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A solution of the problem of heat production in an infinite cylinder is considered by 
an appeal to the concept of convolution quotients" and finite Hankel transforms13. 
The result given by Erdèlyi7 follows as a particular case of the result established here. 

Obtem-se, neste trabalho, uma solução ao problema da produção de calor em um ci- 
lindro infinito que é obtida fazendo-se uso do conceito de quocientes de convoluçãol 

e das transformações de Hankel finitas13. O resultado obtido por Erdèlyi7 decorre 
como caso particular daquele aqui estabelecido. 

1. Introduction 

In mathematical physics, one often encounters singular functions, such 
as Dirac's 6-function15 which vanishes except for a single value of 
the independent variable t (which one usually takes at t = O), is not 
defined at t = O and satisfies the shifting property, 

for every continuous function f (t). 

When one uses such functions in problems in the physical sciences, 
one obtains tentative results which need verification by use of different, 
more exact, techniques. Here, if one uses Mikusinski's approachl1, 
which was later developed by Erdèlyi7, then that insatisfactory state 
of affairs is redeemed. In Mikusinski's theory, the very basic concept 
of function is generalized in a way which is similar to the extension of 
the concept of number from integers to rationals. The abstract entities 
of this theory may be interpreted either as operators or as generalized 
functions and they include the operators of differentiation, integration, 
numbers, continuous functions and impulse functions, as well. 



Here, in this paper, we use convolution quotients in a problem of pro- 
duction of heat in an infinite cylinder. The problems of production 
of heat in cylinders are important in various twhnical applications6 

and, consequently, have been a focus of attention for many authors 
(Refs. 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14). 

The finite Hankel transform13, defined as 

where yi is a 'root of the transcendental equation 

is also used in our derivation. If f (r) satisfies IDirichlet's conditions, 
then, at each point of the interval at which f (r) is continuous, 

the sum being taken over a11 positive roots of' Eq. (1-3). 

In the following Section, we discuss some basic concepts of Mikusinski's 
theory which will be needed in our problem of heat production, treated 
in Sec. 3. 

2. Convolution Quotients 

We denote a function by f or { f (t)), this meaning the function as a whole 
entity, while f (t)  will denote the value (real or connplex) of the function f 
at the point t. Next, let us consider the set C of a11 continuous functions 
and define two operations of addition and corivolution product, for 
any two elements of C, as 

(i) f f g : the function whose value, at t, is f(t) + g(t), (2- 1) 
(ii) f g  : the function whose value, at t, is 

Here, f g (f* g) is called a convolution (resultant, Ftzltung, or composition; 
ff will be denoted by f and a similar notation will be employed for 
higher convolution powers. 



We denote the constant function (1) by h:  

and, similarly, by induction, 

More generally, we may define 

Of course, h E C. Now, for any f E C, we have 

so that convolution of a continuous function with h effects an inte- 
gration of that function with zero as fixed lower limit. Thus, h may be 
regarded as an operator of integration and, h", as the operator of n-times 
repeated integration; indeed. h"fs the Riemann-Liouville fractional 
integral of order a. It is easy to verify that C is a commutative ring, 
the socalled "convolution ring". The zero element of the ring is the 
function (0). There is no unit element in this ring. 

The convolution ring has no divisors of zero7 and, hence, can be em- 
bedded in a field F. Let us call, convolution quotients, (Distributions 
or Generalized Functions) the elements of this field. In F, a11 equations 

are solvable, the unique solution being written as 

Here we are to understand that the convolution quotients of the functions 
f and g follow the same rules as rational numbers. It is easy to see 
that there are elements in F which do not belong to C. 



As an example, we consider the equation 

which is not always possible; hence, e # C. In fact, e corresponds to 
a b-function, i.e., a b-func.tion is the unit element for convolution pro- 
ducts. 

We have seen that h is the operator of integratiori and h" that of n-times 
repeated integration. We now introduce the inverse of h, 

Further, we have for this operator 

If a function a = (a(t)) possesses a locally integrable derivative of order 
n, we then define the extended derivative of order n as 

sna = a'") + a(" - 1) (O) + a("- "(0)s + . . . + a(O)sn- ; (2-10) 

for n = 1, 

and, for a function such that a(0) = . . . = õ!@-')(O) = 0, we have 
sna = a'"), i.e., the extended derivative reduces to the ordinary nZh deri- 
vative of the function. 

We now consider functions involving the operatix S. We have 

s {eu(')) = { a  eu(')) + 1, 
or 

(S - a)  (ea"') = 1, 
which gives 



and, similarly, we have 

3. Solution of the Heat Equation 

Let us consider now the production of heat in an infinite cylinder of 
radius a. If we set that, initial and boundary conditions do not contain 
the coordinate, then the flow of heat takes place in planes through 
the z-axis and the equation of heat conduction is 

where k is the diffusivity of the material; the temperature is a function 
of r, z, t, and the sources of heat are represented by Ad(t)d(z), 6 denoting 
the unit element of the convolution field F (or Dirac's 6-function). 
We set, as initial condition (t = O), 

where f is a function of r alone and, g, a function which depends only 
on z ;  e(a, z, t )  denotes the temperature at the outer cylindrical surface; 
also, we assume that 8 + 0 as z + + co. Multiplying both sides of 
Eq. (3-1) by rJ ,  (r vi) and integrating from O to a, we obtain 

(S. Ref. 13), where 

the v i  being the positive roots of Eq. (1-3). By an appeal to the concept 
of extended derivative, Eq. (2-1 I), we now write the operational form 
of Eq. (3-3): 



Eq. (3-6) is of the form 

a28 
- a 2 g  = F(vi, zI7 (3-7) 

which has the particular solution7 

If z l  4 - co and z2 4 co, then a particular solution of (3-6) is 

which can also be written as 

If we define the function 

WZ - y) /Jk ,  t ]  = ( ~ t ) - l / ~  exp [- ( z  - ~ ) ~ / 4 k t ] ,  (3-1 1) 
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then we can write 

= *  exp (-~$kt)R[(z-~)lJk, r], (3-12) 

After a trifle manipulation and making use of Ref. 7, relation (3-10) 
may be appropriately written as 
- 
O(qi, z, t) = I- exp (- qikt)f(qi) (- u2) g(z + 2uJkt)du 

+ ka A?t- q; 'Jl(aqi) exp [- (yzkt) - z2/4?tkt] . (3-1 3) 

Applying the inversion theorem for finite Hankel transforms, Eq. (1-4), 
we obtain, for the temperature function, the expression 

In the limiting case r + 0, when the temperature is a function of z 
and t only, our solution reduces to the one given by Erdèlyi7. 

4. A Particular Case 

If we set 

f (r)  = a2 - r2, 

then (Ref. 13) 

Taking %(a, z, t) = O and g(z) = I exp (- 1 z I), the solution of our pro- 
blem becomes 

82 
@(r, z, t) = - exp (kt) exp (-2) C $('"I exp (-q:kt) a i Vi Jí(arli) 
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