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We present a detailed theory of light scattering by nuclear magnonsin ferro- and antifer-
romagnets. Three mechanisms o coupling photons with nuclear spins are analyzed
and compared. Calculations are developed for a one-nuclear magnon process and se-
cond-order processes involving nuclear and electronic magnons in antiferromagnets.
A comparison of the Raman intensities of these processes with the purely electronic ones
shows that an experimental investigation isfeasible.

Apresenta-se uma teoria detalhada do espalhamento de luz por magnons nucleares
em ferro- e antiferromagnetos. Trés maneiras de acoplar fotons com spins nucleares sdo
analisadase comparadas. Apresentam-se, em antiferromagnetos, calculos para processos
envolvendo um magnon nuclear, como também para processos de segunda ordem em
gue comparecem magnons de origem nuclear e eletrénica. Conclue-se, pela comparacgéo
dasintensidades Kaman desses processos com aqueles puramente el etronicos, ser factivel
uma investigagdo experimental da situagdo fisica discutida.

[. Introduction

Nuclear magnons are wel defined collective excitations in magnetic
materials. These excitations are due to an indirect coupling between
nuclear « nd electronicspinsand havefrequenciesin the nuclear magnetic
resonance (:vMR) range. Thisindirect coupling was first proposed by
Suhl' and Nakamura’® to explain the linewidth of the NMR o non-
magneticionsin ordered materials. De Genneset dl. later showed that
this coupling leads to a k-dependent pulling of the nuclear frequency
and that the dispersion relation becomes approximately w, = wn (1 —
— Y #n/) for aferromagnet and, for atwo-subl atticeantiferromagnet,
Wy = WN (1 — 2'))2 Hr .%N/Qlkgzk)l/z, in the normal state, and Wik —
= wn(1 — 2y% He #n/QF) for the i mode in the flopped state. In
the above, y is the electronic gyromagnetic ratio, wy is the unpulled
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NMR frequency, €, is the electronic spin wave frequency and, #g
and 'y, are exchange and hyperfine fields, respectively.

The percentageof pullingfor a ferromagnet, y #x/€, is not significant
under typical conditions, since #y is about 2 Oe at 4.2°K, and Q,/y
is usualy of 1000 Oe. In a low-anisotropy ferromagnet, however, the
pulling, 292 #n/QG or 22 H e H n/Q11 0, CaN be comparable to
unity since we then have y H, > Q, at low k.

Conventional NMR measurements give information only about the
nuclear uniform precesson (k = 0). In recent years, microwave
photon*~¢ and phonon’-® non-linear pumping techniques have been
used to probe the excitation of nuclear magnons. These techniques
lead only to indirect information about the nuclear modes and have
several limitations*~'%. In this work, we show that the technique o
inelastic light scattering can also be used to study nuclear spin waves.
Three mechanisms can be envisaged which allow the coupling of light
photons with nuclear magnons, namely: a. Direct magnetic-dipole
Interaction analogous to the case of electronicmagnons' !; L. Indirect
coupling of the nuclear spins with the electricfield of the radiation via
the electric-dipole interaction with the electrons combined with the
hyperfine interaction; c. Indirect coupling via virtual electronic mag-
nons. We show that, in usual situations, mechanism c. is much stronger
than the others.

In Sec. 2, we review some results® from the theory of nuclear magnons
in ferro- and antiferromagnets which will be needed later. In Sec. 3,
we outline the calculations of interactionsa, b. and c. .

2. Nuclear Magnons
A. Ferromagnets

Let us consider a system with the following Harniltonian
H= —zJUS,Sj*yehfosz—yNh.%oZI,z +AZI[S,, (1)

ij

where the terms, in order, represent the exchange energy, the electronic
and nuclear Zeeman energies, and the electron-nucleus hyperfine
coupling. The magnetic fidd H is in the z-positive direction, and
Ye. PN are respectively the electronic and nuclear magnetogyric ratio.
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Thenuclear and el ectronicspectrawill bederived using the Holstein-Pri-
makoff method in the linear approximation, i.e.,

= (25)%q;, s— = (28)"2a,, St = - Staa,
= (2{I*))'*b, = (2{I?)) )2, I = = (I*) — b/b, 2
Where [ai a,] = [b,,b ] = |, for all i, all other commutators vanishi ng.

The linearization implied by the above use of {I?) has been justified in
detail by De Gennes et al.’.

Substitution o Eq. (2)in Eqg. (1), with neglect of quartic terms, followed
by the canonical transformations

a=N"'"7Y exp (—ikRpa;, b, =N""2Y exp (ik.Rpb; (3)
H J

where N is the number o unit cdls in the crystal, yields

H=c+ ) [Awaiay + B b + F(aih, + aybi)]- (4)
h
where
‘A = ~— 7 /]“_// + 4<1:> + J() — J/\~
B= - h# + AS. F = 1018 - ()
and

.Ik =28 Z J,'j exp [|k -(Ri - Rj)].
i

The Hamiltonian H is diagonalized via the canonical transformation
(xk cosh Gk + ﬂk sinh Bk,

a; =
b, = oy sinh 01( ﬁk cosh G, (7)
where
tanh 20, = — 2F/(A. T B). (8)
There results
1 .
— 5 ; (Av + B) + Ek: (a0 + xpPrBr), ©)
where
5 [(4x — B) + (A + B)/cosh 26,],
g = % [ (4 — B) + (4 + Byjcosh 26,]. 9)
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Since oy, the unpulled frequency, is equal to AS/h and s, the field
seen by the electronsdue to the nucleus, isequal to A{I*)/y.h, we have
for typical values | 2F/(4, T B)| < 1, and

(cos 26,) 1 ~ 1 — —% tanh? 26, = 1 — 2F?/(A, + B)?,

& ~ Ay — F2[(Ax + B) ~ hQy — hy o noon/Sh,
Ekp = B — Fz/(Ak + B) =~ th (1 - yef%QN/Qk)a (10)

where € is the electronic magnon frequency. Thus, from Eq. (10), we
seethat o and f are, respectively, the electronic and nuclear spin-wave
modes.

B. Antiferromagnets

We now consider the cubic antiferromagnet in the unflopped state
(to theflopped state see Ref. 13). The Hamiltonian, we consider now, is

H =27} 8.8+ yh(Hn— Ho) ) S — yeh(Ha + Ho) ), S
iy 1 J
i. i i J

where i and j refer to A and B sublattices, respectively. Each term,
in the above, means: antiferromagnetic exchange (J> 0); combined
electronic Zeeman and anisotropy energy for the A sublattice and for
the B sublattice; nuclear Zeeman energy and hyperfine interaction.

From usua spin-wave theory, we set

= (29)"q, ST =254, St=S-ada,

S = (28)1?b], S; = (@)Y,  Si= —S+bib;

I = Iz>)f/2ci., I = (2§Ii>)f/2cz, I; = (Ii) — cic;,

I = QIa)V2d;, I = QUE) ', IF= — {3y + did; (12)

where [a;, ai] = [b;, bi] = [ci» ¢i] = [d;, di] = 1, all other pairs of
operators commuting.

Substitution of Eq. (12) in Eqg. (11), followed by the canonical trans-
formations
ap = N~1/? Z exp (kk.R)a;, by = N"Y2Y exp (—ik.Rpb;

J

o= N7 exp (k.Rjey, di=N""Y exp (—ik.R)d; (13)
i j
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where N is the number o unit cellsin the crystal, leadsto
H = h Y [Aaja, T Dicic, — Falaick + aci) T Bbiby
k

+ Dzdidk - F B(b;dk + bkdii) + DexVilaxbr + aléb;)] (14)
The coefficients, in Eq. (14), are

~

A = 0ex — Ye(Hn — Ho + Hnn)y Hxa = — ATi)/yeh,
B =y = y(Ha+ Ho+ Hnp), Hng=—A <I§>/Veh,
Wy = 2SZJ/h, D1 = WN + '})Nryfo, N = AS/h,
D, = wn — n#o, Fa = (—=y.on#na)'? Fg = (—y.0n# )2, (15)

the last sum being over the z nearest neighbors o a given site.

The Hamiltonian in Eq. (14)can be diagonalized as follows. First, we
express H in matrix form as

H = X'HX, (16)
where
ay /T —FA yka)ex 0 .
_ % . '—FA D1 0 0
X=|pl H= % B R (17)
C]: 0 0 ;FB D2

Knowing that the elements of X are boson operators alows us to
write the following matrix equation:

gHS = SgQ, (18)
where
10 0 0 w, 0 0 0
o1 0o o {0 w, 0 0
9=lo0 -1 o ¥=|{0 0 w O (19)
00 0 —1 0 0 0 o,

and s is the transformation matrix which diagonalizesH and defines
the normal mode operators by

Y = SX, (20)
where



akl
O(k4

21
O(k4
The eigenvalues are given by

[(4 — ) (B+ o) — y}wd] (D — ) (D; + ®) — FA(B + w) (D, + w) —
— FYA - w) (D, —w)+ F3F§=0. (22)

The roots of the above equation, for a low-anisotropy antiferromagnet,
are given approximately by

Wy = X1 — )’eCUNny(X% + wewa)r/xi )

Wy ~ Dy — on[1 — (I + 29 n0e/x1 x2)1?],

W3 = — X + yewN“%N(X% + wexa)N)/x%:

ws~ — Dy + a1 — (I + 2yeHnwer/x1 x2)12], (23)
where

I~ 2 e 22 |'? s

Xy = Z(A—B) + AB — wyi +7(A_B),

and

" 12 -
= [pU-prtAe-ont| - gm0
are the unperturbed electronic frequencies. From Egs. (23), we see
that w, 3 and w, , arethefrequencies of the quasi-electronic and nuclear
modes respectively. In Fig. 1, we sketch the k-dependence for these
frequencies.

FREQUENCY

3
z

WAVFENUMBER

Fig. 1 — Dispersion relation lor coupled nuclear and clectronic spin wave modes in
a two-sublattice antiferromagnet. Typically, the curves bend up at k ~ 105 cm™*
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Performing the algebra, we have for S, in Eq. (18),

oDy o WO Fi gy Fu
F-o)D;~o)-F  (A-0)D,-o)-FX o D, + o
u Fapa (D + @), i Oy Fis g2
z Dy~ (B~ w)(Dy + e2y) - F§ (B+ @)Dy + 03)- F
s = g
u Faps e(D2 + @3t Vi 0y Fr pts
: Dy -3 (B +w3)(Dy+©03)—F3  (B+03)(Ds + w3)~ F3
70Dy — 04)ts Tk Oex Fa flg Fi s
= = L
(A-0)(Dy o)~ F% (A-o D, —m,)~F2 Ha ) D, +

[RAY]

where the p’s satisfy

2 FA  ytoi[(Dy+ o)’ +F) | _ | i=2
| 145 {1 T 0= 0)  [B+ow)D,+w)-Fi =A1’j=3’
2. .2 2 2 2
12 kaex[(Dl_wj) +FA] —1 - __L_ = 1.i=1. (26
| 7] {[(A_wj)(ul—wj)—Fg]l (D, + wy)* =_1’§=4i( )

3. Light Scattering

Mechanism a. is analogous to the process suggested by Bass and Ka-
ganov"* for Kaman scattering by electronic magnons. Fleury and
Loudon!? have shown that, in the electronic magnon case, this inte-
raction is negligible compared to the indirect electric-dipole process.
Their arguments also apply here and we shall not consider this process
further. To calculate interactions b. and c., we use the singleion model
used by Fleury and Loudon'? to study light scattering by electronic
magnons, except that we allow for the presence of the hyperfine splitting
in the energy levels. Consider a crystal in which the ground state of
the magnetic ion has spin S, zero orbital angular momentum (L = 0)
and nuclear spin I. The intermediate states, connected to the ground
state by the electric dipole moment, must have L= 1 and the same
electronic and nuclear spins, Sand |. Theground stateissplitin(2S + 1)
(21F 1) components by the external field, the exchange fidd and the
hyperfine interaction. The energy diagram is sketched in Fig. 2 We
assume that the splitting between components of different S, (which
corresponds approximately to the electronic magnon energy) is much
larger than the splitting between components with the same S, and
different 7, (approximately, the nuclear magnon energy). In the excited
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J=S+1

AlS+1)
L= l J=5 e -
As F’=$""/
} J=S-1 )
Fos-1-1]
E,
S,=-S
L=
S=5-1 L
—
1 2&./‘/0 S,=S

Fig. 2 — Energy level diagram used to calculate the Rarnan processes for nuclear
and electronic spins.

P-state, we neglect the splitting in S, in comparison with the spin-orbit
coupling splitting. In the excited state, each of the three J components
splitsin F-components due to the hyperfineinteraction. Here, F = J+ |
follows the angular momenta sum rules. The energy eigenfunctions
|F F,) for the excited states can be expressed as linear combinations
of |J.1,) egenfunctions, which are in turn linear combinations of
(L,S,1,) egenfunctions. The electric-dipole interaction between the
radiation and the electrons of the magneticions (#gp = — e E; . 1)

connects an initial state S: I with intermediate states and these with
afina state S{ I7. S pin-orbit and hyperfine interactions mix different
S, and I, in the intermediate states, allowing the flip of electronic and
nuclear spins. One can, therefore, calculate the tsansition probabilities
for different Raman processes, involving changesin I, and/or S,. With
I =1l and §/ = S + 1, the calculation is identical to that of Fleury
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and Loudon'2. With third-order perturbation theory, one can repre-
sent the Raman processin terms of an electronic spin operator Hamil-
tonian'? given by

Ho g =T, ) (EiE§ — E{ E9Si + hc (27)
where |
[, = (e24/233) (00|z_| 10y {1 —1]r~]00) x
x {[1/Eq — hwp)*] — [I/Eo + ho)* ]}, (28)

the summation running over all magnetic sites i, ¥~ = x —iy; E, is
the energy separation between the ground state and the lowest allowed
intermediate state, A the spin-orbit coupling parameter of the excited
state, E? and E* = E* T i E' the electricfield components o the radia-
tion with frequency o and the subscriptsL and S refer to the incident
and scattered fields, respectively. In the matrix elements, the kets
[LL,) characterize the orbital part of the ground and excited states.
Now, setting S/ = S and I] = I + 1 and following the same steps
which led to Eg. (27), we find the Hamiltonian for the interaction
between the radiation fields and the nuclear spins

HI—rad = Ff z (EiES+ - Elj— g)Il_ + h.C. (29)
where
r, =4k, (30)

where A4, is the orbital hyperfine constant of the excited states. In
Eg. (30), we have neglected A in comparison with E,. The Hamilto-
nian (29) represents a process analogous to the one o (27), in which
the spin-orbit interaction allows the flipping of the electronic spin by
the electricfiedd o the radiation. Here, the hyperfine coupling needed
to flip the nuclear spins proceeds through the orbital momentum of
excited non-S states of the magnetic ions which serve as intermediate
states in the Raman process.

Mechanism b., referred to previoudy, arisesfrom the interaction Hamil-
tonian (29). In ferromagnets, the nuclear spin deviation operators I;-
and I;" can be expressed directly in terms of nuclear magnon creation
and destruction operators. Therefore, (29) leads to Stokes and anti-
-Stokes scatterings processes very much analogous to the electronic
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case'2. Due to relation (30), the intensity of this scattering process for
nuclear magnons is smaller than for electronic magnons by a factor
of (4./4)%. For Mnionsthisratio is of the order of 107!° and mecha-
nism b. is too wesk.

Finally, mechanism c. arises from the interaction Hamiltonian (27).
With the hyperfine coupling present, an electron deviation is neces-
sarily accompanied by a disturbance of the nuclear systems, and this
isseenin Eq. (7), the transformation that diagonalizes the Hamiltonian
d a spin system with electrons and nucle coiipled by the hyperiine
interaction. Replacing the spin operator in Eq. (27) by the second
relation in Eq. (2) and using Eq. (7), we obtain the interaction Hamil-
tonian for thefirst-order Stokes scattering process by nuclear magnons,

HY-raa = [(Znh) QorwsSN )I/Z/ﬂLﬂsU] I sinh 6, x
X Y (efes — & ed) avasPy ok — ks — ky) T h.c, (31)

kn

where
Sinh 6 > — (p# o) 3/Q T o),

nus and & s are, respectively, the refractive indices and the polariza-
tions of the incident and scattered radiations, a. and ag their photon
destruction and creation operators and, v, the interaction volume.

Comparison between (31) and (27) shows that, in ferromagnets, the
intensity of the scattering by nuclear magnons in the present process
is smaller than by electronic magnons by a factor sinh? 6,. In typical
ferromagnets, this factor can be as large as 10~* and mechanismc. is
much stronger than the others. The polarization selection rules, for
scattering by nuclear magnons, are the same as those for electronic
magnons!2.

We can now use mechanismc. to obtain the Hamiltonian for scattering
in antiferromagnets by allowing the summation in (27) to run over the
different magnetic sublattices and by use of the appropriate transfor-
mations from the spin to the normal mode operators of Egs. (12) and
(20). With this Hamiltonian, we arrive at the differential cross-section
for Stokesscattering by thei th _mode nuclear Spin wave in a two-sublat-
tice unflopped antiferromagnet,

da = [2M v s 0d (nf + DTHSp + S /gunic®] |sies — eC &%, (32)

394



where, M, is the sublattice magnetization, gus is the elementary electro-
nic magnetic moment and, x{, the i* -mode nuclear magnon ocuppation
number. S, and S,; are the matrix elements from Eq. (25) correspon-
ding to the i -mode nuclear magnon creation operator. Using the
results from Eqg. (25) in an unflopped antiferromagnet, the scatterlng
cross-section (32) is shown to be proportional to I'2(S4; — Sa3)>. With
the approximations #'n € #, and #' 5 < H'g Where 5, isthe applied
field, this factor reduces to

Va = T2on03p (o — KAV [y HE + Ho — H Ay (33)

where dar = y2hehn/Q1Qy is the frequency pulling. This is to be
compared with the factor for scattering by electronic magnons'?
Ve = (#a2#E)?T2 For the low-anisotropy antiferromagnet
RbMnF; (#4 = 45 Oeat T= 4.2°K), in which nuclear magnons were
first observed, with #, = 2 KOe, at T= 4.2°K (6. = 0.14), one has
Va~107°T2 ~ 1072 Ve

In addition to one-nuclear magnon scattering, it is possible to have,
in antiferromagnets, second-order Raman scattering involving the
creation or destruction of apair of nuclear magnonsor amixed electronic
nuclear magnon pair. As in the one-nuclear magnon case, the origin
d the mechanism here is based on the coupling of light photons with
the electronic spins. The interaction of light with two electronic spins
in a antiferromagnet, in a Raman process, can be written as*?

Y. Ef E§ B(d) ST St+a (34)

akgé
whered indicatesthe neighborsto site i. The origin of interaction (34)
resides on a coupling through virtual phonons or on an exchange
mechanism via electronic excitations2. The form of the B tensor can
be determined from the symmetry of the magnetic crystal. |n RbMnF;
(Ref. 13), the interaction is proportional to S;. S;4+4 and the largest
contrlbutlons come from theterms ;" Si4s and S Si+4 , wherei and
i T d refer to the down-spin and up-spin sublattices. With the results
from Sec. 2, we can replace the electronic spin operatorsin these terms
by the electron-nuclei normal mode operators. The resulting expres-
sion contains, in addition to terms which give the scattering by eec-
tronic magnons o different branches!?, terms with creation and
destruction operators for pairs of nuclear magnons of different modes
and mixed electronic-nuclear magnon pairs. The ratio df the inte-
ractions for Stokes scattering, by two-nuclear magnons, to Stokes
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scattering, by two-electronic magnons, becomes
(SZI S43 + SZ3S41)/(SIIS33 + 531513),
which, with the approximations appropriate for RbMnkF;, reduces to
onORe(1 + 78) Wi + vf) [7ehn + (1 — 9 ondir] ™ (35)

where y,, u, and v, are the usual coefficients used in the transformation
which diagonalizes the electronic spin Hamiltonian in a antiferro-
magnet'?. At low k, y, ~ 1, and the ratio (35)is of the order of unity.
Therefore, in this region, the scattering by nuclear-magnon pairs is
comparable to the scattering by electronic-magnon pairs. The spon-
taneous scattering by nuclear pairs, however, is expected to be much
smadller than the electronic analog. The reason is that, since the wave
vectorsdf thelight photons are very small compared with the Brillouin-
-zone edge value of k, the wave vectors o the magnons excited are
nearly equal and opposite and can assume any value. As the density
o states increases rapidly with k, the larger contribution to the scat-
tering comes from the neighborhood o the Brillouin-zoneedge. Here,
as ky increases, the electronic frequency €, increases rapidly and the
admixture o the nuclear-electronic spin wave modes, expressed by
the frequency pulling d4r, vanishes quickly. At the adge of the Bril-
louin-zone, Sor € hn/he ~ 1075, and theratio (35)is of theorder 10~ 1°.

4. Concluson

In this paper, we show theoretically the possibility of studying nuclear
magnons directly with inelastic light scattering techniques. It can be
shownthat, for RbMnF, the ratio (33) is of the order 102 Ve and this
intensity is very low. Together with the small frequency shift of the
Brillouin signal (the unpulled NMR frequency of Mn** is of the order
680 GHz), this should make the scattering by thermal nuclear magnons
very difficult to observe. However, one has the possibility of increasing
the population of nuclear magnons by many orders of magnitude with
microwave pumping*~!° leading to strong signals which may be
reﬁolvad with the high-resolution experimental methods recently deve-
loped®*.

A magnetic system, in which first-order light scattering by nuclear
magnons may prove to be more useful, is the uniaxial antiferromagnet
MnF,. In thit material, the transverse anisotropy is low enough that
the application of a high magneticfield brings the downgoingelectronic
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magnon branch to the low microwave range’>. Therefore, with a field
just above the spin-flop value which is 93 KOe at T'= 4.2°K, both
electronic frequencies are low and coupling with nuclear magnons is
strong. Under these conditions, calculations similar to (33) give
Va ~8x 10732 ~ 10~ 'Ve. With.this larger intensity, we can pos-
sbly use light scattering to study nuclear magnons in MnkF .

Another possible application is in the study of nuclear magnons in
spiral and conical spin structures, such as found in certain rare-earth
metals'®. In these materials, the coupling between nuclear and electro-
nic modes is strong and, therefore, the scattering cross-sectionis large.
In addition; with the very large hyperfine fields found, the NMR fre-
guency is large (e.g., wn ~ 6.5 GHz in holmium) and the resolution
is no longer critical for the experiments. Again high-resolution spec-
troscopy* may circumvent the problem created by the fact that one
has to scatter light dff the surface of the rare-earth metal.
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