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The spinor space representation of the Homogeneous Lorentz Group offered by Clifford

numbers in Minkowski space is reviewed. Two-spinor calculus naturally followswhen
spinor matrix representation for these numbersis used. Representations of theimproper
four group are also discussed.

Examina-se aqui, a representagdo espinorial do grupo de Lorentz homogéneo, que

decorre dos numeros de Clifford, no espaco de Minkowski. O céculo de espinores, a
duas componentes, resulta naturalmente quando se faz uso da representacdo matricial
daqueles nimeros. S&o também discutidas as representacfes do grupo impraprio.

1. Introduction

The purpose o the present paper isto discuss the four-component and
two-component spinor analyses, starting from the representation of
the Lorentz group in terms of Clifford numbers. The results are not
new'; however,agood deal of clarificationisachievedin thediscussion.
With an extensive use o spinors in Riemanni an space’, thisis perhaps
desirable.

In Sections 2 and 3, we review the four-spinor representation of the
restricted homogeneous Lorentz group, offered by Clifford algebra, in
Minkowski space. Section 4 is devoted to 2-spinor calculus which
naturally follows when we express the matrices y* in the spinor repre-
sentation and the SL(2, C) group structure is made transparent. In
Section 5, we discuss how a spin frame, in two dimensional spinor space,
can bedefined i terms of two legslikethefour-legsor tetradsof vectors
frequently used in Minkowski space. A set of null tetrad of vectors
B is also constructed. Finally, in Sections 5 and 6, we discuss in
detail the representations of the improper Four group, in spinor space,
together with the transformations o bilinear invariants.

*Postal address: Av. Wenceslau Braz, 71, 20000 — Rio de Janeiro GB.
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2. Notation. Representation of the Lorentz Group by Clifford Numbers.
Spinor Space

The homogeneous Lorentz group (H.L.G.) may be defined as the group
o 4 x 4 real matrices { A) which satisfy

ATGA=G, (1)

where® A= (A%, G=(g,) =(9,) (A)" =A, withgyv=0,1,2,3
and goo = 1, g = — 1,k =1,2,3,g,, = Oforu # v. Wewill be mostly
concerned* here with restricted H.L.G., referred to simply as Lorentz
group, for which

A% > 1, det A=+ 1. 2)
Equation (2-1), written explicitly, reads
(AT g APy = gup A% AP, = g, (3)

Here the summation on repeated indices is understood.

The matrix group can be represented by the group of linear transfor-
mations on a four dimensional real linear vector space, cdled Min-
kowski space, with basis vectors e, which transform as

duzlih)e =A,e. @)
The contravariant components of a (real) vector A w.r.t. the basis
{e.}, indicated by real components 4%, e.g., A= 4*g, transform as
AP = A% AY, (5)

since
A=LANA e =A"N\ e =4%e, (6)
The group o contragradient matrices {A~'} is isomorphic to the
matrix group {A). Denoting the basis vectors in the corresponding

representation space by ¢*, it can be realized asa group o linear trans-
formations defined by

et = (A1) e 7

The covariant components A, of vector A w.r.t. this basis (A= A, €)
transform as

Ay= AT A = AT 4, ®)
Equation (2.1) implies that
A" '=GAG, 9)
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so that the contragradient representation is equivalent to the repre-
sentation {A). We note also, from equations (2-5) and (2-8), that the
Kronecker delta &4 is an invariant tensor. From the fact that A~! is
alsoalorentz transformation, Eq. (2-3)impliesg, = (A-)", (A7), gu
which states that the indices ¢ and v are covariant tensor indices and
that g, is an invariant tensor.

It is clear that (g, ¢) transforms like g for
G €) = G €7 = gup A% A (A-1)) & = A, (gap €°).
Thus, we may define
e =Gu € (10)

which is an aternative statement of the equivalence expressed by
Eqg. (2-9). This leads to

A =g, AP (11)

In other words: while the components (A°, A', A2, 4%) transform by
the matrix A, the components (A°, —At, — A?, — 43) transform accor-
ding to the matrix (A~*)T. The two representations are equivalent
since the former can be obtained from the latter by a change of basis,
in the representation space, according to Eq. (2-10).

We may then introduce a metric tensor g**. Using Eq. (2-11) to lower
the indices we have:

Guv = Guu Gpv gaﬂ (12)
which gives® (@, = g..):
9% gp = 0. (13)

Thus, in matrix form (g*) = G~ X=G), s0 that ¢°° = goo = T 1,
g =gu= -1 k=123 and ¢ =0 for u # v. We may thus use
g" to raise the indices and g, to lower them. We note that, because
o the equivaence, the same representation space is involved for the
two representations. The introduction of upper and lower indices is
convenient in that (A, B*) isan invariant (while A* B* is not so) under
Lorentz transformations. The Lorentz group can thus, aternatively,
be defined as the group of linear transformations which leaves the
bilinear-form,

XX, = guy XXT = g" X, Xy, (14)
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invariant, where x* = (x°, x!, x2, x%) are the space time coordinates.
Finaly, from Eq. (2-3), we may derive®

g = A% A% g™ (15)
We may define an inner product, in Minkowski space, by
A-B=A,B" =y, A"B" =g" 4, B, (16)
which implies
€ & = Juy, e e’ =g (17)

The hypercomplex Clifford numbers may be used to construct a re-
presentation of the Lorentz group. The Clifford algebra, in Mlnkowskl

space, is defined by a set of four hypercomplex riumbers 7, v, y?, y*
which satify the anticommutation relations’

P+ Y = 29" L - (18)
Any product o y* can be reduced to, using Eqg. (2-18), to one of the
16 elements I, 7%, (*y" — y"7"), 57", vs, where ys = y%y'y*»*. Repre-
senting the y”* by (r x r) matrices, we can show that the 16 elements
are linearly independent so that r must be > 4. It also follows that
the representation of the algebra, by 4 x 4 matrices, is irreducible.
In thefollowing, the y"* will be regarded as (4 x 4) (irreducible)matrices.
It may easily be shown that the 6 elements=*’ = £ (y*y" — y"") satisfy
the commutation relations of the Lie algebra of the generators M**
d the homogeneous L orentz group, viz.,

[£7, £7] = i{g"® £ — g" % — " T4 + g" TH), (19)

Thus, we can obtain a representation, by (4 x 4) complex matrices’,
{S(A)}, of the Lorentz group, in terms o Clifford numbers, with

S(A) = exp " 2 Oy Z‘”} (20)

where'® w,, = A, — g,. The corresponding representation space
is 4-dimensional complex vector space, called Spinor Space. Equations
(2-18) to (2-20) lead to

STHAW* S(A) = A%y 21)

Denoting the basis vectors of spinor space by Z, (a=1,2,3,4), and
the components of a vector &, w.r.t. this basis, by & eg, (=87,
corresponding to a Lorentz transformation A, in Minkowski space,
the transformation in spinor space is defined to be the linear transfor-
mation given by
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Z, = UNZ, = SO Zs 22)

Here, S% are the matrix elements of the matrix S. The group property
o the transformations (or the operators U(A) defined on spinor space)
may be easly verified. The components ¢ are seen to transform as

&% = (UM = S(A)s . (23)

The contragradient representation constituted by the group of ma-
trices'* [S™YA)]" is redized on a representation space, whose basis
vectors will be indicated by Z° The group of linear operators acts
according to

Z° = (STHA) 2, (24)
and the components ¢, of a vector & = ¢,Z° transform as
&= (ST AL G = ST & (25)

We observe that &%, is an invariant under homogeneous Lorentz
transformations.

The conjugate representation carried by the group of matrices {S*(A)}
is redized on a space with basis vectors indicated by Z;, with

Zi = S(NViZs, St = (%)%, (26)
and . . .

&t =S5 &, 27)
where the & are components of & wrt. the basis Z;.
The representation contragradient to the conjugate one is redized
on a vector space with basis vectors denoted by Z% with

7% = (S A2 (28)
and - .
gy = (ST A)G, (29)

3. Invariant Tensors

It will be shown below that all these representations, in the present
case, are equivalent to each other and that there is essentialy, only
one irreducible representation. However, it is convenient to work
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with upper, lower, dotted and undotted indices (just as in the case
o Minkowski space.

Eq. (2-20) can be written explicitly as (y*)% = y"%):

P = ALSA) LS AN a 1
The "mixed quantities” y“%, thus, are invariant or held fixed under the
Lorentz transformation of the indices defined above and, under the
tacit assumption, that the index ", in y®, is a space-time contravariant

index, is consistently assigned. Since A~1! is a Lorentz transformation,
we also have that

P = (AT PASTHAY LS ™ a 2
Taking the complex conjugate of EQ. (3-1), one obtains
P = ARSIAYAS™ AN 3)

It may beremarked that the Kronecker deltas 8% 6 arealso invariant
tensors.

The equivalence of the representations indicated above follow from
{’VuT; va}‘l' = {Yu*’ yv*}+ = {Y‘ﬁ, ,y\’";‘}+ = 2gﬂ\1 Ia (4)

which from the fundamental lemma® assures the existence of non-sin-
gular matrices A, B, C such that'?

APAT =y BY'BT =9, OpCTi= ()
One can show, then, that
BS(A)B™' = S7'T(A) or B~ = S(A)B™'ST(A), (6)
ASMNA™L = S"TTHA),  CS(ACT! = S¥A). (7)
We can write Eq. (3-6) explicitly as
(ST BS ™ = (ST aBealS™)% = Ba (8)
or
Bay = (S™HA)oSTH(A) Bea = S(AY 2S(A)6Beas )

where the matrix B = (B,;). This relation shows that B, is an inva
riant tensor, with a and b transforming as covariant indices. The B
matrix plays the role of metric tensor in spinor space. Since B,Z”
transforms as Z,, we may define
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Z, = BapZ", (10)
which implies
éa = Bbaéb- (11)
It may be shown that B may be chosen unitary and antisymmetric'>.
The metric tensor B> can be introduced by

Bab = BcaBdeCda (12)
so that (Bab = - Bba)
Bthcd = - 5cb, Bcchd = 511“ (13)

and B® = — B as expected. Also, if B £ (B,;) then (B*®)= — B~ L.
We may aso choose a representation of the y matrices such that B is
a real matrix; then, Bx = B= —B" = —B~! and (B*®)= B. Using
Eqg. (3-13), we have

& =B, Z'= - B"Z (14)
against ¢, = —Bawl® and Z, = BaZ".

We may define the inner product between two vectors £ and n by
En= En® = Bal®n® = By, (15)
From Z, = 6".Zy, etc., it follows'* that
ga' gb = Ba, g"' Zb = B?,
22y = 8% = — 2 2. (16)

Other properties of inner product are
cn=-né @)n=clm=aln C+&)rn=EC n+&m
Etn)=Cm+en - (17)

and ¢ & = &, =0forall ¢; aso, & 4 =0, for all y, implies 5 = 0.
The representation space is called Symplectic space and the trans-
formations S(A) leave invariant the nondegenerate skew symmetric
bilinear form given by EQ. (3-15).

An exactly similar discussion can be carried out for conjugate and its
contragradient representations. Sincg (S7!T)* = B*S*B*~' the, in-
variant metric tensors are By, and B> where (B;;) = B* and (B )=
— — p*~1, which for a real matrix B, are the same as By,
Weobservethat &4y, isan invariant but &5, is not so and that & trans-
forms like &* while & = By & transforms like &%

d ab
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We consider now the equivalence relation of Eq. (3-7). It can be written
explicitly as

(ST AeS™ Y% = (S~ Asd STV = Aun,
or
Az = (STHAYL(S™HAN S, Acas (18)

where we write A = (4;,). Thisrelation shows that 4;, is an invariant
tensor with one dotted and another undotted covariant index. Taking
the complex conjugate we obtain invariant tensor A, Raising the
indices by use o metric tensors, we obtain invariant tensors!® A%,
A A%, A%, ete. It |s clear that they are useful in constructing inva-
riants of type & Az and o type é“*A;h &> which may not vanish, in
contrast to £°¢, = 0. We may choose® A to be hermitian, e.g., A, =

= Apa = (Apa)* and A% = 1.

Other invariant hermitian tensorsare!® I'* = (I'4,) = (4z.7"%), AT =

= (T'%y), Ays = (Is)aps, (szsy") = (I'%)s. For example, I'}; = (F;,f,,)_* =
= (A YD)* = Ape s = V"5 Ae = " TA)ip = (Ay)m = Tl Since,

from Eq. (3—5) Ayt = y‘“ A. Tensor quantities may be constructed

from a quantity_like n®, e.g., scalar Az n"” pseudoscalar I'sa 7

four-vector T%, #*, pseudo four-vector T%z, 1, antisymmetric tensor
Tin® (Ref. 17).

In particular, recalling that &é transformsasé*" we have the well known
bilinear covariants £+ 4, & = &' A £, E7(A4 y)¢ = EXTh, &, & AysyP,
EATPEand £ Ays & transforming as a scalar, vector, pseudo-vector,
antisymmetric tensor and pseudo-scalar, in Minkowski space.

4. Spinor Representation of y matrices. Two-Spinors

To bring out clearly the relationship o the 2-spinor calculus with
the 4-spinor calculus, discussed above, we use a convenient matrix
representation for tracelessy matrices.

We take
PO =90, Y= =y k=1,23, (1)

so that ys = y°9'9?y* = —y5; 93 = — 1. Clealy, y°y*y° ="', s0
that we may identify A = (4;) = y° = A' = 4~'. Furthermore, we
will take® they*s to beodd matricesso that £**, hence, S(A), will beeven.
A suitable representation is the spinor representation, defined by
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0 0 0 o . [a® 0
y0=<0.0 ((;)a yk=<_0.k 0>a ?5=l<0 __O_0>9 (2)

where the &,s are the, 2 x 2, Pauli matrices,

0 1 0 —i (1 0y o (10
“=(p 7l 70 7ol ) )

We also note that, for this representation, 2T —y2 T =
— 91, 93T = —y3 and yf ='y5. Ared matrlx B ﬁtlsfylng Eq (3- 5)
canbetakentobe(B B*=—-BT=_B)
. 2
_ 0.2 _ f[ic® 0O
B=—ysy 7" = <0 iaz>, )
so that
01 00
o —-10 00
(Ba) = (B®) = (Bij) = (B*) = 00 01 )
00 —-10
Also,
. [o(a—ib) 0 _,
Wpo 27 = ( N 6’-(&’+ib)>, (5)

where bk = 7(ka — ng); & = 1 (wm — @), k, I, meyclicand o~ 3 =
=o'a' + 6*a® + ¢ a. For S(A), we find

S(A) = (Sl(lg) Si rOI(A)>’ (©)

where

S1(A) = exp [— Lz (@ — iF)} (7

N

The representation is unitary for space rotations but is, in general,
non-unitary. In so far as the restricted Lorentz group is concerned,
S(A) appears as a direct sum of 2-dimensional representations.

The, 2 x 2, matrix groups {Sy(A)} and {S{~!(A)}, themselves, cons-
titute*® two inequivalentsrepresentations of the Lorentz group. Under
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parity transformation, we will see below, the two get interchanged so
that the representation is irreducible under the full Lorentz group.
We note that det (S;(A) = T 1, so that {S;(A)} and {Si I(A)} are
two inequivalent representations of the SL(2, C) group?°

It is clear that the two upper components (&%, £2) of &* transform, under
a Lorentz transformation, among themselves according to the 2x 2
matrix S;(A), whilethe lower components (¢£3, £4) according to S;~*(A).
A change of notation is thus suggested:

= & ur = &% vi = &3, v; = &Y, ®)
4 = Si(AY'suP, v = (ST AN vs, )
WhereA,B=1,2andA,B=i2AIso€ - &= _

W, &,
=8 =yl =A==V, L= =V, and (&, &) transforms
according to the matrix S7 !(A), while (&3, &4) according to the matrix
S¥(A). We may, thus, introduce the notation®!

w=&,  w=&, =&, vz, (10)
0 that .
Ug = — e4pU°, v = — eip0P, (11)

where 4B, %13 are Levi-Civitta symbols®? and uy = (S; Y(A))%4 us,
= (Sy(A)"5u. Weremark that the invariant tensor B is an even
matrlx in our representatlon

. B -
B = (By) = <%E) ) (gA'B)> , (B = ((80 )

where (é a8) = (C*B) = (e4p) = (EA'i’ = ( 0 1)- From the identities
lik€23 -1 0

ECDSAlcSBID = (det Sl) SAB = EAB, (13)

if det S, = 1, weseethat 42, ¢4, £, ¢4 areinvariant tensors. Hence,
equatlon (4-11) expresses the equwalence o representation S; with
(SH~' and S¥ with S; 7. Since &%* transforms like &4, we see that u”*
transformslike u* WhllEvA- transforms likev,. We will adopt the custo-
mary practice of identifying* = w*4 and u; = u%. There is no inva-
riant quantity (like Ag) which relates the dotted and undotted com-
ponents since the conjugate representation («*) i~ not equivalent to
the representation (U*). Likewise, we define the basis vectors i by

W=z, h=Z, k=2, K=z (14)
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and

hi=2°=-2,=-h, h=2"=2Z= (15)
so that
E=uwlha+ vkt = —ug bt — v hy (16)
and
ha=—eaph®,  hi= — e hP. (17)

Under a Lorentz transformation, the basis vectors h transform as

Hy=Sy(AP hs,  H= (ST AP,

Wi=SAPihs A= (STHA) 52 (18)
From
£,45 6% = — 6C,, eip B - _ 567 (19)
it follows
uh = "Buy, b = e hg, (20)

and similar expression for dotted indices.
From Eqg. (3-16), we find the following inner products:
ha h® = = W by = O = i 1P = = W g,
hat 1P = hic B = It s = by = 0, 21
and
ﬁA‘ l’l_B =ep =28 = _I’EA' ﬁB,
hi hg = ejj = e'" = h*- h". (22)
The vector spaces generated by undotted and dotted basis vectors are
orthogonal. The inner product of two vectors u and ¢ in undotted
space is -
u Q = UAﬁA' ¢BﬁB =epu’ §® = ePusdp = —uld = uy o* (23)

and satisfies the properties given in Eq. (3-17). The representation
space is a symplectic space Sp(2) in two dimensions. The same goes
for the dotted vector space and the linear independence of basis vectors
fallowsfrom equation (4-22). We remark that u* ¢, = — u, ¢ and
utuy = 0.
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In the spinor representation, the Eq. (2-21)leads to**
o* = A%, S1(A)X’Si(A), (24)
from which follows that
o* = (o"4P) , (25)
and
0" = AR S (AY e S (A5, (26)

showing that o8 defined by equation (4-25)is an invariant mixed
quantity like (y*%). On lowering the indices with the invariant metric
tensor ¢4 and using

£40 51N D 8 = — (STHANE, = — S1(A™hHE,, (27)
we can show that
O'AB = A%, (ST HA) 4 (ST HAN s 6% chp (28)
Both (o"AB) and (c%3) are hermitian matrices, that is o*4# = o"®",
a'is = os = (0¥p1)*. From (o*45) = (eac eip cr"CD) = —(E ¢* E) We
see (095) = 6%, (6'4p) = — 6%, (6%43) = 02, (6°43) = — ¢°, 20 that
(0%p) = 0%  (d%ip) = (*ap)* = — 0", k=1,2,3 (29)

The matrices (¢*43) are not all hermitian contrai-y to (opA'),(a‘,‘;B) and
(645). 1t can be easily shown

4B gvs 4 gAB g — 2 g*r o e, (30)
from which follows that
P65 = 29" (1)
Then,
Ouch "B a =2 va Ouch = 26ch,
which implies?3
ouch 048 = 264: 658}, 32)
Other smilar relations follow by raising or lowering the indices and
taking complex conjugation. From Egs. (4-26)and (4-31), we have
20" = N SS1 AV e (S:(A)P5 07 0”45 (33)

or
_ 1 :
Ava = guv(A I)au — i SI(A)AC Sl(A)BD O.azCD O'VA[;,
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0 that

. , 1 i
A¥, = % SuAY'e S1(AY5 0, 0”45 = 5 Gu Tr {(6"54) S1(A) a“Sl(A)}-(34)

The following explicit form of y* will be useful latter:

. 0 (O_uAl.B)>
(%) = <U7‘;.J‘T > (35)

(c*ip)] O )

0 |(c"4% (36)

(Az'zb V”bc) (

The results obtained here are the main tools, of 2-spinor calculus,
discussed in Refs. 1 and 2.

Eq. (4-26) shows that o8y, » transforms as a 4-vector in Minkowski
space while, for a vector U*, (U, ¢*45) transforms as u43. Thus, we
may establish a correspondence between u45 and a 4-vector U* by
the relation?®

U* = % ohAB Uqp, Uap = Ouap U (37)

U*isreadl if u,g is hermitian, it isanull vector if u s = £4 13 and area
null vector if u.s = + &4 &5 (e.g., a 2-spinor, &4, determines a real null
vector). Since u4# are components o a vector, in the direct product
spinor space spanned by {hs ® hs},

u = b, @ hy) = U, 65, @ hg) = U, EX,
where
E =o"%(hs O hi) (39)

constitute a basis for a representation o the Lorentz group. In fact,

E* = (A1, 0" ST AV e ST (AY2) 1A S1(A) 5 (e ® hi)
= (A", 0" he ® hy = (A1) E, (40)

thus establishing the correspondence €'« E'. Explicitly,

=@k +h®h),  E'=(®hi+hOh)
E=—ily®h~h k),  E=MmOh-hohk @
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The inner product is found to be

E* EY O'!LAB vCD(hA hc) (hB hD)
T T = MBIy as = gMAB gy = DY, (42)

5. Spin Frame

The expression in Eq. (4-37) reminds us o the tetrad formalism fre-
quently used in genera relativity. The formalism is useful for our
discussion, in Riemannian space, where the metric tensor g** becomes
a function of space-time coordinates while, at the same time, we intro-
duce a locd cartesian frame o reference at each point in space-time.
The tetrads or four legs then connect the world component A* with
local components 4“. We will limit ourselves to the discussion in
which the metric tensors remain constant, i.e., independent of the coor-
dinates. The discussion, in 2-dimensional spinor-space, goes in close
analogy to the case of the 4-dimensional Minkowski space which we
first briefly review.

Consider four vectors ny, (8= (O), (1), (2), (3), such that

Ry Ny = Gy (1)

wheregeow = (1, =1, =1, = 1), guye = Ofor (8) # (f), e.g., 1o is time-
like and ny, ne), n(3) are spacelike. They are clearly linearly inde-
pendent and we may write

4 = A" )E(a) = A(a)ﬁ(a) s )

where we define g®® = g, and 4® = g®® 4. We expand ng
w.r.t. the basis {e):

E; = h ;e# = ha e
=g )(B) Hep) _h(a) eu = hm e, (3)
hence follows that

A=Aey =AY hy ey “)
or v

At = A bt ©)

and similar relations obtained by raising and lowering the indices.
The normalization conditions of g and n, give®’:

Jap KO WP =g

Guv Hlay By = G- (6)
From the discussion in Sec. 2, we find that, under a Lorentz transfor-
mation,
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N = LM ney = hiy A ey = Hlgey, (7)

e.g., hfy = A", hiy, SO that the index (a) is unaffected. From A® =
= h®, A*, easily shown,we seethat the A® componentsare unchanged
too. Thus, tetrads of vectors hf;, (or n(,) define a (fixed) frame of re-
ferencew.r.t. which any vector 4* can be decomposed. Thelinear inde-
pendence of hf;, is easly demonstrated. We also note that 4- B =
= A"B, = A B, and that the inner product remains invariant under
a Lorentz transformation as wel as under a rotation o the frame of
reference, that is, when

Nw = N With Ny Nygy = gy O, equivalently?®
hlyy = RP ey 5y with gy p) R R 5y = ga) g

For the 2-spinor space, a spin frame may be defined in terms of two
vectors ngy and ng,), in @ complex two dimensional space, with basis
vectors iy and h, which satisfy, like k4, the normalization condition

a4y "By = EayB)s 8)
where 8(1)(2) — o)1) = 1 Euyp) = 0 for (A)=‘= (B) (Rd 29) The
spin frame is completely specn‘“ ied in terms of the components h® 4 of
the vectors 4 = h®4y hg = — hayp h® just as k¥, did so in the earlier
case. From Eq. (4-23), it follows that

&a)B) = €cp hC(A) hD(B) = Npa hD(B) = — hP., hp- ©)
This leads to3°
8AB — E(C)(D) hA(C) hB(D) — hA(C) h(C)B o h(D)A hB(D ) (10)

where 4® = ¢ 45 and they are used to raise or lower the indices
inside bracketsin afashionidentical to that of ¢,5 and &*®: for example,

A A)B
ﬂ( ) = X )H(B) and Ud) = — EyB) u® ), etc. From
u= u Ry = 7 Way Q(A) =u? hB = — Up }_13, (11)

we have the expansi on

:_ hA U(B) - - h(B)A U(p)- (12)
The inverse relations®! are

U = — B B = By,

hA = hA N = h(C)A E(C) (13)

and others obtained by raising and lowering the indices. A Lorentz
transformation A induces, according to the discussion in Sec. 4, the
transformation
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Ny = héy hg S 1(A) 5 héy he = h(ﬁ) hg (14)

or
hi% = S1(A)Pc by, (15)
Similarly, we have h{ gy = (S *(A) s huc. Thus, the components
uY are unaltered. For the inner product we note u- ¢ = u, ¢p* =
—U” da = upy ¢ = — u™ ¢4, It thus remains invariant under

Lorentz transformations as wel as under spin-frame rotations. The
latter constitute the transformations defined by

Ny = 8Py nw = HP 4 by (16)
such that N(A)' N(B) = &4yB)- It follows that &yB) S(A)(C) S(B)(D) = &)y
so that the complex matrix (S{g}) is unimodular und belongs to the
SL(2, C) group. Also, HE, = SG hE, and u = u nyy = U Ny,
implies U@ = (™1 5 u®, We observe that, while ¥ is unaltered
under Lorentz transformations, u* is unaltered under spin-frame rota-
tions. An exactly analogous discussion goes for the complex 2-spinor
space with dotted indices spanned by {h;, h;).

An arbitrary spinor 4B, likewise, may be expanded w.r.t. the spin frarne,
w'® = bty hBs u©P. For the case of "%, we have

GtAB — hﬁ: ) h?f)) MOND) (17)
or . . .

GHAB) = pd) pil) Gueh, (18)
Under a Lorentz transformation, the quantities ¢*“® transform like
a four vector, viz.,

g HAB) — A*, o’ B (19)

Moreover, we may easily show that ¢“® D) = 25 84 and

G AO® g o =2 g™ so that gDD, gHU@r gHO g Gu@R) are o

linearly independent set. We may thus expand® any four-vector U*
in terms of them )

U* = Uiy O-ﬂ(A)(B) = U4h O-uAB, (20)

where

1
Uayd = 5 Ouaxd U™ (21)

The explicit expressions for ¢*“® are
Go(A)(z_i) = 1O RP + hgh P, Gl h‘l’?),
G2AOB — (RO D+ O ) GPE = e B — o p® ()
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We also note that
GHAB 5 OB - (4), (B) fixed. (23)

Thus, ¢*“@® congitute a basis in the Minkowski space of four null
tetrad of vectors, two of which are red, e.g., *®® and ¢ and
V@ and ¢*@M are complex conjugate of each other®?.

6. Representation of the Four Group in Spinor Space

Thefollowing4 x 4matricesA, A, A,, together with theidentity matrix,
constitute an Abelian group called thc Four-group:

g 0 /] 0
_1 A=f 1
As= —1 1
0 { 0o -1
- 0
Ae=AA= [ -1 (1)
—1
0 ~1

They correspond to space reflection, time inversion and space-time
inversion, in Minkowski space. Combined with the restricted Lorentz
group, We obtain the Full or Extended Lorentz group. We can show
that, if we stick to linear transformations in representation space, it is
impossible to represent the four group by 2 x 2 matrices while main-
taining the mixed quantities ¢*4® fixed according to Eq. (4-26). For
A, we have

(4B = — $,(A) (@B SIA), k=123 2
(0™B) = 5,(A) (0™8) Si(A,),

while, for A, _
(0*45) = + Si(A) (6*7) S{(A); k=1,2,3, (3)
(0%4%) = — §1(A,) (0™F) Si(A,).

In either case, we require S, 0*S7! = — ¢* (or S, o* = — ¢*§,) for

k=1,2,3. It iseadly verified that it is not possible to attain thisin
terms o 2 X 2 matricesfor which (e°, ¢?, 62, 6*) isa complete set. The
situation is different in 4-dimensional spinor space and the improper
transformation can be represented by linear transformations by means
o 4 x 4 matrices.
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The restricted Lorentz group is invariant sub-group o the full group
and one verifies the following relations:

AT ARA = Ag, AT ARA, = Ag,
ATTALA = ALY, ATTALA, = ALY 4
Agt AR Ay = Ay, Ad'ALAy = Ay,

where Ay is a space rotation and Ay pure Lorentz transformation, say,
in (01) plane. Hence, we require the corresponding representation
matrices in spinor space to satisfy:

STUAY) Y Y S(A) = Yy = STHA) Y S(AY),
STHA) YO Y S(A) = — 70 ¥F = STHAY Y ¥ S(AY). %)

At the same time, we require that the y**, behave: as invariant ""mixed
quantities” under the full group, according to Eq. (3-1). This leads to

SA) T STHA) = =75 S(A)Y°STHAY) =9° (6)
and
S(A) ¥ S7HA) =,
S(A)Y° STHA) = —»° (7
It is easily shown that these imply®*
s = S(A)ys STHA) = (det A)ys, ®)
or, written explicitly,
Y$p = S(AYSTHAY, ¥5a = (det A) 3, ©)
From Eq. (2-18), it follows that we may choose
S(A) = ar’,  S(A) =Dbysy", (10)
and, then,
S(As) = S(A) S(A) = —abys

—S(A) S(Ay) = —S(As). (11)

We note that, though A,, = A,,, one has S(Ay) = — S(A,). Hence, we
have double valued representations of the four group in spinor space®?.
The constants'a and'b' may be fixed by requiring that the parity and
time inversion operations, applied twice, lead to the identity transfor-
mation up to a(+) sign due to double-valuednessd the representation.
Thus,

=+ 1 or a
=+1] or b

b

+ 1
+1, (12)

2
2
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o that*® a= +1, +i; b=+1, +i; |a]?=1 |bP =1, a%=1
and b* = 1. We find, then, the following relations®’

AS(AA™! = ay® = aa*(a 1°) 7' = S(A)Y,
ASA)A™ = bysy* = bb¥b y3 ') T = = (b ys )T =
= - S(At)—‘.—lﬁ (13)
which may be combined with Eq. (3-7) as
ASNA™! = S(A)J’"—l,’ A% > 1,
= —S@A)h A%< -1, (14)

for the full group. This may be interpreted as the transformation of a
matrix A, according to

A = SA) 145 YA) = Sgn(A%) 4 (15)

It

or
Ay = (STHA) s (ST (A Aza = Sgn (A%) sy, (16)

where Sgn(A%) = +1 according to whether A% > 1 or A% < —1.
The metric matrix, B, in the spinor representation of the y matrices of
Sec. 4, is given by B= — y59°y2 We find

B =S 'NA)BS YA, = a*B,

B =S"'TMA)BS YA,) = —b’B 17
or By, =S""(A), STYA)% B = @% By, etc. Taking inverse o Eq.
(6-17), wefind similar relationsfor B*. Wenotethat B*° B, = B* B, =
= — 0%, dnce the Kronecker delta is an invariant tensor under the
full group. The tensors A, B, and B are invariant only up to a
sign under the four group.

7. Transformation of Spinor and Bilinear Invariants

The transformation of spinors, given by Egs. (2-23), (2-25), (2-27) and
(2-29), reads, in terms o 2-spinors of Sec. 4, as follows:

. . “1, . -1.4 A
Parity: w4 =avy, v4= —a*"tuy, uy= —a v, vy =a*ut, (1)
Time-inversion: W =1bvsvi=1b"ugu,=i b*v v,=ibt* v, (2

and the relations obtained by taking their complex conjugate. From
Egs. (4-12) and (6-17), it follows that

(ean) = a?(e"B), €% = a?(ess), (3)
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for parity and
(eap) = — b, €)= — beis), @)

for time inversion®®

The bilinear invariants, of Sec. 3, take the following form in spinor
representation

S(Scalar) = & Az 1 = ' 14 + v ¢, (5)
uA d)A
a _ a — . 6
where 3 <vg>’ n (x/i) ; (6)
P(Pseudoscalar) = é‘; Agp VPsent = —i (uf; YA — Va4 cb;‘); )

V(4-Vector):
Vi = 12 & Ao 'y’

aba(@Fut + B 1Y), (8)

N1l

A(Pseudo vector):
1 . . . 1 . C .
At = > & Asliys Ve n” = 3> oha(P® ut — v® ") ©
T (Antisymmetric tensor): F* = é" Az (ZPY, 1P is, apart from a factor,
~ [ut" 456" g + v4 P 0l §°] — (o).
For & = #“ one has
S = u‘iv,i +utvy=S* P= —i(u’iv,; —utv,) = P*

V= % iU Ut + oF vh) = P,

A" = %G”B;;(MB ut — vP UA') = A**, (10)

We observethat theinvariants S and P vanish for 4-spinorsaof the type
A .
<Zu> = ¢=y. It is easlg shown that V* V* — A* 4, = 4(u* 1) X
A

(¢® vp) which, for ¢ = #, reduces to 4(U’* v;) (UPvs) and is real. Hence,

A
E=n= (?u> defines a real null vector, or that a 2-spinor defines a
U g .
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rea null vector (Ref.2). The two scalars S and P and the two vectors
V and A behave differently under improper transformations. For
example,

(EApE =& Ay E =TS ST ASTIAY Sy ST SE
= A% (é Ay Y =tAaye, (1)

the last equality following from the invariance of »*%, under the full
group. From EQ. (6-15), it follows that

ENAME = A (E Ay, Ae Z1,

— E Ay, k‘123l,\_A
+&Aye u=0 Acor A (12)

+ é' AyE, A=A,

For pseudo-vectors*°, EA ys y*&, we have opposite sign for A = A,
or A,. For scalars and pseudoscalars, we obtain

ETAE =ENAE, for A=A,
. = —& A¢, for A=A, A,
é,T A Vs é/ = - é‘ A Vs éa fOI’ A = Asa Ast:
=+ E Ay & for A=A, (13)

and, for tensors,

f”AVV :iéj‘Aykylé’
EAYAHE = £8 AV YL,
the upper sign holding for A, and lower for A,

The choice of the phase factors'a and 'b' may be narrowed down by
appealing to the antilinear operation of charge conjugation associated
with Dirac equation:

(i7" 0p — m 3% = e 4, 7% & (14)
On taking the complex conjugate, multiplyingby 4:. and usingA, v =
= Ay y*s, we obtain

P A3 9" 0, 8% + mAG E¥ = — e A, Apa y &

From {—("7", —(")T} = 2¢™, it follows that there exists a nonsin-
gular matrix C, such that*!, Cy* C ™! = — (3MT or y#4, C® = — CxyHd,,
where C71 = ((D“”) and whose invariance under the restricted group,
may easily be verified. Hence,

(i y"% @u — md%) ’7b = — e A" Wb, (15)
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where the charge conjugate spinor 1 is given by
1* e C° Ah &, (16)

It corresponds to a Dirac particle with charge (--e). A candidate for
Cis
C= }.’))5 B~ 1 (17)

Requiring that charge conjugation applied twice leads back to the
origina spinor, gives |A]> =1

We verify*? that under a restricted transformation
e = © Ay, &% = €= 4ie SUNPi & = SAYs s (18)

now impose® that " = C* 4;. £** satisfies the same relation under
the improper transformations as well: this leads to

C1=SA)CTISTA)=  C-', for A% >1,
_ _¢-1 for A% < -1 (19)

This, in turn requires, @ = -1, b>= -1, eg, a= +i, b=+

References and Notes

1. An exhaustive list of references on spinor analysis may be found in W. L. Bade and
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27. The first relatlon leads to the second snce g“v I hO R = 07 g = gep) g )
28. Ny = Ry ngy then iy — H'( o = = RPgy W ad A9 — (R-)Pp AP =
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30. Note ¢! )b(A)(B) =¢4 SAB and O 8(0(3) - 55 ;

Bl KNy = — 6Wp = — KY€ hy i By hy© = — 08 = — Kb

32 lee(\)/veexpanded %" in terms of the Ilnearlylndependent St hEy: A“ — A® W =

= A B

33. A similar discussion may be made for the 4-spinor space. However, we do not have
a useful relation analogous to Eg. (4-32) for gamma matrices.

0.,1,,2,3

1
3. 75 =7V = gy e VYV
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35. Due to the haf angles, space rotations also have double valued representation, viz.,
S(0) and S(6 + 2=) represent the same rotation in Minkowski space. There is no ambi-
guity of sign for pure Lorentz transformations (space-time rotations) due to the haf
angles.

36. In spinor representation of y matrices, this amounts to det S(A,) = det S(A,) =
= det S(A,) = 1.

37. These relations (as well as the expressions for S(A;) and S(A,)) are derived using
Eq. (2-18), Ay 4~ ! = y** and the definition ys = 70 3! y2y5,

38. Thus, we need two kinds of 2-spinors to represent parity and time inversions, cor-
responding to inequivalent iepresentations D(1/2, 0) and D{0, 1/2). Under space-time
inversion, »'4 = i(ab)u®, vii = — iab)vi.

39. (") = ("®)* = aP(e4p). €C., and uy = — (s45) U/, etc.

40. y5 = (det A)ys.

41. € must be antisymmetric just like B matrix.

42. €1 =8(A) CTLSIA)T; ST(A) AS(A) = A,
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