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We present a detailed theory of light scattering by nuclear magnons in ferro- and antifer- 
romagnets. Three mechanisms of coupling photons with nuclear spins are analyzed 
and compared. Calculations are developed for a one-nuclear magnon process and se- 
cond-order processes involving nuclear and electronic magnons in antiferromagnets. 
A comparison of the Raman intensities of these processes with the purely electronic ones 
shows that an experimental investigation is feasible. 

Apresenta-se uma teoria detalhada do espalhamento de luz por magnons nucleares 
em ferro- e antiferromagnetos. Três maneiras de acoplar fotons com spins nucleares são 
analisadas e comparadas. Apresentam-se, em antiferromagnetos, cálcuios para processos 
envolvendo um magnon nuclear, como também para processos de segunda ordem em 
que comparecem magnons de origem nuclear e eletrônica. Conclue-se, bela comparação 
das intensidades Kaman desses processos com aqueles puramente eletrônicos, ser factível 
uma investigação experimental da situação fisica discutida. 

I. Introduction 

Nuclear magnons are well defined collective excitations in magnetic 
materials. These excitations are due to an indirect coupling between 
nuclear L nd electronic spins and have frequencies in the nuclear magnetic 
resonance (?i?dR) range. This indirect coupling was first proposed by 
Suhll and Nakamura2 to explain the linewidth of the NMR of non- 
magnetic ions in ordered materials. De Gennes et al. later showed that 
this coupling leads to a k-dependent pulling of the nuclear frequency 
and that the dispersion relation becomes approximately ok = oN ( 1  - 
- y zN/Qk) for a ferromagnet and, for a two-sublattice antiferromagnet, 
ok = oN(1 - 2 y 2  zE ~ ~ / t & ~ a ~ ~ ) ~ ' ~ ,  in the normal state, and oik = 
= O N ( ~  - 2 y 2  ZE zN/fiik) for the ith mode in the flopped state. In 
the above, y is the electronic gyromagnetic ratio, CON is the unpulled 
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NMR frequency, SZk is the electronic spin wave frequency and, 2, 
and H,, are exchange and hyperfine fields, respectively. 

The percentage of pulling for a ferromagnet, y HN/Rk, is not significant 
under typical conditions, since H, is about 2 C)e at 4.2OK, and Ro/y 
is usually of 1 000 Oe. In a low-anisotropy ferromagnet, however, the 
puiling, 2y2%Ei??N/fi?k or 2 y2&Ei%?N/i&kQ2k, can be comparable to 
unity since we then have y H, 9 SZk at low k. 

Conventional NMR measurements give information only about the 
nuclear uniform precession (k = O). In recent years, microwave 
p h ~ t o n ~ - ~  and phonon7,%on-linear pumping techniques have been 
used to probe the excitation of nuclear magnons. These techniques 
lead only to indirect information about the nuclear modes and have 
severa1 limitations4-'O. In this work, we show that the technique of 
inelastic light scattering can also be used to study nuclear spin waves. 
Three mechanisms can be envisaged which allow the coupling of light 
photons with nuclear magnons, namely: a. Direct magnetic-dipole 
interaction analogous to the case of electronic magnons' '; L. Indirect 
coupling of the nuclear spins with the electric field of the radiation via 
the electric-dipole interaction with the electrons combined with the 
hyperfine interaction; c. Indirect coupling via virtual electronic mag- 
nons. We show that, in usual situations, mechanism c. is much stronger 
than the others. 

In Sec. 2, we review some results5 from the theory of nuclear magnons 
in ferro- and antiferromagnets which will be needed later. In Sec. 3, 
we outline the calculations of interactions a., b. and c. . 

2. Nuclear Magnons 
A. Ferromagnets 

Let us consider a system with the following Harniltonian 

where the terms, in order, represent the exchange energy, the electronic 
and nuclear Zeeman energies, and the electron-nucleus hyperfine 
coupling. The magnetic field H is in the z-positive direction, and 
y,. y~ are respectively the electronic and nuclear magnetogyric ratio. 



The nuclear and electronic spectra will be derived using the Holstein-Pri- 
makoff method in the linear approximation, i.e., 

S+ = ( 2 ~ ) ' ~ ~ a ; ,  S; = (2S)li2ai, ST = - S + ai]ai, 
1 = (2 ( lZ ) )b i ,  1 = (2(1z))12b, 1; = (1") - bibi, (2) 

where [ai, a:] = [bi, bí] = I , for a11 i, a11 other commutators vanishing. 
The linearization implied by the above use of (1") has been justified in 
detail by De Gennes et aL3. 

Substitution of Eq. (2) in Eq. (I), with neglect of quartic terms, followed 
by the canonical transformations 

ak = N-'I2 E exp (- ik. Rj)aj, bk = Np1l2 E exp (ik. Rj)bj, (3) 
j .i 

where N is the number of unit cells in the crystal, yields 

J k  = 2s 1 J i j  exp [ik . (Ri - Rj)] . 
i , j  

The Hamiltonian H is diagonalized via the canonical transformation 

ak = ak cosh Ok + /ji sinh Ok, 
bk = ai sinh Ok + /jk C O S ~  Ok, (7) 

where 

tanh 20k = - 2F/(Ak + B). (8) 

There results 

where 



Since ON, the unpulled frequency, is equal to AS/h and A?,, the field 
seen by the electrons due to the nucleus, is equal to A(IZ)/yeh, we have 
for typical values 1 2F/(Ak + B) I < 1, and 

where C l k  is the electronic magnon frequency. Thus, from Eq. (10), we 
see that a and f l  are, respectively, the electronic .and nuclear spin-wave 
modes. 

B. Antiferromagnets 

We now consider the cubic antiferromagnet i11 the unflopped state 
(to the flopped state see Ref. 13). The Hamiltonian, we consider now, is 

where i and j refer to A and B sublattices, respectively. Each term, 
in the above, means: antiferromagnetic exchange ( J  > 0); combined 
electronic Zeeman and anisotropy energy for the A sublattice and for 
the B sublattice; nuclear Zeeman energy and hyperfine interaction. 

From usual spin-wave theory, we set 

where [ai, a:] = [bj, bf] = [ci, c:] = [dj, d]] == 1, a11 other pairs of 
operators commuting. 

Substitution of Eq. (12) in Eq. (ll), followed b:y the canonical trans- 
formations 



where N is the number of unit cells in the crystal, leads to 

H = h C [Ãa:ak + D ~ C ~ C ~  - ~ ~ ( a k c ~  + akc;) + B bkbk 
k 

+ D2dkdk - FB(b:dk + bkdk) + oexyk(akbk + akbk)]. (14) 

The coefficients, in Eq. (14), are 

the last sum being over the z nearest neighbors of a given site. 

The Hamiltonian in Eq. (14) can be diagonalized as follows. First, we 
express H in matrix form as 

where 

Knowing that the elements of X are boson operators allows ú(; to 
write the following matrix equation : 

where 

and S is the transformation matrix which diagonalizes H and defines 
the normal mode operators by 

Y = SX, (20) 

where 



= [i;] uk4 

The eigenvalues are given by 

The roots of the above equation, for a low-anisotropy antiferromagnet, 
are given approximately by 

where 

x 1 = [ ~ ( Ã - ~ ) 2 + Ã ~ - ~ : , $  

and 

x2 = [f (A- B ) ~  + ÃB - (24) 

are the unperturbed electronic frequencies. From Eqs. (23), we see 
that w , , ~  and o,,, are the frequencies of the quasi-electronic and nuclear 
modes respectively. In Fig. 1, we sketch the k-dependence for these 
frequencies. 

W A V F N U M B E R  

Fig. 1 - Dispersion rcliiiioii lix couplcd iiuc1c;ii. aiid ~ I ~ C I I O I I I L .  spin wave modes in 
;I iwo-sublattice antiferromagnet. Typically, the curves bend up at  k - ] O 5  cm- '  



Performing the algebra, we have for S, in Eq. (18), 

where the p's satisfy 

3. Light Scattering 

Mechanism a. is analogous to the process suggested by Bass and Ka- 
ganov" for Kaman scattering by electronic magnons. Fleury and 
Loudon12 have shown that, in the electronic magnon case, this inte- 
raction is negligible compared to the indirect electric-dipole process. 
Their arguments also apply here and we shall not consider this process 
further. To calculate interactions b. and c., we use the single ion model 
used by Fleury and Loudon12 to study light scattering by electronic 
magnons, except that we allow for the presence of the hyperfine splitting 
in the energy levels. Consider a crystal in which the ground state of 
the magnetic ion has spin S, zero orbital angular momentum (L  = 0) 
and nuclear spin I. The intermediate states, connected to the ground 
state by the electric dipole moment, must have L= 1 and the same 
electronic and nuclear spins, S and I. The ground state is split in (2s + 1) 
(21 + 1) components by the externa1 field, the exchange field and the 
hyperfine interaction. The energy diagram is sketched in Fig. 2. We 
assume that the splitting between components of different S, (which 
corresponds approximately to the electronic magnon energy) is much 
larger than the splitting between components with the same S, and 
different I z  (approximately, the nuclear magnon energy). In the excited 



Fig. 2 - Energy leve1 diagram used to calculate the Rarnan processes for nuclear 
and electronic spins. 

P-state, we neglect the splitting in S ,  in comparison with the spin-orbit 
coupling splitting. In the excited state, each of the three J components 
splits in F-components due to the hyperfine interaction. Here, F = J + I 
follows the angular momenta sum rules. The energy eigenfunctions 
I F F,) for the excited states can be expressed as linear combinations 
of ( J ,  I,) eigenfunctions, which are in turn linear combinations of 
( L ,  S,  I,) eigenfunctions. The electric-dipole interaction between the 
radiation and the electrons of the magnetic ions (A?,, = - e Ei . ri) 

1 

connects an initial state 1: with intermediate states and these with 
a final state S: I:. S pin-orbit and hyperfine interactions mix different 
S, and I ,  in the intermediate states, allowing the flip of electronic and 
nuclear spins. One can, therefore, calculate the tsansition probabilities 
for different Raman processes, involving changes in I, and/or S,. With 
I: = I: and Sf = SL k 1, the calculation is identical to that of Fleury 



and Loudon12. With third-order perturbation theory, one can repre- 
sent the Raman process in terms of an electronic spin operator Hamil- 
tonian12 given by 

H,-rad = r', 1 (EtES+ - EL+E$)S; i- h. C. 
i 

(27) 

where 

the summation running over a11 magnetic sites i ,  r -  = x - iy; E,  is 
the energy separation between the ground state and the lowest allowed 
intermediate state, Â, the spin-orbit coupljng parameter of the excited 
state, E' and E' = E" + i EY the electric field components of the radia- 
tion with frequency o and the subscripts L and S refer to the incident 
and scattered fields, respectively. In the matrix elements, the kets 
I L L,) characterize the orbital part of the ground and excited states. 
Now, setting S i  = Sf and I; = I: 1 and following the same steps 
which led to Eq. (27), we fínd the Hamiltonian for the interaction 
between the radiation fields and the nuclear spins 

where 

where AL is the orbital hyperfine constant of the excited states. In 
Eq. (30), we have neglected Â, in comparison with Eo. The Hamilto- 
nian (29) represents a process analogous to the one of (27), in which 
the spin-orbit interaction allows the flipping of the electronic spin by 
the electric field of the radiation. Here, the hyperfine coupling needed 
to flip the nuclear spins proceeds through the orbital momentum of 
excited non-S states of the magnetic ions which serve as intermediate 
states in the Raman process. 

Mechanism b., referred to previously, arises from the interaction Hamil- 
tonian (29). In ferromagnets, the nuclear spin deviation operators I; 
and I: can be expressed directly in terms of nuclear magnon creation 
and destruction operators. Therefore, (29) leads to Stokes and anti- 
-Stokes scatterings processes very much analogous to the electronic 



case12. Due to relation (30), the intensity of this scattering process for 
nuclear magnons is smaller than for electronic magnons by a factor 
of (ALIA)'. For Mn ions this ratio is of the order of 10-'O and mecha- 
nism b. is too weak. 

Finally, mechanism c. arises from the interaction Hamiltonian (27). 
With the hyperfine coupling present, an electron deviation is neces- 
sarily accompanied by a disturbance of the nuclear systems, and this 
is seen in Eq. (7), the transformation that diagonalizes the Hamiltonian 
of a spin system with electrons and nuclei coiipled by the hyperiine 
interaction. Replacing the spin operator in Eq. (27) by the second 
relation in Eq. (2) and using Eq. (7), we obtain the interaction Hamil- 
tonian for the first-order Stokes scattering process by nuclear magnons, 

HS\I-,ad = [(2nh) ( ~ C O ~ W ~ S N ) " ~ / ~ ~ ~ ~ U ]  r, sinh Ok x 
x (&E$ - E: E;) aLa$L 6(kL - Iks - kN) + h. c., (3 1) 

k~ 

where 

sinh Ok - ( Y X ~ C O ~ ) " ~ / Q ~  + mN), 
q L , ~  and EL,S are, respectively, the refractive indices and the polariza- 
tions of the incident and scattered radiations, aL and ai  their photon 
destruction and creation operators and, u, the interaction volume. 

Comparison between (31) and (27) shows that, in ferromagnets, the 
intensity of the scattering by nuclear magnons ,in the present process 
is smaller than by electronic magnons by a factor sinh2 Ok. In typical 
ferromagnets, this factor can be as large as 10-.' and mechanism c. is 
much stronger than the others. The polarization selection rules, for 
scattering by nuclear magnons, are the same aq those for electronic 
magnons12. 

We can now use mechanism c. to obtain the Hamiltonian for scattering 
in antiferromagnets by allowing the summation in (27) to run over the 
different magnetic sublattices and by use of the appropriate transfor- 
mations from the spin to the normal mode operators of Eqs. (12) and 
(20). With this Hamiltonian, we arrive at the difrerential cross-section 
for Stokes scattering by the ith -mode nuclear spin wave in a two-sublat- 
tice unflopped antiferromagnet, 



where, M, is the sublattice magnetization, g p ~  is the elementary electro- 
nic magnetic moment and, n:, the ith -mode nuclear magnon ocuppation 
number. SPi and Sqi are the matrix elements from Eq. (25) correspon- 
ding to the ith -mode nuclear magnon creation operator. Using the 
results from Eq. (25) in an unflopped antiferromagnet, the scattering 
cross-section (32) is shown to be proportional to r:(&, - s ~ ~ ) ~ .  With 
the approximations 2, 4 2, and 2, 4 2, where 2, is the applied 
field, this factor reduces to 

where BAF = Y 2 h E h N / ~ l k ~ 2 k  is the frequency puiíing. This is to be 
compared with the factor for scattering by electronic magnons12 
Ve = (sA/2%E)1'2 r:. For the low-anisotropy antiferromagnet 
RbMnF3 ( 2 ,  = 4.5 Oe at T = 4.2"K), in which nuclear magnons were 
first observed, with X0  = 2 KOe, at T = 4.2'K (aAF = 0.14), one has 
VN 10-5rS - 10-2 Ve. 

In addition to one-nuclear magnon scattering, it is possible to have, 
in antiferromagnets, second-order Raman scattering involving the 
creation or destruction of a pair of nuclear magnons or a mixed electronic 
nuclear magnon pair. As in the one-nuclear magnon case, the origin 
of the mechanism here is based on the coupling of light photons with 
the electronic spins. The interaction of light with two electronic spins 
in a antiferromagnet, in a Raman process, can be written as13 

where d indicates the neighbors to site i .  The origin of interaction (34) 
resides on a coupling through virtual phonons or on an exchange 
mechanism via electronic excitations12. The form of the B tensor can 
be determined from the symmetry of the magnetic crystal. In RbMnF3 
(Ref. 13), the interaction is proportional to Si. Si+, and the largest 
contributions come from the terms S: Si+ and S; ST+ where i and 
i + d refer to the down-spin and up-spin sublattices. With the results 
from Sec. 2, we can replace the electronic spin operators in these terms 
by the electron-nuclei normal mode operators. The resulting expres- 
sion contains, in addition to terms which give the scattering by elec- 
tronic magnons of different branches12, terms with creation and 
destruction operators for pairs of nuclear magnons of different modes 
and mixed electronic-nuclear magnon pairs. The ratio of the inte- 
ractions for Stokes scattering, by two-nuclear magnons, to Stokes 



scattering, by two-electronic magnons, becomes 

which, with the approximations appropriate for RbMnF3, reduces to 

where yk, uk and vk are the usual coefficients used jn the transformation 
which diagonalizes the electronic spin Hamiltonian in a antiferro- 
magnet12. At low k,  yk E 1 ,  and the ratio (35) is of the order of unity. 
Therefore, in this region, the scattering by nuclear-magnon pairs is 
comparable to the scattering by electronic-magnon pairs. The spon- 
taneous scattering by nuclear pairs, however, is expected to be much 
smaller than the electronic analog. The reason iç that, since the wave 
vectors of the light photons are very small compared with the Brillouin- 
-zone edge value of k, the wave vectors of the mzgnons excited are 
nearly equal and opposite and can assume any value. As the density 
of states increases rapidly with k, the larger conl.ribution to the scat- 
tering comes from the neighborhood of the Brillouin-zone edge. Here, 
as kN increases, the electronic frequency R, increases rapidly and the 
admixture of the nuclear-electronic spin wave inodes, expressed by 
the frequency pulling dAF, vanishes quickly. At the adge of the Bril- 
louin-zone, bAF e hN/hE e 1 op6, and the ratio (35) is of the order 10- ' O .  

4. Conclusion 

In this paper, we show theoretically the possibility of studying nuclear 
magnons directly with inelastic light scattering t~cchniques. It can be 
shown that, for RbMnF3, the ratio (33) is of the order 1OP2 Ve and this 
intensity is very low. Together with the small frequency shift of the 
Brillouin signal (the unpulled NMR frequency of MnS5 is of the order 
680 GHz), this should make the scattering by thermal nuclear magnons 
very difficult to observe. However, one has the psssibility of increasing 
the population of nuclear magnons by many orders of magnitude with 
microwave pumping4-l0 leading to strong sig;nals which may be 
resolved with the high-resolution experimental methods recently deve- 
loped14. 

A magnetic system, in which first-order light scattering by nuclear 
magnons may prove to be more useful, is the uniaxial antiferromagnet 
MnF,. In thir material, the transverse anisotropy is low enough that 
the application of a high magnetic field brings the downgoing electronic 



magnon branch to the low microwave range15. Therefore, with a field 
just above the spin-flop vahe which is 93 KOe at T =  4.2"K, both 
electronic frequencies are low and coupling with nuclear magnons is 
strong. Under these conditions, calculations similar to (33) give 
VN - 8 x lOP3 - 10-'Ve. With. this larger intensity, we can pos- 
sibly use light scattering to study nuclear magnons in MnF2. 

Another possible application is in the study of nuclear magnons in 
spiral and conical spin structures, such as found in certain rare-earth 
metals16. In these materials, the coupling between nuclear and electro- 
nic modes is strong and, therefore, the scattering cross-section is large. 
In addition; with the very large hyperfine fields found, the NMR fre- 
quency .is large (e.g., c o ~  6.5 GHz in holmium) and the resolution 
is no longer critica1 for the experiments. Again high-resolution spec- 
troscopy14 may circumvent the problem createa by the fact that one 
has to scatter light off the surface of the rare-earth metal. 
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