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Deep inélastic electron-nucleon scattering is studied in a resonance model derived from a
syrnmetricquark model in the framework of non-relativisticdynamics. The coupling electro-
magnetic current-bound quarks leads to a cross section for inelastic electron-nucleon scat-
tering which is similar to the one obtained by parton scattering.

Estuda-se 0 espalhamento ineléstico eletron-nucleo na regido ineléstica profunda num
modelo ressonanteem um modelo quarks simétrico dentro de uma dinamica néo relati-
vigica. O acoplamento (corrente eletromagnética)-(quarksligados) leva a uma secdo de
choque para o espalhamento ineléstico eetron-nucleo semelhante aquela obtida no espalha
mento por partons.

1. Introduction

We discuss deep indlagtic eectron-nucleon scattering in the framework
o a non-rdaivigtic, syrnmetric, Galilel invariant quark model’. In the
quark moddl, the nucleon is a strong bound state of three quarks with
spin 1/2. The dectron is now scattered by bound quarks and not by free
particlesas in the parton model®. They cannot be gected but they make
transitions to excited states. We assume that the hadronic find state is
completely expressible as a superposition of resonant states.

In the SU(6) symmetry scheme, the binding forces are independent of
spin and F-spin. To construct the wave functions o the three spin 1/2
quarks with oscillator interactions and definite s;/mmetry, we use a group
theoretical method developed by R. F. Meyer®.

The explicitly calculated form-factor of our oscillator model does not
satisfy universality assumptions® and, therefore, we do not have approxi-
mate scaling for finite momentum and energy transfers, ¢> and v. In the
Bjorken limit, however, our structurefunctionsapproacha scaingfunction
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representing a quasielastic invariant peak. The Gottfield® and Callan-
Gross® sum-rules hold in the Gell-Mann-Zweig quark model’.

In Section 2, we construct the symmetric wave fimctions. The current
matrix eementsare calculated in Section 3 and the structure functions
in Section 4.

2. Symmetric Wave Functions

To calculate the total symmetric wave functions, it is advantageous to
use a convention for the description of the permutation symmetry of the
baryon states constructed from the three quark scates. We use the fol-
lowing standard forms for the irreducible represeritations S, A, and M;
d the permutation group Ss:
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M;: e=<(1)(1)>,a=<gg->,b=<(l)é>,8=exp [i%n],zzs*.

Wave functions which transform according to these representations are
symmetric, antisymmetric or of mixed symmetry, respectively.

To construct the radia wave functions o three quarks with the correct
permutation symmetry, we use the following internal coordinates

Z=J2B3 (i +er+13), Z=./2B@r+er,+13), (1)

which transform according to the componentsdr the mixed representation,
ie.

(123)Z =¢Z, ((2)Z=:Z (1)Z=2Z. @)

The symmetric combination describes the center of mass coordinates

X =./1/3 (t; + r; + 13). 3)

In our resonance model of inelastic scattering, we sum over all quantum
numbers of the intermediate states and we do not need wave functions
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that are eigenvalues of angular momentum. For that reason, it is suitable
to make the following coordinate transformation

Yii = p; eXp l(Pl (4)

and express the Hamiltonian operator as a sum d three harmonic oscil-
lators in two dimensions

1 p2 1 3 1 9 1 02 2
= —— _ —— i ’ 5
H=gm® 2Z[m w2 O
The solutions of the harmonic oscillator in two dimensions are

Wi, mi (01 @) = (B/m)*/? AL'i"il (Bp?) exp [im; @],
At (Bp?) = Nt [B p7]imli2 L (8 p?) exp [~ (1/2) B pf],

- =[rqmil+n FLT e

The total wave functions are
3
Yy m (0, @) = (B/m)~3? III AT (B p?) exp [imi o). ™)
| =

Since, in the coordinates (p, @), particle permutations change only the
phase ¢,

1B)p=¢+3m (Do=-0 ®

we obtain eigenfunctionswith defmite symmetry by means of some special
linear combinations o the phase factors. The radial wave functions with
defmitesymmetry areobtained if weapply to Eq. (7)the projectionoperator
o S; (Ref. 3):

P = (1/6) ; T(o),

P4 = (1/6) ). elo) T(o), &)

M = (13) [Te) + £Ta) + eTa™ Y],
PMi = (1/3) [Te) + eTla) + TTa V)],
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where 0 E S5, T(s) is a representation, and &(c) is a permutation sign. The
radial wave functions are in Table I.

32 3
[ } IT At @pd

m=>3 m m = 0 (mod. 3) ms=2 (mod. 3) m=1 (mod. 3
i1
Him % [exp (im.@) + exp (—im.g)] 0 0
4 1 ‘ ,
Yin 5 [exp [ mo)—exp (—im.¢)] 0 0
i, 0 op (img)  ep(—imge)
P 0 exp(—ime) exp (imo)

Table . Radia Wave Functions.
In the same way, we can obtain the spin wave functions: the symmetric

35/2> and the two components of mixed symmetry, g/2> g/2> And
3 03
> , themixed symmetric,

3

alsothe SU(3) wavefunctions: thesymmetric 10

BIO
8 >
B8 !

; b )
B

Bs !

In the following, we have to combine spin wave functionswith SU(3) wave
functions to produce SU(6) wave functions with definite symmetry, and
combinethelatter with the radial functions. For this purpose, the Clebsh-
Gordan rulesfor the reduction of thedirect productsd S; representations
are ussful and the total symmetric wavefunctionsare exhibited in Tablell.

>, and the antisymmetric

3. The Current Matrix Elements

The electromagnetic current of pointlike particles, in the Schrodinger
482



picture, at t = 0, is
3

jolx) = Zl o O(x—T1),

=._321 i {1 6 — rfsm + (§X ZS pio}é(x—ry),  (10)

i=1

where r; and r; = P;/m are the position and velocity o each particle.

exp [lPX /\/' ]

NI
SUE  SUG) S (SU( )>(p’ )>= _em'r

2 \/‘ )3/2

r

3/2
56 10 32 |)on> . >‘I‘E.m(p, ®)

1/2 1/2
6 8 112 %ﬂ@l)+m>)}mm@
\/Z L | =/
172
70 10 12 “1/—: |B10> l: S‘Pka(p o) + ’ \ k4 m(l’ @)J
V2 r/
1 3/2 _
08 ap ﬁ,>W@%memwwm]

12
>%&m@+mo

12
. > Y. (p, co)]

1/2 _
. > P (o, qo)]

70 8 i 7 I:IBB>

7
,>‘I’%m(p,<p)+

70 1 12 ﬁ |B,> [

Table II. Total Symmetric Wave Functions.
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In order to calculate the em. current matrix eement,

S (SUG)) | IM 12 (56)

M S 5 \
G0 = <,,. o m NOL o . No> (11)

between baryon states, we make full use of our staadardized treatment of

permutation symmetry. Since the current operators consst of symmetric

sums of products ) ab; or Y. aibic;, the following formulas alow the
i I

decomposition of the currents in sums.of products of factorswith definite
symmetry,

3
5 a,b,__(ab+ab+ab _Z abic; = = (dc+3g+45), (12)

i=1

where

a=a +a;+as a=¢éta +ea;+as a=ea+ &a;+ as,

d=3Gbrabtah), d=~@tab+d), 1= J@tabrab), ec

Weseethat, with respect to the SU(3) variables, besdesthe chargesQ(Bg) =
= (Bs|Q|Bsy = (Bs|Q|Bs), there are also mixed charges O(Bs) =

= (Bs|Q|Bs) = {Bs|Q|Bs), QBs/Bio) = (B1o|Q|Bs)= (Bio|lQ|Bs) -
They are given in Table II1.

It is straight fonvard to calculatethe current matrix e ements (j,(0)>. They
are given in Table IV.

4. The Nucleon Indagtic Sructure Functions

In Ref. 1, we have discussed the current tensor W, in a Galilel invariant
model and showed that W, is completely expressible by two invariant
functions Wi (p.g, &) and Wa(p.g, &f), asin the relativistic case®. The struc-
ture function, Wa(p.q, g9, is given by the W, component of W:

484



Q(Bs) = (Bs|Q|Bs) = (Bs|Q|Bs),
0(Bs) = (Bs|Q|Bs) = <Bs[Q]Bs),

(Bs/B1o) = (B10|Q|Bs) = (B1o|Q|Bs),

B p It n X A AE E° E° E”
O(Bs) -1 -1 1 -2 12 321 0 0
B;/Bw A*/p A°m ETX*/Zt I¥OE0 TN E¥EC IT*T[ZT E¥/ET
O(Bs/Biy) -1 -1 -1 —-12 =J32 -1 0 0

Table III. Mixed Charges
1 . 7 ’ .
Wy = Woo =W—NZ {p|jo@|p, Ny {p', N|jo0)| p)

=Y X (5)[(p+q)2 —~MQEp' + M)] | GGoO)) |, (13)

ki m=0 (mod 3
mr | (moo 3)
m=2 (mod 3)

3
with MEp» =6 'Zl [2kl+ lmil + 3} ﬂ and m=m, + my + ms. We cal-

culate the contribution of m= 0 (mod. 3):
Wym r Q = 2M?Q%Bs) exp [ —(1/3)g%/B] .

0O QO

Y Y, o2pa+ g6 2+ |ml+3)B]

ki=0 mi=-—o0

1311 [t s+ [mal) 17" [g /0BT ™ 9

We introduce a b-function, 8(N;, 2k; + |m;|), for each two-dimensional

harmonic oscillator and use the integral representation,

JFkiE mil

1
a2 = A
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(56 8 12 jo] 56 8 1/2) = 2M Q(Bs) 055 Iy,
(56 8 12 |j] 56 8 1/2) = 2M Q(B) ds é[p-%p’+6QVq+2q]lq+

172
o)+

172

2, [u(Bs)<S,3

172
U(Bs) < 54

03

+

iloxgls
1/2y
S />]’

3/2

+

iloxq

(56 100 372 |jo| 56 8 1/2)

(56 100 32 {j| 56 8 1/2) = 2M /2 ﬁ(Bs/Bw)< i@ x g)
3

1/2
> Iq .
53

S

(70 10 12 [jo] 56 8 12) = /2 M Q(Bs/Bio) 85, I

. = 1 ,
(70 10" 172 |§] 56 8 1/2) = \/2 M Q(Bs/Bio) Jss g~ [p+p'+6QV,+24] I+

12 172
LM i my <s_ )

. iGxa)|s) L

0 8 372 |jo] 56 8 12 = 0,
7312

70 8 32 |j| 56 8 1/2) = )%M [1(Bs) + u(Bs)] <\s

1/2
s > I,

HCR)

)

70 8 172 |jo] 56 8 1/2) = /2 M Q(By) dss o

. = 1.
0 8 12 [j] 56 8 1/2) = /2 M Q(Bs) bs;s, o —[p+ 9/ + 60V, + 241 I +
172 12
+2IM {E(Bg) < ) +
1/2 172 4
53 >]’

+ WBs) <s
q° 3 g 2kt |mi)
Iy =1" eXp[" '@{i ’ 'Ul [k ki + |m,~|) !]—1/2 <m'>

i{lo X q)s

ilo % q)

4

Table IV — Current matrix-elements.
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to write

W (m = 0) = 2M? . 30*(Bs) exp [— %qz/ﬂi :

D18

1

S[2p.q+ ¢* —6(% Ni + 311, ,

=z

ll 12 2ki+ |mj|
AR <2 3qﬁ>

I i ai\ .
=11 m‘;z_w ‘2”i'J,1i=O_N_“i T A mil < 38 , where I} < 3p ) is the

11

_ 3
modified Bessel function and 1, = [] 7 7 (/38"

i=

Equation (13) then becomes

Walm = 0) = 2M2 - 3 Q*(By) exp [~ ¢%/3f]

3
'NZO 52p.q+ q* — Z N:p) f:I

Y
(%) 09

and we proceed as in Ref. 1 to obtain

Wy(m = 0) = 2M2 - 1Q2(Bs) S f @3p) 1

.exp|: é(zp ‘16; i 3ﬂ> /(q2/3ﬁ)]'(16)

In a smilar way, we calculatethe contributionsm= 2 (mod. 3)and m= 1
(mod. 3), obtaining

M Wap.g. 4% = 5 [Q%B) + Q*(Be) + Q*BufBio)]

5 @A en [ 0= 07
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We do not have approxirnate scaling for finite momentum and energy
transfers but, in the Bjorken limit g*> — co,

B; lim o Wa(p.G, @) = F2(@)

F2@) = 3 [Q%Bd) + 0B+ Q(Be/Bro)] 0o~ 3, (19)
and we have a quas-eladtic, scae invariant peak.

If we usethefollowingrel ations® between the spin operator matrix eements,

7 12 1/2 17z 1z 1z
<Ss’ S3 > = <Ss’ S3 >= —2<Sa' 83 > =

= /3172, S3|1, m; 112, S3),
172 3/2
") o

1/2
with ¢»=*! = ¥ —1—2 (6; + ioy); 0= ° =65 and, if the quark magnetic

m O__m

g

m

g

O.m

1,m; 1/2,855, (19)

5, > = — /643254

momentum is given by u, = Q,/m, we obtain for the Bjorken limit
B; lim Wi (p.q, @) = Fy (@),

Fi@) =3 [0Bs) + 0By + O*Bo/Bio)] 6@~ (20)

Equa 'Sors (18) and (20) give the structure functions in a dynamical reso-
nance mode in the framework of the nonrelativistic symmetric quark
modedl. For these structure functions, the following properties hold:
a) the Calan-Gross relation,

Fi(@) = 5 Fa);
b) the Gottfield sum rule,

[ £ = 310°B0 + @60 + CBu/Bi0] = {5 i enens,
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[Py ) - Py @) = 13;

o

¢) Calan-Gross sum rule,
do F,(w) = §1/3 for the proton,
w 2/9 for the neutron;

d) they have the same form as in elastic scattering on quasifree partons
with an effective mass 1/3 o the nucleon mass.

We see that the coupling eectromagnetic current-constituents leads to
electron-resonance scattering which is similar to parton scattering.

The author is grateful to Prof. Hans Joos for many helpful discussionsas well as the hospi-
tality extended to him at DESY where thiswork wasdone. He also thanks the Fundag&o de
Amparo a Pesquisa do Estado de Sdo Paulo for the grant o a fellowship.
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