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It is shown that a self-consistent electronic APW energy band calculation can be sim- 
plified if the k .  p expansion is used for obtaining the Bloch functions. An expression 
for the spherically symmetric charge density is derived in the "muffin-tin" approximation 
for the crystalline potential. Some advantages in the computation time are pointed out. 

Neste trabalho é mostrado como um calculo autoconsistente de faixas de energia pelo 
método APW pode ser simplificado se a expansão k .  p é utilizada para a obtenção das 
funções de Bloch. Uma expressão para a densidade de carga esfericamente simétrica 
é derivada na aproximação "Muffin-tin" para o potencial cristalino. Algumas van- 
tagens no tempo de computação são apresentadas. 

1. Introduction 

In 1967, one of the authorsl proposed a method to obtain the electronic 
energy bands in a general point k of the Brillouin zone, once the bands 
were known at a particular point ko of the same zone. The method 
was based on the expansion of the band functions at k in terms of the 
Kohn-Luttinger complete set of functions2, that is, 

where b,>lk' @, r) is a Bloch function belonging to the nth band and 
transforming like the ith partner of the T,(k) irreducible representa- 
tion of the group of the wavevector k. 
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The Kohn-Luttinger function x,,~ (k - ko,r) is defined in terms of the 
Bloch function biajkO) (ko, r) by 

~ , , ~ ( k  - ko, r) == exp [i(k - k,). r] bip,!kO)(kO, r). (1.2) 
With the above expansion, it is possible to get a. simple expression for 
the Hamiltonian matrix elements which are written in terms of the 
matrix elements of momentum operator between two levels at ko. 
More explicitly, the problem of calculating the energy levels reduces 
to that of finding the solutions E,(k) of the secular equation 

where 

and 
K =  k - ko. 

The k. p method provides good results3-s for the bands at any point 
in the Brillouin zone. However, if the traditional APW method is 
used for this purpose, an enormous and tedious work becomes neces- 
sary, mainly at low symmetry points. Such a difficulty becomes more 
evident when we try to make the calculation self-consistent. It is neces- 
sary to calculate the charge density point by point in the unitary cell 
and this implies knowing the Bloch functions for a great number of 
k-vectors in the Brillouin zone. As a consequence, there is an unavoi- 
dable compromise between the accuracy of the calculation and the 
time of computation which necessarily disfavors the former. 

Nevertheless, the calculation by the k.  p method does not depend on 
the symmetry of the point in which it is made. The only compromise 
in accuracy refers to the number of levels used iriitially at the point ko. 
But the computation time for calculation for each vector k depends 
on this number almost entirely in the determination of the matrix ele- 
ments of momentum, which is made only once per iteration. Therefore, 
there exists a much less restrictive compromise. 

For that reason, the self-consistent calculation of bands by the k. p 
expansion is a powerfull method, mainly when the "muffin-tin" appro- 
ximation for the crystalline potential is assumed. From now on we 
shall use this approximation. 



2. Charge Density 

Matheiss et aL9 presented an expression for the spherically symmetrical 
charge density in each "muffín-tin" sphere: 

s cphere 

where the integral is taken in a solid angle about the center s of the 
sphere. The summations in a and k refer to a11 the occupied states. 
In Eq. (2.1), each term in the summations represents the contribution 
of state k in the band a to the charge density on the surface of radius r. 
By substituting the expression of the Bloch function in terms of APW's, 
we obtain9 
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Now let us use expansion (1.2) in order to obtain the charge density 
c:," : 

where we include the band subscription and the partner index. The 
above expression may be written as 

b2,$~)* (k,, r) bfngyO) (k,, r) sin 0dOd4 } , (2.4) 

the summations being extended to a11 levels and partners, occupied 
or not. 



The spherically symmetrical charge density (aniount of charge in a 
spherical shell of radius r and thickness dr) will be given by 

where the summations only involve the occupied states. 

Nevertheless, an important simplification may be done. In Eq. (2.4), 
the integral 

dSZ b%:j",~) (k,, r)* . bf;i8jk0) &o, r)  (2.6) 
spherea S 

is invariant under rotations of the coordinate system because it extends 
over the whole solid angle around the center i;. Therefore it obeys 
the scalar product theorem 

(f 5 / d, I )  = ' a p  d i k  Cf?J  ( & , I )  P7) 
and Eq. (2.5) becomes 

sin 0d0d4 b2!jk")* (ko, r). b,kfko) (k,, r), (2.8) 
sphzres S 

the summations being performed by taking into account only terms 
whose wavefunctions for different levels transforrn as the same partner 
of the same irreducible representation of the group of k,. 
Finally by substituting (2.8) into (2.5) we obtain 

sin 0d0d4 b>ljko) (ko, r). bkfko) (ko, r) 
aphere x i (2.9) 

After obtaining the energy levels and the wavelùnctions at point ko, 
the integrals in solid angles can be evaluated immediately. Then, we 
make the expansion k. p which gives directly, at every point k, the 
values of the Kohn-Luttinger functions coefficierits C;$(k - k,) which 



allows us to calculate the integral in reciproca1 space, provided that 
a sufficiently large number of points is taken into account. 

The self-consistency is then established by using the charge density 
o,(r) in Poisson's equation for the crystalline potential. 

3. Conclusion 

We can conclude that the use of k -  p method for calculating the self-con- 
sistent charge density allows a considerable simplification, which 
comes from the fact that we only have contributions coming from states 
with the same symmetry, and a great reduction in computation time, 
because the coefficients Ck$@ - ko) are quickly obtained even at ge- 
neral points of the Brillouin zone. 

In a later work, we will present applications of this method to semi- 
conductors of the group 111-V, particularly GaAs and GaP, and give 
information about the computation time required for each iteration 
as well as others inherents to the calculation. 
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