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The spinor space representation of the Homogeneous Lorentz Group offered by Clifford 
numbers in Minkowski space is reviewed. Two-spinor calculus naturally follows when 
spinor matrix representation for these numbers is used. Representations of the improper 
four group are also discussed. 

Examina-se aqui, a representação espinorial do grupo de Lorentz homogêneo, que 
decorre dos números de Clifford, no espaço de Minkowski. O cálculo de espinores, a 
duas componentes, resulta naturalmente quando se faz uso da representação matricial 
daqueles números. São também discutidas as representações do grupo impróprio. 

1. Introduction 

The purpose of the present paper is to discuss the four-component and 
two-component spinor analyses, starting from the representation of 
the Lorentz group in terms of Clifford numbers. The results are not 
newl ; however, a good deal of clarification is achieved in the discussion. 
With an extensive use of spinors in Riemanni an space2, this is perhaps 
desirable. 

In Sections 2 and 3, we review the four-spinor representation of the 
restricted homogeneous Lorentz group, offered by Clifford algebra, in 
Minkowski space. Section 4 is devoted to 2-spinor calculus which 
naturally follows when we express the matrices y p  in the spinor repre- 
sentation and the SL(2, C) group structure is made transparent. In 
Section 5, we discuss how a spin frame, in two dimensional spinor space, 
can be defined in terms of two legs like the four-legs or tetrads of vectors 
frequently used in Minkowski space. A set of nu11 tetrad of vectors 
ap(A)(B) is also constructed. Finally, in Sections 5 and 6, we discuss in 
detail the representations of the improper Four group, in spinor space, 
together with the transformations of bilinear invariants. 
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2. Notation. Representation of the Lorentz Group 'by Clifford Numbers. 
Spinor Space 

The homogeneous Lorentz group (H.L.G.) may be defined as the group 
of 4 x 4 real matrices { A )  which satisfy 

A T G A = G ,  ( 1 )  

where3 A = (A:), G = (g,,) = (g,,), (AT)" = Av,,, with p, V = 0,1,2,3 
and go ,  = 1 ,  gkk = - 1 ,  k = 1,2,3, g,, = O for p # V .  We will be mostly 
concerned4 here with restricted H.L.G., referred to simply as Lorentz 
group, for which 

Aoo > 1, det A = + 1. (2) 

Equation (2-I), written explicitly, reads 

(AT)'", S a p  A', = g a p  Aap APv = gpv. (3) 

Here the summation on repeated indices is unde:rstood. 

The matrix group can be represented by the group of linear transfor- 
mations on a four dimensional real linear vectol- space, called Min- 
kowski space, with basis vectors - e, which transform as 

e', 3 L(A) e, = r, 3. - - (4) 
The contravariant components of a (real) vector - A w.r.t. the basis 
(e,), indicated by real components A,, e.g., - A = A, - e,, transform as 

A', = A,, AV, (5) 

since 

A' L(A)A1' e, = Av A" e, - A'",. 
- - - - (6) 

The group of contragradient matrices { A - l T )  i:s isomorphic to the 
matrix group {A) .  Denoting the basis vectors in the corresponding 
representation space by - e" it can be realized as a group of linear trans- 
formations defined by 

e', = (A- I),, e'. 
- - (7) 

The covariant components A, of vector A w.r.t. this basis (A  - E A, e") 
transform as 

A; = A, = (A-lT),, A,. (8) 

Equation (2.1) implies that 

(AT)-' = G A G-l,  (9) 



so that the contragradient representation is equivalent to the repre- 
sentation {A). We note also, from equations (2-5) and (2-8), that the 
Kronecker delta 6{ is an invariant tensor. From the fact that A-' is 
also a Lorentz transformation, Eq. (2-3) implies g,, = (A-')", (A-')P, gap 
which states that the indices p and v are covariant tensor indices and 
that g,, is an invariant tensor. 

It is clear that (g,, - e") transforms like - e, for 

e'" = gap Aa, APy (A- cP = Aa, (gap c). (s," -1' = g,v - 

Thus, we may define 

which is an alternative statement of the equivalence expressed by 
Eq. (2-9). This leads to 

A, = g,, AP. 

In other words: while the components (A0, A', A2, A ~ )  transform by 
the matrix A, the components (A0, -A1, - A2, - A ~ )  transform accor- 
ding to the matrix The two representations are equivalent 
since the former can be obtained from the latter by a change of basis, 
in the representation space, according to Eq. (2-10). 

We may then introduce a metric tensor gpv. Using Eq. (2-11) to lower 
the indices we have: 

which gives5 (g,, = g,,): 

Thus, in matrix form (gaP) = G-'(=G), so that gOO = goo = + 1, 
gkk = qkk = - 1, k = 1,2,3 and gpv = O for p # v. We may thus use 
gMv to raise the indices and g,, to lower them. We note that, because 
of the equivalence, the same representation space is involved for the 
two representations. The introduction of upper and lower indices is 
convenient in that (A, B" is an invariant (while A, Bp is not so) under 
Lorentz transformations. The Lorentz group can thus, alternatively, 
be defined as the group of linear transformations which leaves the 
bilinear-form, 



invariant, where x" r (xO, xl, x2, x3) are the space time coordinates. 
Finally, from Eq. (2-3), we may derive6 

We may define an inner product, in Minkowslti space, by 

A. B = A,, Bw = g,, A" Bv = gMV '4" B,, 
- - (16) 

which implies 
e, = g,,, e". e" = g". 

- - - - (17) 

The hypercomplex Clifford numbers may be used to construct a re- 
presentation of the Lorentz group. The Clifford algebra, in Minkowski 
space, is defined by a set of four hypercomplex riumbers yO, yl, y2, y3 

which satisfy the anticommutation relations7 

Any product of y 'kan be reduced to, using Eq. (2-18), to one of the 
16 elements I, y", (ypyv - yvy"), y5yp, y5, where y', = y0y1y2y3. Repre- 
senting the y ' 3 y  (r x r) matrices, we can show that the 16 elements 
are linearly independent so that r must be 2 4. It also follows that 
the representation of the algebra, by 4 x 4 matrices, is irreducible. 
In the following, the y'%ill be regarded as (4 x 4) (irreducible) matrices. 
It may easily be shown that the 6 elements V" = (y"yv - yvy") satisfy 
the commutation relations of the Lie algebra of the generators Mpv 
of the homogeneous Lorentz group, viz., 

Thus, we can obtain a representation, by (4 x 4) complex matrices9, 
(S(A)), of the Lorentz group, in terms of Clifford numbers, with 

where1° a,, = A,, - g,,. The corresponding representation space 
is 4-dimensional complex vector space, called Spinor Space. Equations 
(2-18) to (2-20) lead to 

s-'(A)~@ S(A) = A",Y~. (21) 

Denoting the basis vectors of spinor space by Za (a = 1,2,3,4), and 
the components of a vector t ,  w.r.t. this basis, Tiy ta, e.g., 5 = 5" Za, 
corresponding to a Lorentz %ansformation A, in ~ inkowcki  space, 
the transformation in spinor space is defined to be the linear transfor- 
mation given by 



Here, Sa
b are the matrix elements of the matrix S. The group property 

of the transformations (or the operators U(A) defined on spinor space) 
may be easily verified. The components ta are seen to transform as 

The contragradient representation constituted by the group of ma- 
tricesl1 [S-'(A)IT is realized on a representation space, whose basis 
vectors will be indicated by - 2". The group of linear operators acts 
according to 

r = (SP1(A))ab Zb, - - (24) 
and the components 5, of a vector - t = taZa transform as 

We observe that py, is an invariant under homogeneous Lorentz 
transformations. 

The conjugate representation carried by the group of matrices (S*(A)) 
is realized on a space with basis vectors indicated by - Z;, with 

and 

where the are components of t, w.r.t. the basis 2;. 

The representation contragradient to the conjugate one is realized 
on a vector space with basis vectors denoted by - Za, with 

and 

3. Invariant Tensors 

It will be shown below that a11 these representations, in the present 
case, are equivalent to each other and that there is, essentially, only 
one irreducible representation. However, it is convenient to work 



with upper, lower, dotted and undotted indices Cjust as in the case 
of Minkowski space. 

Eq. (2-20) can be written explicitly as (yYb -= yPab): 

The "mixed quantities" ywab, thus, are invariant or held fíxed under the 
Lorentz transformation of the indices defined above and, under the 
tacit assumption, that the index 'p', in yP, is a space-time contravariant 
index, is consistently assigned. Since A- is a Lorentz transformation, 
we also have that 

Taking the complex conjugate of Eq. (3-I), one obtains 

It may be remarked that the Kronecker deltas 6a;, dab are also invariant 
tensors. 

The equivalence of the representations indicated above follow from 
(yT, ?vT) - ( P*, yv*) - { ~ f ,  ? v : ) +  = I ,  + -  Y + -  Y (4) 

which from the fundamental lemma8 assures the existence of non-sin- 
gular matrices A, B, C such that12 

One can show, then, that 

We can write Eq. (3-6) explicitly as 

where the matrix B - (Bab) This relation shows that Bab is an inva- 
riant tensor, with a and b transforming as covariant indices. The B 
matrix plays the role of metric tensor in spinor space. Since BabZb 
transforms as Z,, we may define - 



Z a  = BabZb, 
- 

which implies 
5, = BbRtb. 

It may be shown that B may be chosen unitary and anti~ymmetric'~. 
The metric tensor BRb can be introduced by 

Bab = BcaBdbBCd, 
so that (Bab = - Bba) 

B ~ ~ B ~ ~  = - hCb, BcaBCd = hda 

and B " ~  = - B~~ as expected. Also, if B E (Bab) then (Bab) = - B-l .  
We may also choose a representation of the y matrices such that B is 
a real matrix; then, B* = B = - BT = - B- l and (Bab) = B. Using 
Eq. (3- 13), we have 

against ta = -Babtb and - Z ,  = B,~?~. 

We may define the inner product between two vectors 5 and - by 

Other properties of inner product are 

and 5 .  5 5a5a = O for a11 5 ;  also, 5.  y = 0, for a11 y, implies 5 E 0. 
The yebresentation space i; called Symplectic spacc? and the trans- 
formations S(A) leave invariant the nondegenerate skew symmetric 
bilinear form given by Eq. (3-15). 

An exactly similar discussion can be carried out for conjugate and its 
contragradient representations. Since (S-lT)* = B*S*B*-I the. in- 
variant metric tensors are Bii, and B" where (Bab) = B* and (B") = 
- - - B*- I  , which for a real matrix B, are the same as Bab and Bab. 
We observe that tirla is an invariant but era is not so and that trans- 
forms like 5"" while 5; = B&rb transforms like 5:. 



We consider now the equivalence relation of Eq. (3-7). It can be written 
explicitly as 

where we write A - (A;,). This relation shows that Aib is an invariant 
tensor with one dotted and another undotted covariant index. Taking 
the complex conjugate we obtain invariant teinsor A,;. Raising the 
indices by use of metric tensors, we obtain invariant tensors15 A",, 
A'~, A",, A';, etc. It is clear that they are useful in constructing inva- 
riants of type ta A;, yb and of type ?*A:, tb whjch may not vanish, in 
contrast to p$ = O. We may choose8 A to be hermitian, e.g., A,; = 
= A;, = (Aba)* and A 2 = I. 

Other invariant hermitian tensors are16 Tp = (r$) = (A;, ypcb), A Xpv = 
(r%), Ay5 ( r 5 ) ~ b , . ( i A ~ 5 ~ ~ )  = ,For example, ri; = (r&)* = 

= (A~,yPc,)* = Ab;yPC; = ypCa Aib = (ypi A)ib == (AyP)ib = r$b since, 
from Eq. (3-5), Ay" = yKi A. Tensor quantities may be constructed 
from a quantity. like v", e.g., scalar A&, vab, pseudoscalar vib, 
four-vector Tab vab, pseudo four-vector Tg;, yab, antisymmetric tensor 
r:," ynb (Ref. 17). 

In particular, recalling that ta transforms as t*", we have the wqll known 
bilinear covariants A;, tb 5' A t ,  C'(A yp)l := <*arab tb, tri A y yfl 5 ,  
tr A Cpv5 and 5'- A y 5  l transforming as a scalar, vector, pseudo-vector, 
antisymmetric tensor and pseudo-scalar, in Minkowski space. 

4. Spinor Representation of y matrices. Two-Spinors 

To bring out clearly the relationship of the 2-spinor calculus with 
the 4-spinor calculus, discussed above, we use a convenient matrix 
representation for traceless y matrices. 

We take 

o p o -  8' so that y5 - y0y1y2y3  = -y;; y: = -I. Clearly, y y y - y , so 
that we may identify A - (Aab) = y0 = A' = K1. Furthermore, we 
will take18 the yp7s to be odd matrices so that Cpv, hence, S(A), will be even. 
A suitable representation is the spinor representation, defíned by 



where the ak,s are the, 2 x 2, Pauli matrices, 

We also note that, for this representation, yoT = yO, y2T = y2, y l T  = 
- - - yl, Y3T = - y3 and yz = y5. A real matrix B, satisfying Eq. (3-3, 
can be taken to be (B = B* = - B~ = - B-l) 

Also, 

so that 

0 p'J = - ib) + + 

P'J o. (a +i$) , 
O ) 

+ -+ 
where bk = 4(uok - ukO); ak = 4 (alrn - um,), k, I ,  m cyclic and a .  a - olal + o2 a2 + o3 a3. For S(A), we find 

where 

The representation is unitary for space rotations but is, in general, 
non-unitary. In so far as the restricted Lorentz group is concerned, 
S(A) appears as a direct sum of 2-dimensional representations. 

The, 2 x 2, matrix groups {S1(A)) and {~i- l (A)) ,  themselves, cons- 
titutelg two inequivalents representations of the Lorentz group. Under 



parity transformation, we will see below, the two get interchanged so 
that the representation is irreducible under the full Lorentz group. 
We note that det (S1(A)) = + 1, so that {Sl(A.)) and {s~-'(A)) are 
two inequivalent representations of the SL(2, C) group20. 

It is clear that the two upper components (r1, t2 )  of 5" transform, under 
a Lorentz transformation, among themselves according to the 2 x 2 
matrix S1(A), while the lower components (t3, t4) according to SiP1(A). 
A change of notation is thus suggested: 

where A, B = 1, 2 and A, B = i, 2. Also, Ç1 := - t2 = - u2, t2 = 
= 51 = ul, t3 = - 54 = - v;, t4 = t3 = v;, and ( t l ,  r2) transforms 
according to the matrix S;lT(A), while (r,, r4) according to the matrix 
ST(A). We may, thus, introduce the notationZ1 

u1 ri ,  u2 r2, - V I  E c3, -v2  E r4, (10) 
so that 

B B 
UA = - EABU , v i  = - , (i i )  

where EAB, E'; are Levi-Civitta ~ ~ m b o l s ~ ~  and u* = (S;l(A))BAus, 6' utA = (S1(A)) uB. We remark that the invariant tensor B is an even 
matrix in our representation: 

" - (-p k )  From the identities where (cAB) = (cAB) = ( E A ~ )  = (E ) - 
like23 

cCDSAICSBID = (det S1)cAB = E AB , (1 3) . . 
if det S1 = 1, we see that cAB, 626, EAB are invariant tensors. Hence, 
equation (4-11) expresses the equivalence of representation SI with 
(S?)-' and ST wifh S;li. Since c* transforms like we see that uA* 
transforms like uA while v 2  traqsforms like VA. We will adopt the custo- 
mary practice of identifying uA = u * ~  and u i  = UZ There is no inva- 
riant quantity (like Aib) which relates the dott!:d and undotted com- 
ponents since the conjugate representation (uA) i~ not equivalent to 
the representation (uA). Likewise, we define the basis vectors by 



and 

h; = 2 3  = -2 - -h2, h' - 2 4  = Z3 = 
- - - 4 -  - - 2 - -  

so that , 
(1 5 )  

and 

Under a Lorentz transformation, the basis vectors h transform as - 

hÁ = SI(A)BA 5, htA = (S; l(A))AB hB, - - - 
1~ L h È  h i = ( s l ( A ) ) d ~ ,  hf'=(S; ( )) B-. - - (18) 

From 

it follows 
A - AB hA = cAB hB, U - UB7 - - (20) 

and similar expression for dotted indices. 
From Eq. (3-16), we find the following inner products: 

and 

The vector spaces generated by undotted and dotted basis vectors are 
orthogonal. The inner product of two vectors - u and 4 in undotted - 
space is 

and satisfíes the properties given in Eq. (3-17). The representation 
space is a symplectic space Sp(2)  in two dimensions. The same goes 
for the dotted vector space and the linear independence of basis vectors 
follows from equation (4-22). We remark that uA 4A = - uA +A and 
uA UA = 0. 



In the spinor representation, the Eq. (2-21) leads toz4 

o" = A', S1  (A) o" $(A), (24) 
from which follows that 

and 

op A' = ApV S ,  (A)"' si (A)" ovc? (26) 

showing that opAB defined by equation (4-25) is an invariant mixed 
quantity like (ywb). On lowering the indices with the invariant metric 
tensor EAB and using 

cAc cDB = - ( S ;  l(A))BA = - S1(A- l)BA,  (27) 
we can show that 

~ $ A J  = Apv (S; '(A))', (S;  LI))^^ ovce. (28) 
Both (oaAJ) and ( 4 ~ )  are hermitian matrices, thst is opAi = opBA, 
o%i = oBA .A (gflBi)*. From ( o P A ~ )  = (cAC E i l j  crpCD) = - ( E  olr E )  we 
see (o$j)  = o', (olAi) = - ol, (oZAi) = o', ( 0 ~ ~ 8 )  = - 03, so that 

The matrices (apAi) are not a11 hermitian contrai-y to (opAi
), ( 0 2 ~ )  and 

(r&). It can be easily shown 

from which follows that 

gvAi  = 2 gpv. (3 1 )  
Then, 

o p c ~  opAB ovAi = 2 g
pv opte = 2 ovc6, 

which implies2' 

opte opAB = 2 6 6 Bfi. (32) 

Other similar relations follow by raising or lowering the indices and 
taking complex conjugation. From Eqs. (4-26) and (4-31), we have 



so that 

The following explicit form of yp will be useful latter: 

The results obtained here are the main tools, of 2-spinor calculus, 
discussed in Refs. 1 and 2. 

Eq. (4-26) shows that apAd transforms as a 4-vector in Minkowski 
space while, for a vector Up, ( U ,  õpAi) transforms as uAi. Thus, we 
may establish a correspondence between uA) and a bvector U q y  
the r e l a t i ~ n ~ ~  

U" is real if uAi is hermitian, it is a nu11 vector if U A ~  = tA vi and a real 
nu11 vector if uAg = ) lA (e.g., a 2-spinor, tA, determines a real nu11 
vector). Since uAB are components of a vector, in the direct product 
spinor space spanned by {hA - @ hB) , 

u - u"'(hA - O - hi) = U, opAB(hA - - hi) U,Ey - 

where 

E' = opAB (hA O hi) 
- - - (39) 

constitute a basis for a representation of the Lorentz group. In fact, 

thus establishing the correspondence - e" tt - E". Explicitly, 



The inner product is found to be 

5. Spin Frame 

The expression in Eq. (4-37) reminds us of the tetrad formalism fre- 
quently used in general relativity. The formalism is useful for our 
discussion, in Riemannian space, where the metric tensor gpv becomes 
a function of space-time coordinates while, at the same time, we intro- 
duce a local cartesian frame of reference at each point in space-time. 
The tetrads or four legs then connect the worlcl component A" with 
local components A@). We will limit ourselves to the discussion in 
which the metric tensors remain constant, i.e., independent of the coor- 
dinates. The discussion, in 2-dimensional spinor-space, goes in close 
analogy to the case of the 4-dimensional Minkowski space which we 
first briefly review. 
Consider four vectors - n~,,, (a) = (O), (I), (2), (3)., such that 

where g,,(,, = (1, - 1, - 1, - I), g(,,(p) = O for (a) # (P), e.g., no is time- 
like and ql,, q2,, p3, are spacelike. They are clearly linGrly inde- 
pendent ãnd Ge may write 

where we define g(")(P) - g(")(~) and A(") = g(")(P) A(p). We expand - n(,, 
w.r.t. the basis {e,): - 

hence follows that 

and similar relations obtained by raising and lowering the indices. 
The normalization conditions of - e, and - n(,, give2': 

From the discussion in Sec. 2, we fínd that, under a Lorentz transfor- 
mation, 



e g ,  h$) = A", h;,), so that the index (a) is unaffected. From A'") = 

= h'"), A" easiiy shown,we see that the A(") components are unchanged 
too. Thus, tetrads of vectors hfa) (or n(,)) define a (fixed) frame of re- 
ference w.r.t. which any vector A, can 6e decomposed. The linear inde- 
pendence of hf,) is easily demonstrated. We also note that A. - B - = 
= ApB, = A(")B(,) and that the inner product remains invariant under 
a Lorentz transformation as well as under a rotation of the frame of 
reference, that is, when 

n(~)  -+ N(a) with N(,) N(p) = g,q(p) or, equivalent l~~~,  

For the 2-spinor space, a spin frame may be defined in terms of two 
vectors ql) and nc2), in a complex two dimensional space, with basis 
vectors ?i1 and h; which satisfy, like hA, the normalization condition - - - 

n ( ~ ) '  E(B) = E(A)(B), - (8) 
where q1)(2)_= - E(z)(I) -=_I, E(A)(B).= O for (A) f (B), (Ref. 29). The 
spin frame is completely specified in terms of the components hB(A) of 
the vectors qA) = h(A) hB = - hB just as h"(,, did so in the earlier 
case. From-Eq. (4-23),-it follows tLat 

E(A)(B) = ECD h C ( ~ )  hD(g) = ~ D ( A )  hD(q = - h D ( ~ )  ~ ( B ) D .  (9) 
This leads to30 

where E &(A)(B) and they are used to raise or lower the indices 
inside brackets in a fashion identical to that of cAB and cAB: for example, 
n(A) = &4)(B) - n ( ~ )  - and u ( ~ )  = - E(A)(B) dB), etc. From 

we have the expansion 

The inverse relations3' are 

and others obtained by raising and lowering the indices. A Lorentz 
transformation A induces, according to the discussion in Sec. 4, the 
transformation 



h;:) = h&). ( 1  5 )  
Similarly, we have hiA)B = ( S ; ' ( L I ) ) ~ ~  h(A)C. Thus, the components 
u(*) are unaltered. For the inner product we note u .  4 = uA 4A = 
- A u (hA = U ( A )  = - 4(A). It thus remains inikriant under 

Lorentz transformations as well as under spin-fi-ame rotations. The 
latter constitute the transformations defined by 

N(A)  - = S(B)(A) n ( ~ )  - HB(A) !E' (16) 

such that N(,)- Nia = &(A)(!). It follows that E(*) (B)  SIA)(c) S ( B ) ( ~ )  = EC)(D)  

so that thécomplex matrix (SI;]) is unimodular und belongs to the 
SL(2, C) group. Also, H?) = S[s] h&) and u == dA)  n ( ~ )  = u ( ~ )  N(A) 
implies u(") = (S-')("),, We observe thac while Ü'") is unaltEed 
under Lorentz transformations, U* is unaltered under spin-frame rota- 
tions. An exactly analogous discussion goes for the complex Zspinor 
space with dotted indices spanned by {h;, - h;). - 

An arbitrary spinoy irAi, likewise, may be ex anded w.r.t. the spin frarne, 
uAB = h& h& u(')('). For the case of ow"'8: we have 

Under a Lorentz tránsformation, the quantities transform like 
a four vector, viz., 

Morepver, we may easily show that ow("):') = 2 S@] 4{$ and 
&A)(B) O;A)(i) = 2 so that o K ( l ) ( l ) ,  0""(22' 7 oP( ) and &2)(2)  are a 
linearly independent set. We may thus expand3' any four-vector Uw 
in terms of them 

The explicit expressions for are 



We also note that 

Thus, constitute a basis in the Minkowski space of fouj nu11 
tetrad of vectors, two of which are real, e.g., ap(')(l) and õp(2)(2) and 

and op(')(') are complex conjugate of each ~ t h e r ~ ~ .  

6. Representation of the Four Group in Spinor Space 

The following 4 x 4 matrices A,, A,, A,,, together with the identity matrix, 
constitute an Abelian group called thc Four-group: 

They correspond to space reflection, time inversion and space-time 
inversion, in Minkowski space. Combined with the restricted Lorentz 
gr&p, we obtain the Full or Extended Lorentz group. We can show 
that, if we stick to linear transformations in representation space, it is 
impossible to represent the four group by 2 x 2 matrices while main- 
taining the mixed quantities opAB' fixed according to Eq. (4-26). For 
A,, we have 

(ok*!) = - sl&) (o:AB) S;(A,), k = 1, 2, 3, (2) 
(ooAB) = SI (A,) (ooAB) S: (AJ, 

while, for A,, 
( d i " ~ = + S l ( A , ) ( o k A ' ) ~ ~ ( ~ , ) ;  k = l , 2 , 3 ,  (3) 
(ooAB) = - Sl(At) (ooAB) $(At). 

In either case, we require S1 ok ST1 = - ok (or S1 ok = - ok SI) for 
k = 1,2,3. It is easily verified that it is not possible to attain this in 
terms of 2 x 2 matrices for which (o0, o', 02, 03) is a complete set. The 
situation is different in 4-dimensional spinor space and the improper 
transformation can be represented by linear transformations by means 
of 4 x 4 matrices. 



The restricted Lorentz group is invariant sub-group of the full group 
and one verifíes the following relations: 

where AR is a space rotation and AL pure Lorentn: transformation, say, 
in (01) plane. Hence, we require the correspoinding representation 
matrices in spinor space to satisfy: 

SU'(A,) yk y1 S(A,) = yk y' = S-'(A,) yk y1 S(At), 
S-'(A,) y" yk S(A,) = - y" yk = S- '(A,)  y0 yk S(Af). ( 5 )  

At the same time, we require that the yPab behave: as invariant "mixed 
quantities" under the full group, according to Eq. (3 -1 ) .  This leads to 

S(AJ yk S- '(A,)  = - yk,  S(As) y0 S-'(A,)  = y0 (6) 
and 

It is easily shown that these i m ~ l y ~ ~  

or, written explicitly, 

From Eq. (2-18), it follows that we may choose 

and, then, 

We note that, though A,, = A,,, one has S(A,,) = - S(A,,). Hence, we 
have double valued representations of the four group in spinor ~ p a c e ~ ~ .  
The constants 'a' and 'b' may be fíxed by requiring that the parity and 
time inversion operations, applied twice, lead to the identity transfor- 
mation up to a (+) sign due to double-valuedness of the representation. 
Thus, 



so that36 a =  k 1 ,  )i; b =  $ - I ,  )i; ( a I 2 = 1 ,  lb12=1,  a 4 = 1  
and b4 = 1. We find, then, the following r e l a t i ~ n s ~ ~  

which may be combined with Eq. (3-7) as 

for the full group. This may be interpreted as the transformation of a 
matrix A, according to 

where Sgn(Aoo) = + 1 according to whether Ao
o 2 1 or Ao

o 5 -1. 

The metric matrix, B, in the spinor representation of the y matrices of 
Sec. 4, is given by B = - y ,  y0 y2. We find 

or BLb = S -  '(A,)", S -  '(AJdb BCd = a2 BUb, etc. Taking inverse of Eq. 
(6-17), we find similar relations for BUb. We note that B'"" BCb = B"' BCb = 
= - 6% since the Kronecker delta is an invariant tensor under the 
full group. The tensors Aib, Bub and B " ~  are invariant only up to a 
sign under the four group. 

7. Transformation of Spinor and Bilinear Invariants 

The transformation of spinors, given by Eqs. (2-23), (2-25), (2-27) and 
(2-29), reads, in terms of 2-spinors of Sec. 4, as follows: 

'lime-inversion: utA = i b v', vtA = i b-'* UA, UÁ = i b  ' V', v i  = ib* uii, (2) 

and the relations obtained by taking their complex conjugate. From 
Eqs. (4-12) and (6-17), it follows that 

2 Ai 
(EAB)"= a (6 1, AB r - 

(E - a2(Gi), (3) 



for parity and 

(cAB)' = - b2 A B r  - (E ) - - b2(&;;), (4) 

for time inversion3' 

The bilinear invariants, of Sec. 3, take the following form in spinor 
representation 

where 

P(Pseudosca1ar) = 5' A;, yb,, qc = - i(ui XA - v.4 $'I; (7) 

V(4-Vector): 
1 .  V'' = - tu A;, yPCb qb 
2 
1 

= 3 "$1 (gB Ui + UB Xd); (8) 

A(Pseudo vector) : 

T(An$isymmefric tensor): Fwv = A;,(CP")' qb is, apart from a factor, 
E [ u ~ o ' ~ ~ C T ~ ~ ~  XE + UA fJpAB õBC bC] - (,U H V ) .  

For r. = qa, one has 

We observe that the invariants S and P vanish for 4-spinors of the type 

(;ii) = t = v It is easilg siiown that i;" V' := A V R ,  = 4 ( 2  .fi) x 

(4B uB) which, for ( = q, reduces to 4(uA vi) (uB ult) and is real. Hence, 

= q = ( ~ k )  defines a real nu11 vector, or th?t a 2-spinor defines a 



real nu11 vector (Ref. 2). The two scalars S and P and the two vectors 
V and A behave differently under improper transformations. For 
example, 

the last equality following from the invariance of ywab under the full 
group. From Eq. (6-15), it follows that 

= + 5' A y" 5, A = A,,. 

For pseudo-vectors40, t' A y5 ypt, we have opposite sign for A = A, 
or A,. For scalars and pseudoscalars, we obtain 

and, for tensors, 

the upper sign holding for A, and lower for A,. 

The choice of the phase factors 'a' and 'b' may be narrowed down by 
appealing to the antilinear operation of charge conjugation associated 
with Dirac equation: 

On takiqg the complex conjugate, multiplying by A;, and using A;, ypcb = 
= Aib yp;, we obtain 

From (-(Y")~, - = 2gpv, it follows that there exists a nonsin- 
gular matrix C, such that41, Cyp C-' = - (yp)T or ypac CCb 

= - Cac ypb C) 

where C-' (Cab) and whose invariance under the restricted group, 
may easily be verified. Hence, 



where the charge conjugate spinor r] is given by 
qa E CC" Ai, c*b. (1 6 )  

It corresponds to a Dirac particle with charge (--e). A candidate for 
C is 

Requiring that charge conjugation applied twice leads back to the 
original spinor, gives I d l 2  = 1. 

We ~ e r i f y ~ ~  that under a restricted transformation 

r]1" = ê c a  A ; ~  , y b  = c c a  A i, S(A?~ cd = qb; (18) 
now impose8 that r]'" - C"" Aic 5 * I b  satisfíes the same relation under 
the improper transformations as well: this leads to 

C'-' E S(A) C-' ST(A) = C-', for Aoo 2 1, 
= -C-', for Aoo < -1. (1 9) 

This, in turn requires, a2 = - 1, b2 = - 1, e.g., a = f i, b = & i. 
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