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The temperature dependence of the soft phonon frequency, v , ,  near a second order 
phase transition, is calculated by means of diagram techniques. For v, small, compared 
to the four phonon vertex g(T), one obtains v: - z2, (z = ( T  - T,)/T,) and, for v, >> g(T), 
v: - zl, which is the mean field result. The critica1 index, y,  thus changes from 1 to 2 
when approaching transition. This is, qualitatively, in agreement with the value of y 
obtained from inelastic neutron studies in SrTi03.  It is too large, however, when com- 
pared with the value of y resulting from EPR linewidth measurements. 

Calcula-se, por técnicas diagramáticas, a dependência na temperatura, da freqüência 
v, dos fonons moles, perto da transição de fase de 2." ordem. Para v ,  pequeno, compa- 
rado com o vértice de quatro fonons, g(T), obtém-se v: - z2 (z = ( T  - T,)/T,) e, para 
v, >> g(T), v: - zl, que é o resultado da teoria de campo médio. O índice crítico, y, 
é então alterado de 1 para 2 quando se aproxima da transição. Qualitativamente, isso 
está de acordo com o valor de y obtido em base aos estudos de difusão inelástica de 
neutrons em SrTi03.  Esse valor, todavia, é muito grande quando comparado com 
aquele resultante das medidas de largura de linha EPR. 

1. Introduction 

Structural phase transitions in solids can be given in terms of unstable 
or "soft" optic phonon~l .~ .  The temperature dependence of the soft 
phonon frequency, v,(T), well above the phase transition temperature, 
T, , is described by the mean field result3, v: - z. Closer to T,  , however, 
generally considerable deviations from the mean field behaviour are 
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observed4. In SrTi03 e g ,  where a soft mode, at the R corner of the 
Brillouin zone (B.Z.), drives the phase transit~~on, v, deviates from 
linear behaviour for T - T, < 10°K. For the critica1 coefficient, y, de- 
fined by v; - zY ,  Shapiro et aL4 found, in the temperature interval 
1.3"K < T - T, < 10°K, a value between 1.5 and 2.5. Using EPR5 data, 
Schneider and Sto116 obtained y = 1.29 f 0.10. Such deviation has 
been attributed to the interaction of the soft phonon with low energy 
acoustic multiphonon fluctuations showing up as a central peak, in 
neutron scattering studies of SrTiO, (Ref. 7), around o = O and q = q, . 
Although such processes are certainly of irnportance in the following, 
only interactions between soft phonons will be considered. It will be 
shown that already in the Hartree approximation, when not treated 
in molecular field approximation, deviations from y = 1, close to T , ,  
do occur. The method applied is based on renormalization group 
techniques introduced in the study of critica1 phenomena by Wilson8. 
In the next Section, y will be calculated in the Hartree approximation 
and, in the final one, modifications due to ladder diagrams will be 
considered. 

2. The Hartree Approximation 

The static wave-vector dependent susceptibility of the problem is 
given by 

where DR(q, o) is the retarded phonon propagator, o:,j the bare phonon 
frequency, nq(q, o )  the retarded phonon self energy and, j, a pola- 
rization index. For a Hamiltonian with a quartic interaction term, 
the self energy is determined by the diagrams 

where the first, or Hartree term, will now be considered. Due to the 
fact that the squared bare frequencies in a certain region around q, 
are negative, whereas [-n,R(q, O)] is a positive increasing function of 
temperature, the denominator of (1) reaches zero at a certain T, , indi- 
cating thus an instability of the lattice. Using the notation 



where fj(p, T) is the dispersion of the soft phonon branch j referred 
to q,, one can write 

where 

is the coupling function and, Djp(o,), the renormalized propagator in 
frequency representation; o, = 2xní- ihp, P = l/kBT. 

An excellent review of the field theory of phonon systems can be found 
in Ref. 9. It is understood that quantities occurring two times will be 
summed over. At q ~ ,  we can set up the following equation, which 
eliminates (o:, j)2 : 

where $ (~ , )*>TSe~ara t in~ ,  in (5), the most singular term, o, = 0, 
from the rest, we can write 

Evaluation of (6) requires some knowledge on the dispersion of the 
soft phonon branches around q~ . Accordingly, an equation for fj(p, T) 
has to be set up in addition to (5). 

One easily obtains in the same approximation 

f j ( ~ ,  T) = (o,O,jI2 - - [vS(T) - v?(Tc)] 

1 1 + - u ~ ~ , ~ ~ ~  p- C Dj'p'(~n) -- Uj~,j'p' PC E Dj,p*(~n). 
2 n 2 n 

With 

u j p , ~ p  = Uj0,j'p + gO'P,j1 P'), 

where gGO, j' p') = O, we obtain from Eq. (7) for T = T, , 



Eq. (9) defines a set of integral equations for the fj(p, T,). Since we 
are only interested in fj(p, T,) for small p, we obtain from (9), with 
gGp, j' p') - p2g(j0, j' p'), approximately, 

"MP, T,) - W )  p2. (10) 
Even if the bare frequency dispersion were of the form ( ~ o p , ~ ) ~  - - Ajpa, with a > 2, the critica1 behaviour will be determined by the 
smallest power term. Assuming that /Sj(T) - /Sj(T,) = A j  and 
Uj,,,j,,T - Ujo,jro, we obtain, for (6), 

where q, is a conveniently chosen cutoff and tzjj,(T) represents the 
second term, of Eq. (6), with ajy(T) > 0. 

It should be noted that, in the present model, the soft phonon momenta 
are not confined to the first B.Z. but that a11 soft phonons, belonging 
to the eight R-corners of the first B.Z., are translated by reciproca1 
lattice vectors into one R-corner. By this method, a11 kinds of processes 
between soft phonons, whether they are of the Umklapp-type or not, 
are taken into acount. 

Disregarding polarization indices and using dimensionless quantities, 
we can write 

where 3, corresponds to an average of the A j ,  then the relation (1 1) 
can be written in the form 

From (1 I'), it follows that 
- v; - r2, V, << g(T,) ,  (134 

-2 
v r  2, ?r >> g(T,), (13b) 

hold, where (13b) corresponds to the mean field. result. 



The critica1 coefficient y would thus assume, in the critica1 region, the 
value 2 which is just in between the experimentally observed values4. 

3. Contribution of Chain Diagrams 

From the invariance of the coupling function U ,  with respect to per- 
mutation of momenta, follows that higher order diagrams will involve 
the same Ujp,j.,. as the Hartree term and the additional ones. Thus, 
however small g(T) is, higher order diagrams will influence the critica1 
behaviour the closer one comes to T, because a11 diagrams, except 
the first order already considered, will diverge at T, when involving 
only soft mode propagators. In particular, the second order self energy 
diverges as ln v, and, the third order, as l/vr . The contribution of the 
chain diagrams can easily be summed up and one obtains 

where only repeated scattering between modes of one branch has been 
considered and Q is the total momentum transfered by the chain. 
In the same way as before, one obtains now, instead of (1 I'), 

+ a(T/T,)z. (16) 

For Vr(T) << g(T,), one obtains 

It follows, from (17), that the linear terms in &(T) have the same order 
of magnitude coefficient for Hartree and chain diagrams and the earlier 
result will be recovered. It is clear, however, that when the diagrams 
neglected are taken into account properly, the value of y will change. 



It has been shown in Ref. 10 that the dynamics of the soft phonon 
field is governed by an effective Lagrangian in which the effect of the 
acoustic phonons is incorporated in the new bare coupling functions. 
Furthermore, it has been shown that the effective Lagrangian defines 
a Heisenberg-type problem with a finite coupling constant. The critica1 
coefficient y of the latter problem assumes the value 1.375. In this, 
considerably more exact treatment one obtains thus a value of y 
which compares well with EPR linewidth measiirements in SrTi03 
(Ref. 5). 
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