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A solution of the problem of heat production in an infinite cylinder is considered b;/
an appeal to the concept of convolution quotients'! and finite Hankel transforms'?.
The result given by Erdélyi” follows as a particular case of the result established here.

Obtem-se, neste trabalho, uma solucdo ao problema da produgdo de calor em um ci-
lindro infinito que é obtida fazendo-se uso do conceito de quocientes de convolugdo'*
e das transformagBes de Hankel finitas'®. O resultado obtido por Erdélyi” decorre
como caso particular daguele aqui estabelecido.

1. Introduction

In mathematical physics, one often encounters singular functions, such
as Dirac's -function'® which vanishes except for a single value of
the independent variable t (which one usualy takes at t = 0), is not
defined at t = 0 and satisfies the shifting property,

f 50)f ()t = £(0), (1-1)

for every continuous function f (t).

When one uses such functions in problems in the physical sciences,
one obtains tentative results which need verification by use of different,
more exact, techniques. Here, if one uses Mikusinski's approach'?,
which was later developed by Erdélyi’, then that insatisfactory state
o affairsis redeemed. In Mikusinski's theory, the very basic concept
o functionis generalized in a way which is similar to the extension of
the concept of number from integersto rationals. The abstract entities
o this theory may be interpreted either as operators or as generalized
functions and they include the operators o differentiation, integration,
numbers, continuous functions and impulse functions, as well.
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Here, in this paper, we use convolution quotients in a problem of pro-
duction o heat in an infinite cylinder. The problems of production
o heat in cylinders are important in various technical applications®
and, consequently, have been a focus of attention for many authors
(Refs 1, 2, 3 4, 5, 6, 8, 9, 10, 12, 14).

The finite Hankel transform?!3, defined as

Fn) =f ()T nidr, (1-2)

0

where #; is a'root of the transcendental equation
Jolan;) = 0 (1-3)

is also used in our derivation. If f (r) satisfies Dirichlet’s conditions,
then, at each point of theinterval at whichf (r)is continuous,

— _2 Flon. Jolr 1:)
f(r) e aZ Z,f(’h) [']l(arlz)] s
the sum being taken over all positive roots of Eq. (1-3).

In the following Section, we discusssome basic conceptsof Mikusinski's
theory which will be needed in our problem o heat production, treated
in Sec. 3.

2. Convolution Quatients

We denoteafunction byf or {f (t)), this meaning the function asawhole
entity, whilef (t)will denote the value (real or complex) of the functionf
at the point t. Next, let usconsider the set C of all continuous functions
and define two operations o addition and corivolution product, for
any two elements of C, as

(i)f + g : the function whose value, at t, is f(t) T g(), (2-1)
(i)fg : the function whose value, at t, is
t
J f(x) gt — x)dx. (2-2)
0

Here,fg (f * g)iscalled aconvolution (resuitant, Faltung, or composition;
ff will be denoted by £2 and a similar notation will be employed for
higher convolution powers.
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We denote the constant function {1} by h:

ht) = 1, (2-3)
() = J h(x) h(t — x)dx =t (2-4)
(o}

and, smilarly, by induction,

- tn—l _

h —{(“71__1)—‘},”——1,2,3, (2-5)
More generaly, we may define

a—1 V
B = {tr,(—a)} Re o > 0, (2-6)

Of course, h e C. Now, for anyf e C, we have

= { ff(u)du} , @)
0

so that convolution of a continuous function with h effects an inte-
gration of that function with zero asfixed lower limit. Thus, h may be
regarded as an operator of integration and, 4", asthe operator of n-times
repeated integration; indeed. #°f is the Riemann-Liouville fractional
integral of order a It is easy to verify that C is a commutative ring,
the socalled " convolution ring”. The zero element o the ring is the
function {0}. Thereis no unit element in this ring.

The convolution ring has no divisors of zero” and, hence, can be em-
bedded in a field F. Let us cal, convolution quotients, (Distributions
or Generalized Functions) the elementsd thisfield. In F, all equations

fxé=g, fgeC (2-8)
are solvable, the unique solution being written as
§=9g/f (2-9)

Hereweareto understand that the convol ution quotients of thefunctions
f and g follow the same rules as rational numbers. It is easy to see
that there are elements in F which do not belong to C.
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As an example, we consider the equation

fe=f VfeC,

or
f O = x)ex)dx = 1),

which is not aways possible; hence, e ¢ C. In fact, e corresponds to
a b-function, i.e., a é-function is the unit element for convolution pro-
ducts.

We have seen that histhe operator of integratiori and h" that of n-times
repeated integration. We now introduce the inverse of h,

PR ((£5);
s=1/h = ) eF,

ie.,

s=h"t = hh?
Further, we have for this operator

O =1, s =h"% s%F = s*FF
If afunctiona = {a(t)} possessesa localy integrable derivativedf order
n, we then define the extended derivative o order n as
§g = g® + go-D0)+ a" s T ... T aOs T (2-10)

for n =1,

sa = s + a(0)o (2-17)

and, for a function such that «(0)=...=a""Y0) =0, we have
s"a = a", i.e., the extended derivative reduces to the ordinary »™ deri-
vative of the function.

We now consider functionsinvolvingthe operator s. We have

s{e'()) = {ae'() T 1,
or
(s —a)(e™) =1,
which gives
1

a0 _
{e }_s—cx’
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and, similarly, we have
_ tn—l at
(s—(x)"={(n_—1e)!},n=1,2,....

3. Solution of the Heat Equation

Let us consider now the production of heat in an infinite cylinder of
radiusa. If we set that, initial and boundary conditions do not contain
the ¢ coordinate, then the flow of heat takes place in planes through
the z-axis and the equation of heat conduction is

1 00 0% , 1 80, 90

X ot o + Fr + Ad(t) 4(2), (3-1)
where k isthe diffusivity of the material; the temperature isafunction
o r, z, t, and the sourcesof heat are represented by A45(1)d(z), § denoting
the unit element of the convolution field F (or Dirac’s 6-function).
We set, as initia condition (t = 0),

9(1', Z, 0) = f(r) g(Z)a (3-2)
where f is a function of r alone and, g, a function which depends only
on z; 6(a, z, t)denotes the temperature at the outer cylindrical surface;
also, we assume that 6 — 0 as z— + o. Multiplying both sides o
Eq. (3-1) by rJ, (r #;) and integrating from O to a, we obtain
100 = 00 aA
% 7 = a0 20 Jafam) — nF 0+ o + = Tifand) 30 6(z), (3-3)

(s. Ref. 13), where

O, z, 1) = f rO(r, z, t) Jolrn)dr, (3-4)

0

the »; being the positive roots of Eq. (1-3). By an appeal to the concept
of extended derivative, Eq. (2-11), we now write the operational form
o Eg. (3-3):

s0 ~ f(n:) g(z) = kan; 6(a, z, ) Js(ams) — kn?0

0%0 | adk
+ ks o+ Ty(an) 5() 8(z), (3-5)

i
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or

020 2 0 .
ol (s + kni) P Ef(’li) g(z) — an; O, z, £) J1(an:)
— L Jy(an) 62) (3-6)
Eq. (3-6)is o the form
25 _
&5 — w2 = Fan, 2, (3-)

which has the particular solution’

a__ 1 [ o [ S 3.8
6 = ——Zb—J e?TIF(y)dy — 5 Jz 2 F(y)dy.  (3-8)

Z1

If zy » — o0 andz, — co,then aparticular solution of (3-6)is

. - 2 2\1/2
g = J@_ J exp I:—— (z—v) <Ml-> ]{— if(’?i) g(y)

— an;0(a, v)Jilan) — %’i Ji(an;) 5()’)} dy

RV S A P Mﬁ)”j{_l .
NG J ,xp[ o )( X 1101 90)

— aniB(a, y) Jylan) — %Jl(am) 5(y)} dy, (3-9)

which can aso be written as

g Nk [ T, (ﬁiﬁf)”z]{l _
9~N.S+kmj exp[ 2=l (2] S ) )

— a0

+ anla, ) Jitan) + <4 an) 5(y)} . (3-10)

If we define the function
iz — y)/Jk t] = ()2 exp [—(z - y)?/4kt),  (3-11)
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then we can write

% (s +kk'1i ) exp [ (=) <s+ an)uz] _

= i exp (—n?k) R[z — y)/k 1, (312)

After a trifle manipulation and making use o Rd. 7, relation (3-10)
may be appropriately written as

pt o

B 2.0 =1 e (~nfki)fn) | exp (~u)gle+ 2uy/kayd

+ kan~ 1% exp (—nktinJ ((an;) f exp (— u2)6’(a,z+2u\/kt)du

t kadn= V2 471 (an) exp [~ (k) — Zlaakt] . (3-19)

Applying the inversion theorem for finite Hankel transforms, Eq. (1-4),
we obtain, for the temperature function, the expression

0, z, 1) = 527 Z 0, z, t) @ Jolr Z’))] (3-14)

In the limiting case r — 0, when the temperature is a function of
and t only, our solution reducesto the one given by Erdelyi’.

4. A Particular Case

If we set
fr=a-r3 @1
then (Ref. 13)

fn) = dan3 Jy(an,). 4-2)

Taking %(az, t) = 0 and g(z) = A exp (- | z|), the solution of our pro-
blem becomes

84
00, 2, 1) = 7 exp (ki) exp (—2) ), ,7%‘}(1’(’},,)7!) exp (—n?ke)

_Zk_ 12 Jo(rm) )
+ X o (an &P [k — 2%/4ki]
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