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The gradient formula for the hyperspherical harmonics in 4 dimensions is derived, a result 
which is here obtained in two distinct ways: either by differentiation of a closed expression 
for the hyperspherical harmonics or by making use of the Wigner-Eckart theorem for the 
R4 group. The result is useful for physical applications in view of the significance of the R4 
group in severa1 physical problems. 

Deriva-se a fórmula do gradiente para os hiperesféricos harmônicos em 4 dimensões. O re- 
sultado é obtido de duas maneiras distintas: por diferenciação de uma expressão fechada 
para os hiperesférims harmônicos ou pela aplicação do teorema de Wigner-Eckart para o 
grupo R4. O resultado é útil para aplicações em vista da relevância do grupo R, em diversos 
problemas físicos. 

Introduction 

The gradient formula for the spherical harmonics xm(B, q)  in 3 dimensions 
is well known from textbooks on the quantum theory of angular momen- 
tum'. It provides an useful expression for V[F(r) k(0, q)], where F(r) is 
an arbitrary differentiable function of the scalar distance r. 

In the present work, the corresponding formula for the 4-dimensional 
hyperspherical harmonics Glrn (O) is derived in two different ways. In the 
first, we start from a closed expression for the solid hyperspherical har- 
monics2 qklm(x1, x2, x3, x4), making extensive use of their elementary 
properties. As an alternative, the sarne formula is obtained from the Wigner- 
Eckart theorem for the rotation group in 4 dimensions3 (R4). 

*Postal address: Cáixa Postal 1170, 13100 - Campinas SP. 
**Postal address: Caixa Postal 5956, 01000 - São Paulo SP 



The results are of special relevante for applications, in view of the intrinsic 
interest of the R4 group in severa1 physical problems4. 

1. The Gradient Formula for VIF(R)Yklm(R)] 

The solid hyperspherical hannonics in 4 dimensions, gklm (xl, x2, x3, x4), are 
homogeneous and harmonic polynomials of degree k which carry a class of 
irreducible representations of the R4 group in the R4 2 R3 3 R2 chain, 
namely, those irreducible representations of the type [k/2, k/2], in the 
notation of Ref. 3. 

4 

where R denotes the hyperdistance R' = 1 xa, the Yrm (xl, x2, x3) are 
a= 1 

solid hannonics in 3 dirnensions and Gkl (R, x4) are functions given by 

For a given k (a non-negative integer), 1 assumes the values 0,1, 2, . . . , k. 
Normalization to one, over the unit hypersphere, gives5 

The surface hyperspherical harmonics are defined by 

Yklrn(Q) Yklm(0, '?, A) = R-k@klm(~l, X2, X3, ~41, (1 -4) 

where O ,  q and 3% are the well-known angles of the polar parametrization 
of E4: 

x, = R sin Â sin 0 cos q, 
x2 = R sin 2 sin O sin q, 
x3 = R sin i cos 19, 
x4 = R cos i., 

with 
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On utilizing the property2 of the function Gki(R, x4) 

where the C:?: are Gegenbauer polynomials6, one readily obtains the 
expression 

The functions (1-5) satisfy the rule 

As shown in Ref. 2, the function Gkl(R, x4) also obeys the following pro- 
perties, which follow from (1-2): 

The components of the 4-dimensional gradient V are defined as 

V = (- i V,, V4), 
with 

v4 = 84, 

3 - i ,  q = - 1). 

The defmition (1-7) is a consequence of the vector character of the gra- 
dient V, as an irreducible vector operator T:, of the R4 group, associated 
to its irreducible representation of dimension 4, in the chain R4 3 R3 3 R2. 
In fact, by a straightfonvard calculation, it can be shown from the Racah's 
defmition of T:,, 

[gq, T!,] = 1 (Irm' 1 y, 1 1 lm) TI,,, 
l'rn' 



in terms of the well known matrix elements of the generators 9q = 
the R4 group3, in the chain R 4 3  R 3 3  R2, that if 

TAo = ad4, 
T:q = Bq V,, 

then necessarily iP = a, where /3 = P+ = Bo = 8- ,. Setting a = 1, then 
p = -i, a fact which justifies the choice of the relative phases in (1-7). 
Similarly, the components of the vector operator x are defmed as 

x (- ix,, x4) 
with 

Our airn now is to compute V [F(R) Klm]. From (l-4), (1-7) and (1-8), it 
follows that 

and we see that our task is then to compute xgklrn and V%klm. 

In view of the distinguished role played by the variable x4 in (1-I), the 
calculation of those quantitities proceeds separately for their fourth and 
q-components. 

From (1.6a) and (1.6b) it follows that 

Therefore, from (1-1) and (1-3), one can write 



Similarly, from (1-6d) one gets 

Hence, for the fourth component of V in (1-9), one gets 

To calculate the Wmponent of the gradient, we make use of the resultl 

valid for the 3-dimensional solid spherical harmonics ??Ilm (xl, x2, x3), where 
r2 = C (-)qxq~-q. 

4 

In order to obtain 

one sees, from (1-14), that one has to calculate Gkl %l+l,m+q and r2 Gkl 
gl- This can be easily done by noting that, from (1-6b), 

G R2 

4(k+ l) G k - ~ , f + ~ '  Gki = k+l k + l , l + l  - - (1-16) 

Further, we note that r2 = - x4 and, from (1-6a) and (1-16), one gets 
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By substituting (1-23) and (1-19) in (1-9), one finally gets 

-iV,[Fy klm ] = 

The expressions (1-13) and (1-24), together, give the gradient formula for 
the hyperspherical harmonics in 4 dirnensions. 

2. The Gradient Formula from the Wigner-Eckart Theorem for the 
R, Group. 

In this section, we wish to obtain the previously deduced gradient formula, 



(1-13) and (1-24), by means of the Wigner-Eckart theorem for the R4 group. 

We recall that the gradient operator V is an irreducible tensor operator 
of rank one of the R4 group, i.e., the tensor operator associated to its irredu- 
cible representation k= 1 : Tk .  In this case, 1 assumes the values O and 1 
and therefore the components of V are given (except for an overall phase), 
according to (1-7), by 

Similar considerations are valid for the vector x. In its general fom, the 
Wigner-Eckart theorem for a tensor operator T$ associated to the irredu- 
cible representation [jj'] of R4, in the chain R4 3 R3 3 R2, reads3 

where íjl j; 1) TjJ 11 j 2 j9  is the reduced matrix element and the bracket is 
the Wigner coeficient of the R4 group: 

the well-known expression in terms of a 9j-symbol. In this notation, 
(2-1) reads 

If the basic states in (2-2) are hyperspherical harmonics, then j2 = j; = k2/2 
and we write 

Fixing this notation, from (2-2) one can write (dropping out the subscript 2) 



The last formula allows one to calculate the reduced matrix elements for x 
and V if, for instante, one takes into account the following elementary 
properties of the basic states: 

k + 2  k  
R V 4  Koo = K-l,oo - - 2  K+1,00, (2-8) 

which are particular cases of (1-11) and (1-13), respectively. In fact, com- 
paring (2-7) with (2-6) and using the result 

k k  
2  1 c]= [ 2 ( k + 1 ) ( k + 1 k 1 ) ] - 1 1 2 ,  (2-9) 

k f l  k f  1 -- 

one readily gets the reduced matrix elements 6f x: 



Similarly, through (2-8), one has the corresponding reduced matrix ele- 
ments for V: 

Clearly, (2-10) and (2-11) allow the deterrnination of the full expressions 
for x Klm and V Klm by means of (2-6), provided the 9-j symbols occuring 
in it are known. 

With the help of the properties of 9- j  symbols', one gets 

Hence, 

and 

1 [ii-l+l)(k+l+?)]l 
RV4 Klm = - - 

2 ( k + l ) ( k + 2 )  K i l , l m  

[ ( k + ~ ~ * ~ ~ & , , l m  (2-14) + T (k+2) 

which are in agreement with (1-11) and (1-13) for F(R) = 1. 
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In order to obtain xq xlm and V, xlm, we note that 

For the 9-j symbols in (2-15), one gets 



I + - + -  (k+1+2)(kI1+2+1) 1 = +- 1 p i )  
(k+l) (k+2) 6(21+1) (21+2f 1) 

]i 

From (2-15), (2-16), (2-10) and (2-ll), one gets the following expressions: 

and 



The above relations (2-17) and (2-18) are in complete agreement with 
(1-19) and (1-24) for F(R) = 1, and of course, give rise to the same gradient 
formula for a general F(R). It is enough to substitute them in (1-9). 
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