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1t is shown that a self-consistent electronic APW energy band calculation can be sim-
plified if the k- p expansion is used for obtaining the Bloch functions. An expression

for the spherically symmetric charge density isderived in the “muffin-tin” approximation
for the crystalline potential. Some advantages in the computation time are pointed out.

Neste trabalho é mostrado como um calculo autoconsistente de faixas de energia pelo
método APW pode ser simplificado se a expansdo k- p é utilizada para a obtengéo das
fungdes de Bloch. Uma expresséo para a densidade de carga esfericamente simétrica
¢ derivada na aproximacdo "Muffin-tin" para o potencial cristalino. Algumas van-
tagens no tempo de computagdo sdo apresentadas.

1. Introduction

In 1967, one of the authors' proposed a method to obtain the electronic
energy bandsin a general point k of the Brillouin zone, once the bands
were known at a particular point k, o the same zone. The method
was based on the expansion of the band functions at k in terms of the
Kohn-Luttinger complete set of functions®, that is,

b k1) = ), Cf (K —Ko) m, (k — Ko, 7), 1.1
e

where bl*® (k, r) is a Bloch function belonging to the »* band and
transforming like the i"* partner of the I',(k) irreducible representa-
tion o the group o the wavevector k.
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The Kohn-Luttinger function y,. ; (K — ko,r) is defined in terms o the
Bloch function bLs% (k, 1) by

Zm. (K — ko, 1) = exp [i(k — ko) 1] b2 (ko, ). (1.2)
With the above expansion, it is possible to get a simple expression for
the Hamiltonian matrix elements which are written in terms o the
matrix elements of momentum operator between two levels at k.

More explicitly, the problem of calculating the energy levels reduces
to that of finding the solutions E,(k) of the secular equation

2
det {[ K2+ Eufko) — En(k)] Suem Bij + %K' p;;,;{,,} =0 (3

2m,

where
Piv = f dr W9 (o, 1] p YA (ko, ),

and
K= k - ko.

The k- p method provides good results®~# for the bands at any point
in the Brillouin zone. However, if the traditional APW method is
used for this purpose, an enormous and tedious work becomes neces-
sary, mainly at low symmetry points. Such a difficulty becomes more
evident when we try to make the calculation self-consistent. It is neces-
sary to calculate the charge density point by point in the unitary cell
and this implies knowing the Bloch functions for a great number of
k-vectors in the Brillouin zone. As a consequence, there is an unavoi-
dable compromise between the accuracy of the calculation and the
time of computation which necessarily disfavors the former.

Nevertheless, the calculation by the k- p method does not depend on
the symmetry of the point in which it is made. The only compromise
in accuracy refersto the number of levels used iriitialy at the point ko.
But the computation time for calculation for each vector k depends
on this number amost entirely in the determination of the matrix ele-
ments of momentum, which is made only once per iteration. Therefore,
there exists a much less restrictive compromise.

For that reason, the self-consistent calculation of bands by the k- p
expansion is a powerfull method, mainly when the " muffin-tin" appro-
ximation for the crystaline potentia is assumed. From now on we
shall use this approximation.
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2. Charge Density

Matheiss et al.° presented an expression for the spherically symmetrical
charge density in each “muffin-tin” sphere:

o) = f IR TN @.1)
s sphere

where the integral is taken in a solid angle about the center s of the
sphere. The summations in a and k refer to all the occupied states.
In EQ. (2.1), each term in the summations represents the contribution
of statek in the band ato the charge density on the surface of radiusr.
By substltutlng the expressiond the Bloch functionin termsof APW's,
we obtain®

1"2

05(r) = — J | o s K)* §7(r k) dQ =

Vs

s M
_kaa Z Z Z V* Cll(l) sul Rs ,E) (2~2)

Now let us use expansion (12) in order to obtain the charge density

O_r,a.

s .\ 1(7‘) f { Z CH” (k k )ez(k ko) ' r br a(ko) 0 r)}*x
Vs sphere

m’,j

x{) Cii, (k — ko) ® X1 pleko (k, 1)} x sin 6d6d¢, (2.3)
m,J

where we include the band subscription and the partner index. The
above expron may be written as

Gsnlr) V_ Z {C k kO) C k_k())} X
s m J
x U b,l;e‘f}sw* (Ko, 1) BE£% (ko, 1) sin ededqb} , @9
sphere

the summations being extended to all levels and partners, occupied
or not.
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The spherically symmetrical charge density (aniount of charge in a
spherical shell of radius r and thickness dr) will be given by

ar) = Z (2—3~ J d3k o¥ (7). (2.5)

ZB
where the summations only involve the occupied states.

Nevertheless, an important simplification may be done. In Eq. (2.4),
the integral

f dQ b9 (Ko, r)* . bEsko (Ko, 7) (2.6)
spherea

is invariant under rotations of the coordinate system because it extends
over the whole solid angle around the center s. Therefore it obeys
the scalar product theorem

(Fiilghey = 0,00 il gl (2.7)
and Eq. (2.5) becomes

2

o) = o Y {Clifi (k= ko) Cith (k—ko)} x

s m'm,j

J Sn Gdgd(,b b£175§0)* (kO) r). bigzﬁk()) (kO’ r)1 (2'8)
spheres

the summations being performed by taking into account only terms
whose wavefunctions for different levels transforrn as the same partner
of the same irreducible representation of the group of ko.

Finaly by substituting (2.8) into (2.5) we obtain

o) = = Z {[Z (zyyf &k Cie (k — Ko)* Cighy (k — ko)]

s mum',j

X I Sin 0d0de bSO (ko, 1)+ bk (ko, 1) - 2.9
phere

After obtaining the energy levels and the wavelunctions at point ko,
the integrals in solid angles can be evaluated immediately. Then, we
make the expansion k- p which gives directly, at every point k, the
values of the Kohn-Luttinger functions coefficierits Ci-i, (k — ko) which

422



allows us to calculate the integral in reciprocal space, provided that
a sufficiently large number o points is taken into account.

The self-consistency is then established by using the charge density
o4(r) in Poisson's equation for the crystaline potential.

3. Concluson

We can concludethat the usedf k- p method for cal culating the self-con-
sistent charge density alows a considerable simplification, which
comes from the fact that we only have contributions coming from states
with the same symmetry, and a great reduction in computation time,
because the coefficients Ci:i(k — k,) are quickly obtained even at ge-
neral points of the Brillouin zone.

In a later work, we will present applications of this method to semi-
conductors o the group 111-V, particularly GaA4s and GaP, and give
information about the computation time required for each iteration
as wel as others inherents to the calculation.
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