

1 [l+ 1]% [(k+l+3) (k+1+2) |3

¥

73| |t ntr | mlalir Ll mt @) Periirineg

I
PSS

__RZ[HI

—D(k—I-1)
2143 [ k +1) (Imig|l+1, m+q) H-1,1+1,m+q

M»A

N(.-

k+ 1 (lmlqll—la m+Q) @k—l,l—l,m-f-q

14+2) (k=1+1)] )
B |:2l-—1} l: k+1) (k+2) | (Imlg|l=1, m+q) Yir1,1-1,m+q
1
}7

(k+1+1) (k+1)]
*3 [21—1 [

(1-19)
Now, we briefly indicate the calculation of
iV W = Clly ) Gua (—i Vg Wip) + Clly ) Wi (—iV,Gra). (1-20)
First, we recall the result!

V, U = — 2+1) [zzl }(lmlq|l—1,m+q)@l_1,m+q. (1-21)

Further, from (1-6¢), one has

1
-2— Xq Gk—l,l+1‘ (1-22)

One also has, from (1-6b) and (1-18),

G111 =22+ DGy — k+ 1+ 1) (k+ ) Grey,1-1.
Therefore, it follows from (1-20), by using (1-14), (1-21) and (1-22), that
— iV %am =

_ (112
2N+3] %
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mlgll+1, m+q) %—1,1+1,m+q

[(k+1)(k hk—I- )}

L
y lr(k'*'l) (k+kl) (et I+ 1)‘17 (Imlg|l=1, m+ ) %-1,1-1,mrq  (1-23)
L

.

By substituting (1-23) and (1-19) in (1-9), one finally gets

; 1 (dF k [+ 13
~iVaiFin] = 5 <7.m‘ﬁF> {(51‘4:—3)7 *

k+14+3) (k+1+2)
l:( k + 1; Ek“f‘ 2) ):lj (lmlqll+ 1, m+q) Yet1,141,m+q

I &
- (21—1) X
(k—11+2) (e—1+ D]
[ k+ 1) (ks 2) ] (Imlg|l=1, m+q) Yet1,1-1,m+q

_ L (dF  k+2 0\ f(1+1
2lam 7))

k—1D) (k—1—
[( D( :l (lmlqll+la m+‘1) Kc—l,l+1,m+q

k(k + 1)

()

k+0 k+1+1) 3 |
% [%JJI (mlg|1=1, m+q) K“l”'l’mM}
1-24)

The expressons (1-13) and (1-24), together, give the gradient formula for
the hypersphericad harmonics in 4 dimensions.

2. The Gradient Formula from the Wigner-Eckart Theorem for the
R, Group.

In thissection, we wigh to obtain the previoudy deduced gradient formula,
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(1-13)and (1-24), by means of the Wigner-Eckart theoremfor the R4 group.

We recdl that the gradient operator V is an irreducible tensor operator
o rank onedf theR, group, i.e., the tensor operator associated to itsirredu-
cible representation k=1: Tk, In thiscase, | assumesthe vauesO and 1
and therefore the componentsd V are given (except for an overall phase),
according to (1-7), by

To = Oa, 21
Ti, = —iV, (q=+1,0, —1).

Similar considerations are valid for the vector x. In its genera form, the
Wigner-Eckart theorem for a tensor operator T%, associated to theirredu-
cible representation [ji'] of R, in the chain Ry > Ry > R,, reads®

Ju ] Goji | T o), (2-2)

Ly my

o e s J2J2 )T
(i 11m1|T5fz 'Jz]zlzmz) = [12 n212 Ap

where (j, j; | T || j,j5) is the reduced matrix element and the bracket is
the Wigner coefficient of the R, group:

J2 2 0T\ T | 2@l 1) @A+ 1) @y + 1) @+ Dalampdgd Lims)
lz my i/.t

11 my
iz 2 b
P (2-3)
vk

the well-known expression in terms of a 9j-symbol. In this notation,
(2-1) reads

TY? b7 = Tho
-4

1/2 12 — 1
T2 M2 = T},

If the basic statesin (2-2) are hyperspherica harmonics, thenj, = j; = k,/2
and we write

|j2? j2’ l27 mz) = },zjz,lsz = HCzlz"nz‘ (2_5)
Fixing this notation, from (2-2) one can write (droppingout the subscript 2)
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Eoky
7 7
2 1 1
Tho Yum =@+ 1 "k § 5 5 0pG=1] T"[K) ¥%-y,m
k=1 k-1,
72
ok
)
P kD) ] o 2 Op (L T [B) B 26
By
)

Thelast formula allows one to calculate the reduced matrix elementsfor x
and V if, for instance, one takes into account the following e ementary
properties of the basic states:

X 1
f Yoo = 5 (Y%-1,00 + Yk+1,00) @-7)
+
RV4 Y]vc()() = k_2_2__ }7(_1’00 - —l2<— Ylvc+1,00’ (2-8)

which are particular cases of (1-11) and (1-13), repectively. In fact, com-
paring (2-7) with (2-6) and using the result

kK k
7 70
5 5 0 b= [e+D) (e1£1] 77, 29
kfl kf1
= 2 0

one readily gets the reduced matrix eements of x:
X _ [k+1]z
(=r10%) =[5

<k+1 I+ k) - [2_5(1_12)}%

(2-10)
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Similarly, through (2-8), one has the corresponding reduced matrix ele-
ments for V:

(k—1| RV [ K) = k+2) [%1}%
@11)

1

(k+1|RV k) = — k [%)_}z.

Clearly, (2-10) and (2-11) dlow the deterrnination of the full expressions
for X Y, andV Y, by means o (2-6), provided the 9-j symbols occuring
in it are known.

With the help of the properties of 9-j symbols, one gets

k k ]
2 2 1+1 3+1\] %
Lo 1 {("‘”T)(’””z)}
2 2 (k41 (k+1+1) 2021+1)
k+1 k+1 |
2 2
(2-12)
Hence,
Xy _ L[k k=D 3
R Xclm — 2 |: k(k+1) Yk—l,lm +
1 [k+1+2) k—I+1D B}
and
_ 1 k—1+1) k+1+2) |5
R-V4 Y;clm - 7 k I: (k+1) (k+2) Xc+1,lm

+1 ) [(’”k’(z 2%"{—9]7 bw (214

which are in agreement with (1-11) and (1-13) for F(R) = 1.
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In order to obtain x; %, and V, Y. we note that

(k k )
T, Yan=[3Q1+ 1] kimlg|I+1, migy 2 2 '
—1] Tt 11
X(k 1“T ”k)< 7 _2_ 1 7Yk—-1,l+1,m+q
k—1 k—1
7 7 Y
(kK k)
+ 1301+ 1] ' kimig|l—1, m+qq 2 2
—1]lT 11
x(—=1] T l‘k)< 5 5 1 rYk~1,l—1,m+q
k—1 k—1
| 2 2 1_1)
(ko ko)
+ 3R] k+2) (mlg|l+1, m+qyd 2 2
k+1]| Tt k) 1 1
x et ” ” ) 5 3 1 ¢ Yevi,i41,m+q
k+1 k+1
5 5+
k ko
+[3QI+1)] " (k+2) (mlq|l—1, m+qx 2 2
k+1| T k) 1 1
X( + ” H ) _2— 7 1 Xc+1,l—1,m+q.
k+1 k1, (2-15)
2 2
For the 9-j symbols in (2-15), one gets
ko ko
2 2 1 1\, ] %
Lo [<l+7i—-2—>(k+l)(k+l+l)}
2 2 = kT D) 6(21+1) 2I+2+1) ’
k—1 k—1
37 1l
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Kl%i%)(kilu) (ktl+2+1

ko k

5 7!

1 1 1 =+ 1

2 2 k+1) (k+2)
ki k+i
Lz 5 14

)r‘

(2-16)

L 6@i+1) @+2+1)

From (2-15), (2-16), (2-10) and (2-11), one gets the following expressons:

—i3 Y
1 I+ k=D k=1-1)]h
-T2 (21-{—3) k(k + 1) (lm1q|l+1> m+q) Yio1,141,m+q
1 I Mlk+Dk+1+0) B
) (21— 1) k(k + 1) (Im1q|l—1, m+q) Yeo1,1-1,m+q
U (140N [+ 14+3) (k+14+2) [
+ 2 (21-}- 3) i k+1) k+2) (lmlqu—l’ m+q) Yir1,141,m+q
1/ 1 k=141 k=142 _
2 <21—1> G k) | (mlall=L m+a) Yeriormeg
) -17)
and
_iRVq Yom =
k2 (11N [ k=D k=1-1) ]k
2 <2l+ 3> [ ik + 1) (mig|l+1, m+q) Yeo1.141,mq
k+2 [ 1 \b[Gk+) k+1+D
2 (21—1) [ ke + 1) (”"lqv"”l’ MEQ) V1,1 1,m+q
k (1+1\} [(k+1+3) k+1+ 2]}
T2 (21+ 3) |: k+1) (k+2) (lmlq}l-{- L, m+q) Yee1,1+1,meq
k I \F[k=1+Dk=1+2) ) 3
Ty (21— 1) [ k+1) (k+2) (Imlq|! 15’"‘?“1) Yos1,1-1,m+q
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The above relations (2-17) and (2-18) are in complete agreement with
(1-19)and (1-24) for F(R)=1, and of course, giverise to the same gradient
formula for a general F(R). It is enough to substitute them in (1-9).

References and Notes

1 M. E Rose, Elementary Theory of Angular Momentum, New Y ork (1957). A- R. Edmonds,
Angular Momentum in Quantum Mechanics, Princeton (1957).

2. J. A. Castilho Alcaras and P. Led Ferreira, J. Math Phys. 6, 578 (1965).

3 L. C. Biedenharn, J. Math. Phys. 2, 433 (1961).

4. Our actual motivation for studying the gradient formula was due to a research work by
the authors on the solutions of the Bethe-Salpeter equation for the Fermi-quark-antiquark
system with strong binding, where the formula was found to be particularly useful.

5. The C(k, [) given by (1-3)differsby a phase(- i)' from thecorresponding expressionin Ref. 2.
This choiceof the phaseisin agreement with the relative phase of the components of the gra-
dient operator given by (1-7).

6. E D. Rainville, Special Functions, New York (1960).

73



