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Deep inelastic electron-nucleon scattering is studied in a resonance model derived from a 
syrnmetric quark model in the framework of non-relativistic dynamics. The coupling electro- 
magnetic current-bound quarks leads to a cross section for inelastic electron-nucleon scat- 
tering which is similar to the one obtained by parton scattering. 

Estuda-se o espalhamento inelástico eletron-nucleo na região inelástica profunda num 
modelo ressonante em um modelo quarks simétrico dentro de uma dinâmica não relati- 
vística. O acoplamento (corrente eletromagnética)-(quarks ligados) leva a uma seção de 
choque para o espalhamento inelástico eletron-nucleo semelhante àquela obtida no espalha-
mento por partons. 

1. Introduction 

We discuss deep inelastic electron-nucleon scattering in the framework 
of a non-relativistic, syrnmetric, Galilei invariant quark modell. In the 
quark model, the nucleon is a strong bound state of three quarks with 
spin 112. The electron is now scattered by bound quarks and not by free 
particles as in the parton mode12. They cannot be ejected but they make 
transitions to excited states. We assume that the hadronic final state is 
completely expressible as a superposition of resonant states. 

In the SU(6) symmetry scheme, the binding forces are independent of 
spin and F-spin. To construct the wave functions of the three spin 112 
quarks with oscillator interactions and definite symmetry, we use a group 
theoretical method developed by R. F. Meyer3. 

The explicitly calculated form-factor of our oscillator model does not 
satisfy universality assumptions4 and, therefore, we do not have approxi- 
mate scaling for fmite momentum and energy transfers, q2 and v. In the 
Bjorken limit, however, our structure functions approach a scaling function 
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representing a quasielastic invariant peak. The <;ottfield5 and Callan- 
Gross6 sum-rules hold in the Gell-Mann-Zweig cpark mode17. 

In Section 2, we construct the symmetric wave fimctions. The current 
matrix elements are calculated in Section 3 and lhe structure functions 
in Section 4 . 

2. Symmetric Wave Functions 

To calculate the total symmetric wave functions, it is advantageous to 
use a convention for the description of the permutation symmetry of the 
baryon states constructed from the three quark scates. We use the fol- 
lowing standard forms for the irreducible represeritations S,, A, and Mi 
of the permutation group S3: 

S3: (e = (I), a = (123), a2 = (132), b = (12), ba == (23), ba2 = (13)), 
S,: e = 1, a = 1, b = 1, 
A,: e = 1, a = 1, b = -. 1, 

Wave functions which transform according to these representations are 
symmetric, antisymmetric or of mixed symmetry, respectively. 

To construct the radial wave functions of three quarks with the conect 
permutation symmetry, we use the following interna1 coordinates 

which transform according to the components of the rnixed representation, 
i.e. 

The symmetric combination describes the center of mass coordinates 

In our resonance model of inelastic scattering, we sum over a11 quantum 
numbers of the intermediate states and we do no4 need wave functions 



that are eigenvalues of angular momentum. For that reason, it is suitable 
to make the following coordinate transformation 

, - zi = pi exp iqi (4) 

and express the Hamiltonian operator as a sum of three harmonic oscil- 
lators in two dimensions 

The solutions of the harmonic oscillator in two dimensions are 

The total wave functions are 
3 

yk,, (p, (P) = ( P / ~ C ) - ~ / ~  n Nti' CB P?) exp [i mi vi] - 
i =  1 

(7) 

Since, in the coordinates (p, q), particle permutations change only the 
phase v, 

we obtain eigenfunctions with defmite symmetry by means of some special 
linear combinations of the phase factors. The radial wave functions with 
defmite symmetry are obtained if we apply to Eq. (7) the projection operator 
of S3 (Ref. 3): 



where o E Sg, T(o )  is a representation, and &(o) is a permutation sign. The 
radial wave functions are in Table I. 

3 

m = E mi m O (mod. 3) m = 2 (mod. 3) m 1 (mod. 3) 
i =  1 

1 
Yk,, [exp (i m. cp) + exp (- i m. v)] O O 

1 
Y& [exp (i m. <p) - exp (-i m. v)] O O 

- - 
'%,I O exp (i m. cp) exp (- i m. cp) 

yFm O exp (- i m. cp) exp (i m. cp) 

Table I. Radial Wave Functions. 

In the same way, we can obtain the spin wave functions: the symmetric 

1 g) and the two components of mixed symmetry, 

also the SU(3) wave functions : the symmetric 1 E ,) , the mixed symmetric, 

1 a,) , 1 i) , anci the antisymmetric AI) a 

In the following, we have to combine spin wave functions with SU(3) wave 
functions to produce SU(6) wave functions with definite symmetry, and 
combine the latter with the radial functions. For this purpose, the Clebsh- 
Gordan rules for the reduction of the direct products of S3 representations 
are useful and the total symmetric wave functions are exhibited in Table 11. 

3. The Current Matrix Elements 

The electromagnetic current of pointlike particlei;, in the Schrodinger 
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picture, at t = O, is 
3 

j dx )  = Q i  x - ri) ,  
i =  1 

3 3 

j ( x )  = C Q i  {ri d ( ~  - ri)),sw + (VX C Pi bi) 6 ( x  -r i) ,  (10) 
i =  1 X i = l  

where ri and ri = Pi/m are the position and velocity of each particle. 

Table 11. Total Syrnmetric Wave Functions. 
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In order to calculate 

M 

the e.m. current matrix element, 

between baryon states, we make full use of our staadardized treatment of 
permutation symmetry. Since the current operators consist of symmetric 
sums of products E aibi or E aibici, the following formulas allow the 

i i 

decomposition of the currents in surns. of products of factors with definite 
symmetry, 

1 3 1 i aibi = - (ab + ãb + a&), C a i b i ~  = - (dc + & + &), 
i =  1 3 i =  1 3 (14 

where 

1 1 
d = (ab +&+&), = (ab + ah+ ãb), 2 = &b + &+a@, etc. 3 

We see that, with respect to the SU(3) variables, besides the charges Q(B8) = 

= (x I Q 1%) = (B8 I Q ( B8), there are also rnixed charges Q(&) = 

= ( B ~ ~ Q I B ~ )  = ( ~ a l Q ( B 8 ) ~  Q(BsPio) = (BIOIQI%)= ( ~ i o ( ( Q \ & )  ' 

They are given in Table 111. 

It is straight fonvard to calculate the current matrix elements (i,(O)). They 
are given in Table N. 

4. The Nucleon Inelastic Structure Functions 

In Ref. 1, we have discussed the current tensor F,, in a Galilei invariant 
model and showed that W,, is completely expressible by two invariant 
functions Wl(p.q, q2) and W2(p.q, q2), as in the relativistic case8. The struc- 
ture function, W2(p.q, q2), is given by the Woo component of W: 



Table 111. Mixed Charges 

m r l  (mo0 3) 

m~ 2 (mod 3) 

3 

with 2ME,, = 6 [2ki + Imi( + 31 p and m = ml + m;! + m3. We cal- 
i =  1 

culate the contribution of m = O (mod. 3): 

W,(m r O) = 2 M2 Q2(B8) exp [ - (1/3)q2/P] . 

We introduce a b-function, b(Ni, 2ki + [mil), for each twodimensional 
harmonic oscillator and use the integral representation, 



+ --- ,h3 1. [E&,) (I: / i,:. x qls / 'z ) + 

Table IV - Current matrix-elements. 
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to write 

w2 (m = 0) = 2 ~ '  . 3Q2(B8) exp - - q2/P . I 
where 

3 +o0 1 dAi 
= i=l H m-- -ai - 2ni J ~ , = ~  

l i m i l  (3) , where Ilmil ($) is the 
I - 

3 1 1  
rnodified Bessel function and Íq = iul (q!/3p)Ni. 

Equation (13) then becomes 

1 
W2 (m 0) = 2M2 

- Q2(B8) exp i- q2/3P] 9 

and we proceed as in Ref. 1 to obtain 

1 1 1 (q2/3p)-l~2. 
W2(m 0) = 2M2 - - Q2(B8) -- - 

9 6a & 

In a similar way, we calculate the contributions m 2 (mod. 3) and m - 1 
(mod. 3), obtaining 

V 1 
- M w , ( P . ~ ,  q2) = 3 IQ2(B8) + Q 2 ( ~ d  + P(Bs/BIo)]. 



We do not have approxirnate scaling for fmite niomentum and energy 
transfers but, in the Bjorken limit q2 -4 co, 

V 
Bj lim - Wz ( p  .q, q2) = F2 (o), M 

1 
F2(o) = 3 [Q2(B8) + C!2(~8)+P'(~8/~io)]  o 6(0 - 31, (18) 

and we have a quasi-elastic, scale invariant peak. 

If we use the following relations3 between the spin operator matrix elements, 

1 
with d"' = T -- (ol ) iõ2); d " = O  = õ3 and, if the quark magnetic 

f i  
momentum is given by p, = Q,/m, we obtain for the Bjorken limit 

Bj lim Wl ( p  . q, q2) = Fl (a)), 

Equa 'Sons (18) and (20) give the structure functions in a dynamical reso- 
nance model in the framework of the nonrelativistic symmetric quark 
model. For these structure functions, the following properties hold: 

a) the Callan-Gross relation, 

b) the Gottfíeld sum rule, 

1 1 for the proton, J$ F2(o) = 3 [Q2(B8) + G 2 w )  + p ( ~ 8 / ~ 1  011 == (213) for the neutron, 



E [ F i p  (u) - Fin  (a)] = 113; 
J 

c) Callan-Gross surn d e ,  

113 for the proton, 
F2(u) = 2/9 for the neutron; S" t 

d) they have the sane form as in elastic scattering on quasifree partons 
with an efTective mass 113 of the nucleon mass. 

We see that the coupling electromagnetic current-constituents leads to 
electron-resonance scattering which is similar to parton scattering. 
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