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In this article, we give a brief description of magnetic resonance in metallic materials. 
In transmission conduction-electron spin-resonance experiments, the transmitted fíeld 
is directly related to the magnetization. We derive this magnetization using an equation 
of motion which is an appropriate generalization of the equation of Codrington, Olds 
and Torrey. The proposed equation reproduces a11 the characteristic results obtained 
from quantum mechanical derivations. 

Neste artigo, damos uma breve descrição de ressonância magnética em materiais metá- 
licos. Nas experiências de ressonância de spin em elétrons de condução, com técnica 
de transmissão, o campo transmitido é diretamente relacionado com a magnetização. 
Deduzimos essa magnetização usando uma equação de movimento que é a generali- 
zação apropriada da equação de Codrington, Olds e Torrey. A equação proposta re- 
produz todos os resultados característicos das derivações quânticas. 

1. Introduction 

J. Winter [Comments in Solid State Physics, (1968)l remarked that 
the first experiments on spin resonance in paramagnetic metals were 
performed more than a decade ago by experimental groups at Ber- 
keley' and a detailed theory was then developed by Dyson and later 
generalized by Azbel et aL2. However, only recently the interest in 
this fíeld has been renewed as a result of the improvement and de- 
velopment of new techniques3-". One is the transmission conduction 
electron spin resonance technique (TCESR), when a thin slab of the 
metallic sample separates two microwave cavities. The thickness L 
of the slab is typically much larger than the skin depth 6 (6 of Cu, 
at 9.2 GHz, is of the order of 10-4 cm). An externa1 source of power 
is coupled to one of the .cavities, the transmission cavity, and detec- 
tion is made in the second cavity, the reception cavity. If properly 

*Work supported in part by CNPq and Miniplan. 
**On leave from Instituto de Fisica, Universidade Federal de Pernambuco, Recife PR. 
***Postal address: Caixa Postal 1170, 13100 - Campinas SP. 



insulated, power will be transmitted from one cavity to the other 
through the sample. 

When the external field reaches the resonant condition, the spin system 
absorbs power on the side of the transmission, cavity. A transverse 
magnetization is generated in the sample and spreads out of the skin 
depth carried by the conduction electrons. This magnetization will 
eventually arrive at the other side of the sample and radiation will 
be generated in the reception cavity, where it is detected. 

However, while this technique is not more sensi1,ive than the standard 
one, it has severa1 advantages. In the reflection type experimental 
setup, the sample is mounted in the microwave cavity. At resonance 
the sample produces an additional loss in the cítvity and a detectable 
modification in the Q-factor. But this technique is sensitive to every 
loss that can occur in the cavity, whether it results from the mechanism 
of interest as well as other ones. The signal could be obscured by spu- 
rious effects. This difficulty is eliminated in TCESR experiments, when 
no signal is transmitted unless under resonant conditions. Futhermore, 
the transmission technique is more stable than the reflection technique. 
In the latter case, the cavity forms a branch of a bridge circuit which, 
for sensitivity reasons works with a high degreí: of balance. Fluctua- 
tions and instabilities in the bridge circuit will produce noise superim- 
posed on the signal unless one uses a low input power. This then limits 
the lowest detectable signal. In the transmission technique the balance 
of the circuit is represented by the insulation between cavities created 
by the sample. Furthermore, to obtain maximuni sensitivity with both 
methods, one must modulate the signal in such a way 'that it could 
be amplified and detected with low noise leve1 techniques. In reflection 
type experiments, one modulates the external magnetic field. In trans- 
mission type experiments, the transmitted field is modulated. This is 
much smaller than the external field, additional noise can be avoided 
and, therefore, sensitivity is increased. 

2. Spin Resonance in Metals 

Transmission experiments in Na and K allowed observation, ròr the 
first time, of spin-waves in these materials12 which appear as side 
bands on the main spin resonance line. Platznian and Wolff13 were 
able to describe these spin waves within the framework of the Fermi- 
liquid theory. A good amount of information on many-body effects, 



i.e., on the effective interaction between electrons, can be derived 
from these experiments14. 

On the other hand, conduction electron spin-wave studies in ferro- 
magnetic materials have a larger and richer history. However, the 
microscopic description of the effects of spatial non-uniformity of the 
magnetization, in ferromagnetic metals, lacks a completely general 
treatment. Contrary to the case of a non-magnetic metal, the calculation 
of the spin susceptibility and, therefore, of spin wave spectrum and 
spin diffusion, of a metallic ferromagnet in a Fermi-liquid formulation, 
involves quasi-particle states not too close to the Fermi surface. The 
lifetime of these states is finite and the results obtained within the 
framework of a Landau-quasi-particle picture is questi~nable'~. Ho- 
wever, it gives a fírst approximation and, at least, a qualitative descrip- 
tion of the problem. 

The discussion of the spin magnetization in a metallic sample can be 
accomplished in two different ways: from a microscopic point of view 
or through phenomenological arguments. In a previous paper16, we 
have presented, using the time dependent Hartree-Fock approxima- 
tion, a derivation of a unified theory for spin waves in an impure electron 
gas which is valid in both the paramagnetic and ferromagnetic state17. 
In this paper, we want to introduce a macroscopic description of 
magnetic resonance in a normal metal. 

The study of magnetic resonance, spin waves and spin diffusion can 
be done by establishing the time and spatial dependence of the spin 
magnetization. The transmitted field, in TCESR experiments, is di- 
rectly related to this magnetization as shown by Platzman and Lampe18. 
To obtain the transmitted field, it is necessary to solve Maxwell equa- 
tions with the proper boundary conditions. Let us consider Fig. 1. 

Reception Cav i t y  

-- 

Fig. 1 - Description of the cavity in a TCESR experiment considered in the text. 
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The tangential components of E and H are continuous at Z = L. 
Furthermore, the magnetization should satisfy 

(n . V) M(r, t) = 0, 

at z = O and z = L; n is a unit vector normal to the sample surfacelg. 
Let us approximate the r.f. field by a delta-function of amplitude h. 
(Ref. 18). 

The magnetization propagating in z-direction is given by 

where x is the spin susceptibility. Since x is an ev,en function of q, only 
the real part, cos qz, contributes to Eq. (1). The boundary condition 

then implies that q = nn/L, with n an integer. Hence 

On the other hand, at z = L one has the continuity of the tangential 
components of E and H : E: = E: and H: = H:, where < and > 
indicate the values of the inner and outer fields at the sample-vacuum 
interphase. In vacuum (reception cavity), in cgs units, E' = H'. 

The interna1 fields, E' and H', will be the superposition of the inci- 
dent fields, E; and H;, which carries the magnetization and of the 
refiected fields, E; and H; . 

From Maxwell equations for plane waves one, has 

Bq = (cqla) Eq (3) 

and therefore 

Bq in = Hq in + 4nMq = (cq/o) Eq i, . (4) 

Using 

Bq in = P(q, o )  Hq in ( 5 )  
together with Eq. (4), one obtains 

4nMq = [~ (q ,  a )  - 11 Hq in @a) 
and 

Eq in = ( ~ P I C ~ )  Hq in.= Z(q, a) hrq in . (6b) 



On the other hand, using Eq. (3) and the dispersion law, 

c2q2 = 02&(q, o), (7) 

is the same of Eq. (6b). 

Since20 Z - q6, this quantity grows with increasing wavenumber. 
The fields (E,, Hi,) carried by the magnetization are important for 
small q, whereas the reflected fields (E,, , H,,) will contain components 
of small wavelength (they will be rapidly varying within the skin depth). 
With these considerations in mind, we can write 

4nM - H; (10) 

and 

E,, = dq Z(q, o) H,  ,, eiqL. J 
The surface impedance of the material, Q, is defined as2' 

and then we will aproximately have 

since Z will be negligible for the small values of q characteristic of 
the incident fields. 

Finally, using the boundary conditions at the interphase, we obtain 

H; + H:, =E ;  + E:, -QH,e (13) 

and 

H; = H ;/(Q - 1). (14) 

Hence 

H ' =  H;+ H:, =H;[l +(Q-I)-'] (15) 



Eq. (16) tells us that the transmitted field is djrectly proportional to 
the magnetization tangential to the outer surface of the sample. 

3. The Spin Magnetization 

A most convenient way to discuss the time and spatial dependence 
of the spin magnetization is in terms of a Land!au-Lifshitz-type equa- 
t i ~ n ~ ~ .  The equation of motion for the magnetization is 

dM/dt = - y(M x H) + R, (17) 
where 

H = H. + h + AM + (2A/M$) V2M (18) 
and y = lellrnc. The effective field H is a functional derivative of the 
energy with respect to the variation of the magnetization 6M (Ref. 23), 
and contains, besides the constant applied field H. and the r.f. field h, 
the term due to exchange interaction among e l e ~ t r o n s ~ ~ .  The constant A 
is usually referred to as the stiffness parameterZ5, 2 is the coupling 
constant between magnetic moments and Mo is the static magneti- 
zation. The vector R(r, t )  represents a relaxation term due to energy 
dissipation. 

A shortcoming of a phenomenological treatmerit resides in the ques- 
tion on the "destination" of the relaxing magnetizations, i.e., the proper 
choice of R. Usually, it has been considered eitheic relaxation to thermal 
equilibrium, Mo = X H. (Ref. 26), 

RT =(Mz - Mo) 213 + MJ'r2 
or to the instant local equilibrium value (M) (Ref. 27), 

RI = I Mz - (Mz) I 217'' + [MJ. - (M,)]/T2 . 
Both choices do not reproduce the results obtained from the micros- 
copic theory. W a n g ~ n e s s ~ ~  has shown that in the steady state attained 
by a system of magnetic moments, in a resonance experiment, the rate 
of entropy production is a minimum, and that a macroscopic equation 
of motion for the magnetization which satisfíes such a requirement 
can be Eq. (17) with 

R = R , + R '  



where 

R' = (I/T,H~)H x (M x H). 

The relaxation term R' has been introduced by Codrington et ~ 1 . ~ ~ .  

To deal with Eq. (17), in the case of metals, we propose a generaliza- 
tion of the latter type of relaxation term as 

where 
H, = H. + h. 

The first term implies a transverse relaxation perpendicular to the 
instantaneous externa1 field with a relaxation time TL, and will re- 
produce, for the transverse part of M, in which we are interested, a 
Bloch-Wangsness relaxation term R,. Hence, TL can be interpreted 
as the usual transverse relaxation time. The second term implies a 
transverse relaxation perpendicular to the instantaneous exchange field, 
with a relaxation time T,  due to exchange interactions. Furthermore, 
let us observe that, as shown in the work of Ref. 16, the transverse 
relaxation time TL should be replaced in the case of a metal with ran- 
dom distribution non-magnetic impurities, by l/Tz = l/TL + l/zz , 
where z2 is an orbital relaxation time. 

So far, we have neglected anisotropy. This effect can be accounted 
for by the introduction of an anisotropy field, H*, in the expression 
for the effective field H. For simplicity, we choose HA = P(M. n)n, 
which is an appropriate expression for an uniaxial crystal and where 
n is an unit vector along the direction of easiest magnetization, and P 
a parameter. We will only consider here the case of parallel n, H. 
and Mo along z-direction. 

Furthermore, we will look at the case of spin waves propagation along 
the static fíeld. Then one needs only to consider the transverse magneti- 
zation. Eq. (17), completed with Eqs. (18) and (19), is nonlinear. However, 
since only the case of small disturbances of the system from equilibrium 
are going to be discussed in this paper, it is a valid approximation to 
consider Eq. (17) up to first order terms in h and m = M - Mo.  

Introducing a circularly polarized r-f-field h. exp{iot - q r), normal 
to the constant magnetic field, we obtain, for the circularly polarized 
magnetization, 



where 

08 = o. + (i/T2), (204 
o 0  = Y(HO + PMo), (20b) 
D" = c + iD = (2yA/Mo) (I1 - i(bro/yZ)], (204 

h$ = ho[l + (i/cooT2)]. (204 
Eq. (20) has the form of a diffusion equation with a complex diffusion 
constant D* defined in Eq. (20c). The real part of D* is directly related 
to the stiffness parameter and is the basic parameter of the long wave- 
length magnon dispersion relation. The imagiriary part, D, is the so 
called spin diffusion constant. We stress here that a diffusion term has 
naturally appeared in the present formalism and need not be introduced 
as an ad hoc hypothesis30. 

As is well known3', the spin wave dispersion relation follows from 
the poles of the spin susceptibility ~ + ( q ,  m). According to Eq. (20), 
it is given by 

4 q )  = mo + Cq2 - irdq),  (21) 
with the spin wave damping constant being 

U q )  = Dq2 + (1/T2). 
The real and imaginary parts of D* are not independent but satisfy 
the relation 

D = - i(Mo/yT,) C = - 2A/:C . (23) 
We can observe that since T, is positive, D and A have opposite sign. 
The stiffness parameter A is positive in the ferromagnetic state and 
negative in the paramagnetic state, which just reflects the relative 
stability of one state with respect to the ~ t h e r ~ ~ .  Consequently, the 
diffusion constant D changes sign, from positive to negative, going 
from the paramagnetic to the ferromagnetic state16. This diffusion term 
is a mixed effect of electron transport and exchange effects. The latter 
is a negative contribution negligible in the para.magnetic phase. In the 
ferromagnetic phase, on the contrary, exchange diffusion overcomes 
the kinetic effect, making D negative. A positjve value for Dferro has 
been derived by other m e t h ~ d s ~ ~  but those calculations only take 
account of the positive kinetic contribution. 

If the r-f field is suddenly removed at time t = to ,  one gets for the 
transverse magnetization at t > to 

M +  (r, t) = M +  (r, to) exp(itRe4q) - tr&l>>. (24) 



This means that the magnetization is relaxing to equilibrium with a 
relaxation time TR = T;'(q). The width of the resonance line at half 
height is given by damping parameter TI, which is composed of con- 
tributions derived from the relaxation terms towards the externa1 and 
exchange fields. In the paramagnetic phase both effects are additive, 
while in the ferromagnetic phase the diffusion mechanism is opposing 
the other relaxation processes and would produce line width narro- 
wing. However, spin diffusion effects are largely reduced in the ferro- 
magnetic p h a ~ e ' ~ , ~ ~ ,  and gives results severa1 orders of magnitude 
smaller than the usual relaxation times, giving no noticeable experi- 
mental effects. 

Finally, replacing the result of Eq. (20) into Eq. (16), one finds for'the 
transmitted field18 

H, - [cot(W/2) - cot W]/W, (25) 

where 

W = (O - [oo) (I?/D*) - (~L?/D*T~). 

If L > > 6, we can write approximately 

H,  - ( K  sin h KL)-', (26) 

where 

D*K2 = - i[(w - a o )  + (i/T2)]. 

The proportionality factor is essentially the surface impedance of the 
metal and Eq. (26) is the standard Dyson formula2. 

4. Conclusions 

In this article, we presented some comments concerning Conduction 
Electron Spin Resonance experiments. We reviewed, in Section 2, the 
connection between transmitted field and magnetization. A genera- 
lized macroscopic equation of motion was introduced in Section 3. 
The generalization of the equation of Codrington, Olds and T ~ r r e y ~ ~ ,  
here proposed, reproduces a11 the results obtained from quantum 
mechanical der ivat i~ns '~, '~ .  Our equation (19) reflects the existen- 
ce of two relaxation mechanisms, characterized by the relaxation ti- 
mes T2 and T, . The first involves transverse relaxation normal to 
the instant applied fields, the second to the instantaneous Weiss mo- 
lecular field. 



-A study of CESR in transition metals dilute alloys along a similar 
line as presented here, removing inconsistencies o'f previous approaches, 
will be presented e l~ewhere~~ .  
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