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ficld theory. 111 adclition t o  W~lson's r.olori i~al izotiot i  qr-oup method, whicl~ is basctf o n  
the idea of  eliminating short range fluctuations, we discuss the renor~nali~ation method 
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Kadanoffs scaling laws and the related concept of global .sc.irlitrg /ic,ld.s, as well as the 
scale invariant correlation f~~nclions.  

Revemos nqui o trnbalho dc Kadanoff, Wilson c Wegner, na lingnagem da  tcoria eucli- 
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rqutl(.cic.\ dc c,sc,cllu, livrcs dc diverg&ncias infrnvermelhas, em duns c tr&s dimensi,cs. 
Nosso mktodo permitc-nos npresentz~r ulna disc~~ssiio bastante compacta c unific;~da 
das lcis dc cscala de Kadanoff como tarnbkm do conccito relacionado dc ccimpo.\ tlc 
c,.sc,ulu globais, assi~n conio cins func;cies dc correlac;iTo invariantes por cscala. 
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zation Group, by M .  Gomes and the present author. (University of 
São Paulo preprint, March 1973). 

1. Basic Observations and Some Simple Formalism 

In connection with first order phase transitions, which physicists have 
studied in liquid-gas systems, ferromagnets and iin many other systems 
for over a century, there is the interesting phenomenon of critica1 
behavior which one encounters at the high ternperature end of the 
phase coexistence curve. 

The first phenomenological theory for phase transitions was that of 
Van der Waals, while further theoretical develogments in this century 
are associated with the names of Weiss, Ornstein and Zernicke, Landau 
and Ginsburgl. Those developments are a11 different versions of what 
is nowadays known as mean field theory. 

In the late forties, the shadows of doubt were spreading. They origi- 
nated, on the one hand, from Onsager's2 resuli; that critical indices, 
in the two-dimensional Lenz-Ising model, are different from mean 
field theory predictions and, on the other hand, from Guggenheim's3 

experiments on the liquid-gas transitions of many different substances. 

Many subsequent measurements with refined experimental techniques 
have demonstrated the breakdown of the mean field theory description 
near to the critica1 point. 

During the last couple of years, some new model-independent ideas 
have paved the way towards a new theoretical framework which we 
will sketch in the following Sections. 

When lecturing to an audience with some background in quantum 
field theory, the question why a field- (or e1ementa.r~ particle -) theorist 
should be interested in critica1 phenomena naturally comes up. The 
answer is really very simple. 

The conceptual idealizations and the accompanying mathematical for- 
malism for critica1 phenomena are very close tp those of relativistic 
quantum field theory. To be more specific, the probabilistic language 
of classical statistical mechanics is equivalent to the description in 
terms of euclidean field theory. In particular, lattice systems near the 
critica1 point "lose their memory" of the lattice distance and become 



identical to self-coupled euclidean theories with a local polynomial 
interaction. On the other hand, one knows from Schwinger's4 and 
Symanzik's5 work that one obtains an euclidean theory if one continues 
relativistic correlation functions to imaginary times. 

Although the important "short distance problem" of relativistic theory 
is different from the "long distance problem" of critica1 behaviour, 
these problems can be formulated in such a way that they just corres- 
pond to two different "fixed points'l of the same parametric scaling 
equation6. 

In short, such similarities between critica1 correlations and vacuum 
expectation values ,of local fields are more striking than the formal 
similarities between relativistic theories and the quantum theoretical 
many-body problems (in the framework of second quantization). 

In the following, we briefly explain the language of critica1 phenomena 
in the case of a ferromagnetic phase transition. In many excellent 
articles, the reader may look up for the "translation key" which turns 
that language into that appropriate to other systems, e g ,  liquid-gas 
transitions. 

Fig. 1 - The h x T ferromagnetic phase diagram. 

Ferromagnetic transitions only happen in a zero magnetic fíeld (Fig. 1). 
The magnetization m, below the critica1 temperature T, , has a jump, 
i.e., by letting the field h go to zero through positive values, one only 
reaches the points of the upper curve and, by doing the same for ne- 
gative values of h, the limiting magnetization is given by the lower 
curve (Fig. 2). 

The vanishing of an "order parameter" (m, in our case), as one 
approaches T,  from the ordered side, is a distinctive feature of a cri- 
tical point. 



Fig. 2 - The m x T diagram with lines of constant magnetic field strength. 

Experimental results and model considerations suggest the following 
parametrizations near the critica1 point: 

magnetization: m - (- t)o, with f i  defined only for t = (T - T,)/T, < 0; 

susceptibility: x - 1 t I-'; 
specijic heat at constant field: c,, - ( t I -" ;  
cavrelation length: < - ( t ( - "  (1-Ia) 

In the above quantities, one has h = 0, while, o11 the critica1 isotherm - 
(t = 01, 

m = I h (lJ%ign h (l-lb) 

holds. 

There are, furthermore, indices for critica1 pair correlation functions 
which we will introduce later on. 

In the above parametrizations, it is tacitly assilmed (consistent with 
experimental facts) that a, y and v are the same, independently of 
whether one approaches T, from either the left or the right hand side. 

Important experimental findings are: 
i) critica1 indices are different from mean field indices; 
ii) different critica1 systems form "universality classes". After subjecting 
the experimental parameters to a suitable transformation ("law of 
corresponding states"), the critica1 behaviour within each universality 
class is described by the same universal functions7. 

The characteristic features of a universality class are that the systems 
in one class, although possessing the same dimensionality, lattice 



symmetry and (perhaps) other "hidden" symmetries, have vastly diffe- 
rent interactions. 

We now turn to a (very schematic) discussion of the mathematical 
description for the special case of a Lenz-Ising system. Such a system 
belongs to a Hamiltonian 

where the o, are lattice spin variables which take only the values f 1, 
while K = JlkT,  J denoting the nearest neighbour exchange coupling, 
positive for ferromagnets and negative for antiferromagnets. The brac- 
ket under the sum stands for summation over nearest neighbours 
and h = H / k T  is the externa1 field in suitable units. 

A11 thermodynamic quantities can be derived from the Gibbs free 
energy f which is introduced by means of the partition function. 
With N = number of lattice spins, we have 

exp (- Nf) = Z = Tr exp (- I?') 

in which the sum extends over a11 configurations (i.e., distributions 
of + 1 over a11 lattice points). 

The dynamical variable a(r) or functions thereof are called operators. 
Fields are the parameters in A? which multiply operators, i.e., they 
are "thermodynamically conjugate" to the corresponding operators. 
If a function O(o) only depends on the o's around one point, we cal1 
O a local operator. Because of translational invariance, the operators 
in 2 are global, i.e., they appear as sums over local operators. An 
important example of a local operator is the energy density, 

where the sum extends over nearest neighbours (n.n.); z denotes the 
number of nearest neighbours. 

In terms of E,, the Hamiltonian reads 



Viewing 

1 
P {o) = exp (- 2 {o)) (1-6) 

as the probability for finding a particular configuration {o), we in- 
troduce expectation values 

(6) = c o(.) P{G) 
{a 

(1 -7) 

The expectation values 

(ánl.. . ~ n , )  (1-8) 

are called n-point correlation functions of the magnetization o den- 
sity. One may introduce correlation functions, involving composite 
variables, e.g., 

(En E,,), 

the Zpoint correlation function of energy density. 
It is a well known fact that thermodynamical quantities can always 
be written as sums (integrals) over correlation functions. The reader 
may convince himself, by a simple computation, of the validity of the 
following expressions : 

Here the subscript c denotes the connected part of the correlation 
function, i.e., 

(00 õ n ) c  = (00 c n )  - 

Since each spin variable o is bounded by 1, the only way that Eq. (1-10) 
can be divergent at the critica1 point is that the connected functions 
become "long ranged", i.e., that tlie sum diverges for large n. 

From the study of the two-dimensional ~enz - i s in~ '  model, one knows 
that the expressions 



const. 
(E0 E,),+ w = Tripa; 7 (l- l lb) 

give the correct description at t = O and for asymptotic separation. 

According to one's background, one uses either the indices y and v 
defined by 

where D stands for the space dimensionality of the model, or one 
chooses to talk about "anomalous dimensions" y, , y ~ ,  defined on the 
right hand sides. of Eqs. (1-12). 

For the D = 2 Lenz-Ising mode18, the values are y = 114, v = 1. 

The mixed expectation value of o and E do vanish. This is no surprise 
for a field theorist who is familiar with the close connection of scale 
invariance and conformal invariance9. According to a general theorem 
of conformal invariant theories, the 2-point function of two opera- 
tors with different dimensions has to vanish. 

Using a method developed, for the D = 2 Lenz-Ising model, by Ka- 
danoff1° and Ceva and Kadanoff", one may in principle compute 
the "long distance" dimensions of any composite fluctuation. In order 
to check the consistency of interpreting d, and dE as "operator di- 
mensions" (rather then numbers just showing up in the 2-point func- 
tion), one may, by applying again the Kadanoff technique, prove that, 
at t = 0, for example, one has 

We shall not, however, go into details of any model, since the frame- 
work described in the next Section, which is made more precise in 
the subsequent Sections, allows us to achieve a model-independent 
understanding. 



2. The Phenomenological Kadanoff-Wilson-Wegrier Framework 

The first attempt to explain how the scale invariance of correlation 
functions and the thermodynamic scaling laws come about was given 
by Kadanoff12 and is nowadays referred to as the Kadanoff "block- 
picture". 

In order to supply a clear conceptual basis for Kadanoffs rough pictu- 
re, Wilson13 introduced the fundamental Renormalization Grottp Trans- 
formation, emphasizing the significance of fixecl points. 

Wegner14 converted Wilson's ideas into a detailed and quantitative 
phenomenological description of critica1 phenomena. 

Let &',(o, . . . oN) be a Hamiltonian for a system of N spins, with a 
translational invariant interaction (imagine, for simplicity, -periodic 
boundary conditions). The first step will consist in extending the system 
by doubling its linear dimensions but keeping the same interaction 
for the larger systein. The Hamiltonian is HO(o,  . . .oz~,). Now di- 
vide the 2"" lattice points into cells of size 2" (i.e., each cell contains 
2" lattice spins). Introduce then, within each cell, the cell spin 
S, = C o,, and (2"- 1) relative variables (spin differences in the ith 

ce:: I 

cell) o:,,(,, . The next step is to rewrite the Hamiltonian as 

Ho(S; . . . si,, o;L). . .) 

and perform the partia1 sum over the o' (an integral if the original 
spin; have a continuous 

C exp [- X (SI . . . Sw)] = 

distribution) : 
r 

(Note that the integration means summation for discrete spins). Here 
we have absorbed the c-number part (which is independent of the S's). 
After this elimination procedure for certain short range spin fluctua- 
tions, we rescale our spin variables and our kngth scale: 

si = gi 2(')+ 2-11)12, n = 2,m, (2-2) 

where m stands for integer vectors. The resulting Hamiltonian is called 
A?,(ol . . . oN) and the transformation 



is called a (Wilson) Renormalization Group Transformation. The new 
Hamiltonian has different interactions than the original one. For a11 
physical questions which do not depend on short range fluctuations, 
the new Hamiltonian should give the same answer. 

In the probabilistic language, the Renormalization Group Transfor- 
mation is clearly a transformation of the probability, 

1 
dPo(a) = lim - exp [- Xo{o)] d[o]. 

N + m  Z 

into a rescaled conditional probability 
r 

dP,{a} = J dPo{a, a'). 
(0'1 

We cal1 a Hamiltonian 2, critica1 if we can adjust the parameter q 
so that the sequence of subsequent renormalization group transfor- 
mations, 

has a limit X*.  Only Hamiltonians 2í?, in which the interaction pa- 
rameters have suitable chosen values will have such a property. 

In order to see why this must be so, let us imagine that the Renorma- 
lization Group Transformation T has a fixed point, i.e. 

T X *  = X *  (2-5) 

and that we restrict our attention to Hamiltonians X0 which are infi- 
nitesimally close to X*.  By definition of "infinitesimal", the transfor- 
mation (for this, the number 1 of repeated applications T' must be 
allowed to be continuous, an assumption which will be justified later) 

X *  + 6 X 0  X *  + 6 X l  (2-6) 
is linear on the interaction parameters ("fields") pertaining to 6 x 0 .  
This transformation may be represented by a matrix. To obtain it, 
let us imagine that we have a basis ai of translational invariant opera- 
tors (sums or integrais over local composite operators): 

with 



Let us then assume that the matrix A = (ãij) can be diagonalized 
(i.e., that we do not need associated eigenvectoss as occur for Jordan 
forms). As we wrote the rescaling in terms of powers of two, we now 
write, for the eigenvalues of A, 

Ai = 2Y'. (2-9) 

We shall denote, by Oi, the basis operators on which the Renormali- 
zation Group acts diagonally. Hence, 

si r> 2y1 Oi (2- 10) 

and 

= C /ii Oi 5 C pi 2" Oi . (2- 1 1) 
i i 

Repeating, the Renormalization Group transformations, 1 times, we 
obtain 

8 X 0  Tf C , ~ i  2'" Oi . (2- 12) 
1 

One classifies the eigenoperators O, according to the sign of yi : 

yi > 0: relevant; 
yi < 0: irrelevant, 
yi = 0: marginal. 

In the irrelevant case, the transformed fields p, are contracting each 
time by a factor 2-Iyll. The relevant case leads to an increase of fields 
(so that the infinitesimal considerations become meaningless after a 
certain number of steps). The marginal case recluires a more detailed 
discussion which we will come back to. 

A necessary condition for the criticality of X0 = Z* + 8 Z o  is clearly 
that a11 relevant operators have zero fields. Noti: that in this language 
the identity operator 1 = O,, which we absorbed into the constant C, 
would be a relevant operator with yo = D. To lhe free energy, it only 
contributes in an additive fashion. We obtain 

Nf (Zd = 2D Nf ( 2 0 )  

or, repeating the process 1 times, 

f {/i0 , p1 , . . .} = 2-D1 f {po 2D', 2Y1', . ...I. (2- 13) 

The temperature t and the magnetic field h are expected to be among 
the relevant fields since their conjugate operai:ors CE, and Co, are 



expected to have dimensions still near to their canonical (free field) 
values 0 - 2  and (0-2)/2 (in mass units, i.e., inverse length units). 
So let us set yl = t, y2 = h. We chose 1 to be so large that (assuming 
t < < l )  

[ t ( 2 ~ ~ '  - 1. (2- 14) 

The part of the free energy f , ,  after splitting of the (regular) contri- 
bution, coming from the unit operator, namely, 

f {PO , t, h, p, , . . .) = po + &{t, h,. . .), 
fulfílls the functional equation 

fs{t, h,. . . , pi , . . .) = I t IDiyE f,{k 1, h I t I-"", . . . , pi I t I-" ' .  . .), (2-15) 

with Ai = yi/yE. 

In the case of only two relevant fields t and h, the other arguments 
belonging to irrelevant fields drop out for very small t and we obtain 
the well known Kadanoff scaling law for the singular part of the free 
energy : 

f,(t,h) = ItlDiyE f ( k  l,hItl-""). (2- 16) 

The critical exponents a, f l ,  y and 6, in terms of y, and yh , follow from 
the scaling law of the free energy. As an example, consider the specific 
heat. Differentiating f, twice with respect to t and putting h = O, we 
have 

ch(t) = ( t f (+ 1, O) + less singular terms; (2-17) 

hence a = 2 - (D/yE). 

Similar considerations lead to scaling laws for correlation functions. 
We obtain, for example, for the connected spin correlation: 

gau(r, t, h) = 22(yh-D)' gUo(r 2T1, t 2yE1, h 2yh1). (2- 18) 

The factor in front is just the rescaling of the spin (2-2). Since o is con- 
jugate to h, 

y = 2 + D-2yh.  

The elimination of I, by using (2-14), leads to 

gaa(r, t ,  h) = I t \2(D-yh)iyE ga& 1 t I1IyE, $_ 1, h t IPAh). (2-19) 

We prefer to use the symbol r in the argument of the connected 2-point 
o-correlation instead of writing the lattice vector n. The reader may 



for himself derive the analogous scaling law for the energy correla- 
tion function ~ E E .  

In the K.W.W. phenomenological framework, a11 critica1 indices for 
ferromagnetic systems will be reduced to two basic numbers: y, and 
yh (Refs. 12, 13). 

Later, we will show how, by a more quantitative discussion of the 
Wilson Renormalization Group, one can actually compute these num- 
bers approximately. 

A further important contribution to the critica1 phenomenology is the 
idea of "scaling fields" of Wegner15 and Riedel and Wegner16. In the 
discussion up to now, the fields pi had to be infinitesimal, i.e., we do 
not have strictly speaking a global scaling law of the form (2-19). In 
order to obtain a useful global form, the authors proposed to fiake 
the following hypotheses: 

There exist scaling fields gi in terms of which the (non infinitesimal) 
pi's can be expanded: 

1 
pi = Yi + -C bijk gj gk + . . . . (2-20) 

2 j, 

In terms of the gi's, the free energy and the corrdation functions fulfill, 
in the typical case, global scaling laws, i.e., 

fs{gi) = e-"' j..{gi 2Y'')+ (2-21) 

Criticality is now determined by the global condition of the vanishing 
of a11 relevant scaling fields. Note that to neglect irrelevant scaling 
fields, for large 1, is only justified in the case that the free energy has 
a smooth limit for vanishing scaling fields with yi < O. Hence, a ne- 
cessary condition is that the Hamiltonian remains bounded below for 
vanishing irrelevant scaling fields. There are cases for which this con- 
dition is not met (mean field theory for D > 4). A more detailed study 
shows that one has to take into account at least one relevant fieldi6. 

The arguments in favour of the existence of scaling fields are basically 
consistency arguments. 

In order to avo- clumsy notation and lengthy arguments, let us assu- 
me that instead of the discrete xale transformation 2Y1', with 1 integer, 
we may use instead the continuous transforrnation exp(yil), with a 



continuous 1 (in Sec. 6, we will justify such an assumption). Infinite- 
simally, the old ,ui fíelds transform linearly, 

but, in higher orders, we have 

The Ansatz of scaling fíelds, (2-20), with 

a 
- gi(1) = yi gi , globally, 
a1 

is consistent with (2-23) if the bijk can be computed from the aijk and 
the yi's by means of 

(yj + yk - yi) bijk = aijk .. (2-25) 

If yj + yk $ yi, there is a unique solution. A similar consideration 
holds for a11 higher terms. 

If however, the equality yi = yj + yk holds, we can only save the si- 
tuation by working with l-dependent b's. Instead of (2-25), we have 

This leads to a linear 1-dependence in b if there is no l-dependence 
in a. The quadratic term in (2-20) leads to an 1-dependence (10 = inte- 
gration constant) 

pi ff elY(1 + lo), (2-27) 

which is now the leading term. Fixing 1 by the condition 

lgi 1 eY1' 1, (2-28) 

the ith argument of the free energy has now a logarithm, namely, 

Ig1 \ -Ai ln  

If a marginal field occurs, one then obtains powers of logarithms. 
The reader is referred to the article of Riedel and Wegner16 for a dis- 
cussion of severa1 special examples. 

Thus, the consistency discussion of the hypothesis of scaling fields 
does not only yield the typical form of the global scaling law (2-21), 
but also leads to the exceptional logarithmic modifications. 



It is often helpful to picture the condition of criticality in terms of 
scaling fields in a geometric fashion. Suppose we introduce a para- 
meter space whose axes are the scaling fields. Then the critical surface 
gi,yelev,  = O is a subspace of irrelevant (and, perhaps, marginal) coordi- 
nates only (Figs. 3 and 4). Each 2, , whose pararneters lie in the critical 
subpace, belongs to a critica1 system and the repeated Renormalization 
Group transformations will transform X , ,  along a path, into X". 

RS COORDINRTES 

Fig. 3 - Critica1 surface in terms of "sca- Fig. 4 - Critica1 surface in terms of "phy- 
ling-field" coordinates. sical-parameter" coordinates. 

The Lenz-Ising model, in two dimensions, in zero magnetic field is, 
for T = T, , a point on the critica1 surface. It is ftnown that this model 
has critical correlations which are only asymptotically invariant. We, 
therefore, only reach the point 2" if we leave the (to0 small) model 
space. On the other hand, the A4 coupling modcl, which approximates 
the Lenz-Ising model to any degree of accuracy, has enough parameters 
(namely, the quadrilinear coupling g in addition to the temperature) 
to be able to reach S* without enlarging the model space. 

There are models, e.g., the A6 coupling in D = 3 (equivalent to a classi- 
cal spin which can take on three values), which, ia addition to a symme- 
try breaking relevant field (in analogy to h), have two relevant non- 
symmetry breaking fields. 

Such models where there is, in addition to the temperature field, 
another field, are called  ric cri ti cal. The mixture of He3 and superfluid 
He4 is an example of a system described by a tricritical model. In 
fact, the above mmtioned model gives a good quantitative description 
of that system. It is easy to exhibit, for D = 2, perturbative fixed points 
which have any wanted "degree" of criticality. 



3. Euclidian Field Theory and Functional Integration 

Consider a multicomponent classical field variable ai(x) with a cut- 
off Fourier-Transforrn : 

Regard such a variable as a random variable in the sense of probabi- 
lity theory by assigning a differential probability via a Gibbs type 
formula: 

with 

and 

Here the "functional integral" our @ is defined in the "physicists'way": 
replace the fíeld variable cDi(x) by a "periodic box field", 

Qi(x) -+ @fL)(x) = L-D/2 eikx 6i(k), (3-4) 
2.n Ikl < A  

with k = -n, n = vector of integers, and then form 
L 

ZL = J dOi(k) exp [- %[OiL)]], 
i, Ikl < A  

where, because of the reality condition &(k) = k), the integration 
may be resctricted to a half-space by combining k and (- k): 

In a formal sense these equations are generalizations of the sum (1-3) 
for the Lenz-Ising model. The main difference is that @ may now have 
a continuous range instead of just having the discrete values t 1. 
As in the Lenz-Ising model, we can expect ZL for large L to have an 
exponential volume factor whereas the correlation functions, 
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are expected to stay finite in the "thermodynamic limit" L + cc. 

An explicit characterization of an optimal "interaction space" A?[@], 
which leads to a mathematical defined L -+ co limi t measure, P[@] d[@], 
is not presently known. There are detailed disciissions of special mo- 
dels on which we will comment later on. It is clear, from physical in- 
tuition, that X[@] should be essentially bounded from below, i.e., 
those parts where ,e, in 0 space, is not bounded from below should 
be of "measure zero". 

The "parameter space" is defined as the set of ali coefficient functions: 

Most physically interesting models are local, i.e., the Fourier-transfor- 
formed functions, 

hil...i,(~l . . . x,) = ( 2 ~ ) - ~ ( ~ - ' )  i,(kl . . . k,) eLZkix1 6(CkL) dDkl . . . dDk, 

(3-9) 
have the form 

L 

hil...i,(kl . . . k,) = polynomial ir1 ki . (3-10) 

Needless to say that the parameter functions h may, without loss of 
generality, be assumed to be symmetric: - - 

hcp(i) ...rP(,)(k~(i) . . . k~(n)) = ... m(ki . . . kn). (3- 1 1) 

Because of the reality of the fields, the parameter functions are real 
in x-space, i.e., - - 

~LI...&I - . . h )  = h1 ... tn(- k l  . . - kn). (3-12) 

Of special interest to us are A-cut-off euclidean theories which, in 
addition to the translation a1 invariance, already insured by the mo- 
mentum space 6-function in (3-9), are also rotational invariant in 
k-space. Lattice systems, as the Lenz-Ising mociel, do not have this 
invariance, but their renormalization group properties near fixed points - 
are not expected tochange if we "euclidianize" them. In any case (this 
will become clear later on), most of the techniques we are going to 
introduce in the following, can be carried out to lattice theories wi?h 
Brillouin zones of any shape. If not stated otherwise, we will restrict 
our considerations from now on to euclidean tfieories. 



The standard method consists in splittíng off the bilinear part from 2: 

2 = P o + X 1 ,  

with 

1 mo = + ('(Q(k) l2 G< '(k) = (Q, Gõ ' Q) 
J 

and to write the generating functional of the correlation functions as 

(3-14) 

J(x) Q(x) dDx and C contains the J-independent part, 
J 

i.e., is determined by the requirement that, Z(0) = 1. The remaining 
integral is Gaussian and may be reduced to a limit of ordinary integrais 
using the methods described after (3-3). The result is 

Z(J) = C'exp -2 - Zo(J), C 4;Jll 
with Zo{J) exp[(1/2)(J, Gó J)] = free generating functional. By exgan- 
ding the exponential of PI in a power series, one obtains for the corre- 
lation functions, 

The number of the momentum-carrying lines emanating from each 
vertex (momentum conservation at each vertex!) agrees with the degree 
in Q of each term in 2 , .  If .&',[@I contains x-space derivatives in cD, 
the corresponding lines will represent powers in the momenta. The 

6" 
Z{J) (@(xI) . . . Q(xn)), 6J(x1). . . 6J(xn) I = O  

(3-16) 

the Feynman rules 



general Feynman graph for the n-point correlation function in mth 
n-  1 

order in 2, will be of the form (k, = - 1 ki): 
1 

where, inside the shaded region, one has rn vertices from 3, connected 
to each other and to the externa1 points by Go-lines, the interna1 Go-line 
being integrated over. 

Example : 

Note that all the arguments of Go are restricted to the inside of the 
A-sphere. 

The full combinatorics of Feynman diagrams (i&., the combinatorical 
weight factors) are contained in the process OS differentiation 6/83 
with respect to the source J. 

An important subclass of Hamiltonians, which imder the Wilson re- 
normalization group procedure will be transforrned into itself, is the 
class of interaction polynomials X, of even degree. One or more 
component "classical" ferromagnets (i.e., Lenz-Ising models or classi- 
cal limit of non-commutative O(N)-Heisenberg models), in a zero 
magnetic field, for T > T , ,  are belonging to this class. In Section 4, 
we will see that a11 known fixed points can be reached by doing renor- 
malization group transformations in this class. It is customary to 



remove selfclosing loops as by introducing Wick-products for 
the Gaussian theory Zo{J) by the standard recursion 

and so on. 

Without loss of generality, one may assume that 2, is given in the 
Wick-ordered form relative to X O .  This just amounts to a 'simple 
reparametrization in the parameter-space of h's. For a Gaussian theory 
X O ,  one defines composite fields :@ô(x): . The most general local 
function O(x) is a sum over Wick-products, at one point, involving 
x-space derivations. Note that the fíeld 

Yo(x) = G; '(x - xr) Oo(xr) dx' S 
belongs to this set if Gõ' is a local expression, for example: 

Gõ '(x) = (- d, d, + m2) 8(x). (3-1 8) 

In the case of a relativistic free field of mass m2, the corresponding 
Yo would be zero. However, in the cut-off euclidean theory, Yo does 
not drop out from the basis of local functions, but it will be a "short 
ranged" field. For example, 

where we have indicated that the 8-function has a cut off A in mo- 
mentum space, i.e., is a short ranged function. Therefore, our set of 
local composite fields consists of "normal" composite fields as, e g ,  
:@ô(x): and short ranged composite fields as :@ô(x) Yo(x): . These featu- 
res remain essentially preserved if we go from the free Gaussian theory 
to the interacting theory. By a straightforward computation, one veri- 
fies that Z{J) obeys the Schwinger functional differential equation: 

6 
dx' Gõl(x - xr)-- (3-20) 

8J(xr) 

with X1,,[@] = 821[@1 . 
6J(x) 



By taking the nth functional derivative and putting J = O, we obtain 
the "field equation" for correlation functions. Specializing, for the 
moment, to Gõl (k )  = k2 + m2 and 

P 

we see that 

is a short ranged field. Here the : a3(x) : etc. are interacting composite 
fields corresponding to free fields whose expeclation values are defi- 
ned, e.g., by 

(: (D3(x) : X) = C : @(x) : X(0) exp[- XI[@o]] dPIQo], S (3-22) 

with 

~P[@o] = exp [-L (80, G; 
2 

Up to now we have emphasized the probabilities, i.e., the measure 
theoretic aspect of our framework. We may equivalently describe our 
correlation functions as vacuum expectation values of a commuting 
set of euclidean field operators17. Consider, for cxample, the Gaussian 
theory. Introduce an euclidean Fock-space, 3pE, via creation and 
annihilation operators, which satisfy 

[A(k), A(k')] = O = [A; (k), A" k')], 
[A(k), A ' (k')] = P ( k  - k'), 

and the euclidean "free vacuum" I (DE,,) with 

44  1 QE,O) = 0, 
by defining 

X, = {polynomial (Aí') I @,,,)). 

The field, 



leads to the desired two-point function 

(@,,O IAo(x) A ~ ( ~ )  I @,,O) = G ~ ( x  -Y)-  (3-26) 

The field Ao(x), successively applied to the vacuum, defines the cut-off 
Hilbert-space Z,,, c Z, ; it generates a maximal abelian set of ope- 
rators in A?,,, with the euclidean vacuum being a cyclic state. In order . 

to obtain a complete (irreducible) set of operators, it is convenient to 
introduce a "canonical conjugate" of the form 

r 

which is such that : [A(x), II(y)] = i6(x - y), [II(x), n(y)] = O and 

so that the euclidean Hamiltonian (generator of time translations in 
%E,,) is 

H = -- : ll(x)XA(x) :dDx. 
2 i S (3-27) 

As expected, one can not write euclidean generators of symmetry trans- 
formations in Z, solubly in terms of commuting fields A(x). Note 
that the integrand is notAhe component of a conserved Noether current. 
The integral over 8, : Ií 8, A : is, however, zero since it just gives boun- 
dary terms at infinity and, due to the fall off of Go in a11 directions, 
those boundaries do not contribute 

In the euclidean operator language the functional expressions for the 
n-point correlation function 

with 
r 

where @ = omission of vacuum bubbles. 



This is most easily seen by expanding the exponentials in power series 
and then using the correspondence of Gaussian an.d euclidean theories: 

Therefore, the probabilistic versions and the euclidean field version 
are.just different mathematical formulations of the same theory. The 
first formulation leads to a very refined and powerful mathematics, 
whereas the euclidean language is formally closer to relativistic quan- 
tum field theory. The formula (3-29), for example, is nothing but the 
euclidean version of the famous Gell-Mann and Low formula which, 
in most text books, is the starting point for the Feynman perturbation 
theory of the relativistic time-ordered functions. Note that the statis- 
tical Hamiltonian &' corresponds to the Lagrangian 2 of relativis- 
tic QFT. 

The cut off A is essential in order to be able to talk about euclidean 
operators, in interacting theories. Unlike in relativistic QFT, where 
through "wave function renormalization" and re-parametrization in 
terms of more "physical" masses and coupling constants (Secs. 5, 6), 
one obtains "operator-valued distributions" for I\ -, co, the euclidean 
theory allows one to talk about smeared out operators only if the two- 
point functions of these objects are not too singular. For example, the 
operator : A i  :, i.e. the Wick-ordered square of a free field, exists as an 
operator valued distribution in the Minkowski-version. The corres- 
ponding euclidean cut-off version has, however, only a limit A + x 
as a bilinear form, not as a smeared out fíeld operator. Whereas the 
euclidean norm I( : A:,,( f) : ( @ E , O )  1 )  ceases to exist in the limit A + m, 
the correlation functions behave as 

( @ E , D  I : A&A : ( fi) . . . : A;,, : (h) 1 @ E , O )  ~ . s  finite limit, 

if f, . . . f ,  are non-overlapping test functions. Orily, in D = 2, the field 
and a11 its non-derivative powers and, in D = :3, the field A and its 
square : A2 :, survive the A -, c~ limit as operator-valued distributions. 
A satisfying framework, for bilinear forms and tlieir products for non- 
overlapping arguments, does (in the opinion of the author) not exist 
at the present time. The lack of euclidean operator-concepts is a severe 
handicap in the formulation of certain properties of the scale invariant 
theory of Sec. 2, which because of its infinite cor'relation length looses 
a11 "memory" of any cut-off18. Here, even the restriction to D = 2 
does not, in general, bypass this difficulty since the anomalous dimen- 
sions of A", n = 1,2,. . . , may be quite large. There are, essentially, two 



ways out. One, advocated by Mack19, is to view operator-properties 
as, for example, the Kadanoff-Wilson2' operator expansion in the X* 
theory, as a mere statement on the correlation function. The other 
possibility, which y e  will use in this review, is to affiliate with the 
statistical mechanics correlation of the X* theory the corresponding 
scale invariant relativistic theory. It has been emphasized by Wilson 
and ~ o g u t ~ '  that this is a useful construction even if one's prime in- 
terest is the understanding of critica1 behaviour. 

Let us finally look at lattice theories. For a lattice system of classical 
spins o, , for which the values at each lattice point are distributed 
according to the function 

exp1- 21[o]Ti, 

the generating functional Z { J )  is 
n 

Here the n's are D-dimensional vectors with integer components 
(lattice-vectors). 

Without loss of generality, we may assume that Kii = O (the diagonal 
part may be absorbed in 8,). 

If the coupling matrix, Kij  ,. between different sites, has only non nega- 
tive elements, the system 1s called ferromagnetic. Consider now the 
special case of a nearest ferromagnetic coupling. On functions fn of 
the lattice, K acts in the following way (use translation invariance): 

(Kf )n = C Kn-m fm 2 (3-32) 
with 

Kn = { O for Inl > 1, n = 0, 
K ,  Jnl = i. 

Therefore, 

with 
D 

k ( k )  = 2K C cos ki 
i =  1 



The propagator in this theory has, according to (3-14), the form: 

Go(k) = -[2K x c o s  ki-h]-', (3-34) 
i 

where h appears in the bilinear part of PI ,  

H, = h C o ?  4- ... . 
Near the origin of k-space, Go(k) agrees, up to a factor K-', with (3-18). 
We will absorb this factor in the integration variable o. K, therefore, 
appears as a multiplication factor of the h's in 2, as well as of the 
source (a with every o). The new propagator has the form 

Go(k) = - [2 C cos ki - h]- ', 
i 

where because of K - T--', h' is a linear function of the temperature. 
For large wave-length (which are unaffected b,y the renormalization 
group procedure of Sec. 2), the lattice propagator behaves as an eucli- 
dean propagator 

Go(k) = [k2 + mil-', (3-35) 

with rn; = linear function of T. 

For reasons which become obvious in Sec. 5, it is important to know 
that discrete lattice spin theories, as the Lenz-Ising model, can be 
approximated by continuous "lattice fields". 15th 

1 o,, Knn, on, = õKo, 1 Jn o,, = Jõ, (3-36) 
n,n' n 

we have 

8(0,2 -- 1) do, exp 

,O-* 00 n 

(3-37) 

Here, we used 6(x2 - 1) = lim (uo/n) exp[- uo(x2 - 1)2]and C,, is the 
uo-c0 

normalization factor of the fourth-degree polynomial theory: 

- - -& J C(k) [E 2 cos ki] õ(- k) + polynomial. (3-38) 



This "approximation" statement is, for our later discussions, more im- 
portant than the statement that the Lenz-Ising model can be converted 
(by Laplace transformation of the spin distribution) into a non-poly- 
nomial model with a continuous range of the dynamical variable. Since 
this last possibility plays a role in various important papers on critica1 
p h e n ~ m e n a ~ ~ ,  we briefly discuss it in the following. 

The use of 

where N is the number of lattices and D = det K (note that the factors 
in front are independent of the externa1 source and, therefore, may be 
absorbed in C) in Eq. (3-36) leads to a linear o-dependence so that 
the o-integration can be performed. The result is 

Note that, in this description, the dependence on the source J  is fairly 
complicated. The correlation functions, at different lattice points, are 
expectation values of tanh d, i.e., for n + n i ,  one has 

&"' L
'  = (tanh $,,I . . . tanh 4,). 6 J n 1 . .  . 6Jnn (3-4 1) 

4. Wilson's Form of Renormalization Group Transformation 

The qualitative idea of constructing renormalization group transfor- 
mations, which "wipe out" the short-range fluctuation but retain 
the long range fluctuation unmodified, can be quantitatively formu- 
lated in different ways. A11 these different transformations should lead 
to the same number of fixed points. The totality of composite operators 
of various dimensions, around each fixed point, should be isomorphic 
for corresponding fixed points of different renormalization group 
transformations. With other words, different renormalization group 
transformations are expected to lead to different "coordinate" des- 
criptions of the intrinsically identical "fixed point physics" for corres- 
ponding fixed points. A step towards a fixed point equivalence theorem, 



in this sense, has been recently made by W e g i ~ e r ~ ~ .  We will return 
to this point later on. 

A particular renormalization group transformation, which implements 
the idea of elimination of short range fluctuation, was given by Wilson13. 
It is most conveniently constructed by using the probabilistic language 
of euclidean fields, explained in the last sectiori. 

Let 2 be a A-cut-off Hainiltonian, written in terms of the fields @ I L ) ,  
within the periodic box LU. For notational conveniente, we will sup- 
press thsindex L as well as the interna1 index i. We define a transfor- 
med ~amztonian  %' by : 

The integration variables are the (discrete) @(V) within the "shell" 

. After the integration, the necessary "rescaling" of momenta 

and O are performed. The additive contribution L')Eo, in the exponent, 
Sjust  the value of the right hand side for O = O. In other words, we 
want to define 2' in such a way that it contains no constant (O-inde- 
pendent) term. 2' is a Hamiltonian with cut-off A but it is written 
in terms of fields @(k) with a lesser number of k-values: since the shell 
has been wiped out (the subsequent rescaling does not change the total 
number of k-values), we have S-" k-values. Writing 2' in terms 

' of interaction parameters h, one should keep in mind that the al is 
really a @(''flL. The subsequent "transition" to O(L), before repeating 
the momentum-shell "wipe-out", is the trivial extension procedure of 
Sec. 2. The L is superfluous if we view the renormalization group 
transformation as a transition from the (infinite volume) probability 

measure dp = ePR d[O], in the space of the Ws, to the "rescaled z 
conditional measure" : 



The rescaling allows to view the conditional measure again as a measure 
over the original probability space. Since our measures are always 
written in the exponential Hamiltonian form, we obtain a transfor- 
mation in parameter-space 

which only enjoys semi-group properties if the rescaling factor a,, 
for s I 0, fulfills: 

1 - 1/2q a , . a ,=a ,~~, ,  i.e., a , = s  (4-5) 

Here, is the quantity already introduced in Sec. 2. 

Wilson's renormalization group transformation (4-4) is still too com- 
plicated for the explicit determination of fixed points. Some simplifi- 

d 
cation is reached if one works with - T,  ls=,, . Using this infinitesimal 

as 
version, Wegner and ~ o u g h t o n ~ ~  have shown how to find, by pertur- 
bation theory in E = 4 - 0, the non-guassian fixed point which, using 
a different method, was already studied before by Wilson and F i ~ c h e r ~ ~ .  
(The Wilson-Fischer method was restricted to first order perturbation 
theory in E). For models, with N-component fields, one can also obtain 
this non-gaussian fixed point by (1/N) expan~ ions~~ .  

From a practical point of view, a simplified vèrsion of the renormaliza- 
tion group, the so called "approximate renormalization group trans- 
formation" of Wilson13, has been most useful. Here, the word "appro- 
ximate" does not necessarily mean that the operator-properties around 
the fixed points (i.e., their dimensions) are not correctly described. 
It rather means that, in addition to the "wiping out" procedure for 
large momenta fluctuations, some other more or less plausible sim- 
plifying assumptions are made. In the present state of affairs, it is not 
known how "far" we may deviate from the "orthodox" formulation 
(4-12), without wrecking the intrinsic physics of fixed points. In parti- 
cular, it is not clear whether the "approximate renormalization group" 
is an exact or approximate description of the intrinsic fixed point 
physics. However, the perturbative E-expansions, of the exact and the 
approximate R.G., are known to be different2'. 

Let us consider the class of Landau Ginsberg Hamiltonians: 



where P is a local polynomial, resp., an infinite power series in O(x) 
(without constant terms). We imagine that we rescaled our momentum 
space cut-off to be A = 1. We then decompose @(x) into a long range 
fluctuation <Do and a short range (rapidly varying) part: 

with 

@&) = ( 2 ~ ) - " ' ~  dDk 6 ( k )  eikX, I k i )  I b-l .  i (4-8) 

Note that, in this consideration, we think in ternls of square Brillouin 
cut-offs instead of a rotationally invariant cut-off. Imagine, now, 
@,(x) as being affiliated with a square lattice of lattice length b - z. 
The small wave length part, @'(x), has the density (11~)"-(llbn):, so 
that we can formally relate the variable with a lattice of lattice dis- 
tance a = ~ ( 1 -  b-")-'iD. Therefore, a description of W in terms of 
real localized wave functions Y(x), with an effective localization region 
of size a, as expressed by the formula 

with 

Y (X -- xn)Y (X - x,,) dDx = &,,r . S 
does not seem to be totally unreasonable. 

The gradient of such wave packets is expected to behave as 
f i  

where p2 is a mean value of momenta in the shell, i.e., 

With these assumptions we are able to separate tlie Q0 and W variables 
in the gradient part of 2. The additional assumption is that Qo(x) varies 
slowly within one a-cell and that Y may be approximated, in half of 
the cell, by the constant a--Di2 and, in the other half, by (- Then, 
2 has the form, 



We are now able to perform the integration over the Wm . With 

we obtain for the new Hamiltonian, in which the W fluctuations have 
been integrated out according to (4-I), 

It is again of the original form, only the local interaction, i.e., the cou- 
pling constants in form of the nth degree local polynomial, 

h* changed. 

Repeating this process many times, we arrive at a Hamiltonian XTn 
which is again of the form (4-6), i.e., we obtain a recursion relation 
for the Tnhm . This relation may be studied for various classes of input 
Hamiltonians on a computer. For example13, in the class P(O) = 
= r02  + u04 (as input), one finds for a particular value of r, a con- 
vergent sequence PTn(0). 

For analytic computation, one has to make further simplifying assump- 
tions. Neglecting a11 terms which contain higher powers than quadratic 
terms in r and u, one easily obtains: 

A trivial solution is u* = O, r* = O. This solution is unstable within 
the above class, i.e., the X *  cannot be viewed as a point in a critica1 
surface (line!) within the two parametric (r, u)-space. One can show 
that such a critica1 surface exists for D = 3, if one enlarges the class 
to consist of three parameters r, u and v, by adding the interaction 
v06. 

This Hamiltonian has been used by Riedel and Wegner for2* a des- 
cription of the tricritical He3 

- He4 mixture. We will come back to 
this problem in our field theoretical part. For D < 4, there exists 



another non-trivial solution of the quadratic approximation to the 
recursion relation (4-1 5) : 

The neglect of terms higher than quadratic is only justified for small 
E = 4-0.  For infinitesimal E, we obtain 

This perturbative method does not te11 us anyth ng directly for D = 3 
and 2. For continuity reasons, it is plausible tliat the infinitesimally 
established fixed point should not get lost. There is up to date, however, 
no rigorous analytical derivation of non-canonical fixed points. The 
perturbative method in lowest order can also t ~ e  used for the deter- 
mination of eigenoperatoi-s O, and their dimensions. 

5. Legendre Transforms and Re-Parametrizatioa 

The Renormalization Group Transformation, of last Section, starts 
from a physical Hamiltonian which is local apart from a cut-off A. 
The intermediate Hamiltonians are generally non-local Hamiltonians 
but the fixed point Z* is (as a scale-invariant Hamiltonian) again a 
local one. One may, therefore, expect that methods of relativistic 
local quantum field theory allow one to link tfie given local Hamil- 
tonian in a more direct way with the xale invariant fixed point Ha- 
miltonian, without leaving the set of local Hamii'tonians. The interpo- 
lation is done using Gell-Mann LowZ9 type of parametric differential 
equations, which also have been called Renormalization Group equa- 
tions. In order to avoid confusion, we will just simply talk about para- 
metric differential-equations and, for reasons explained later, we will 
cal1 the field theoretical "renormalization proccdure" a "re-parame- 
trization". In order to develop these techniques, we need some more 
definitions and formalism. 

The generating functional for connected Greeni; functions Xdefined 
by : 

Z ( J )  = exp G ( J ) .  (5-1) 



Generalizing the wellknown technique of Legendre transforms for re- 
lating different thermodynamic potentials to func t iona l~~~,  one defines 
a new "source" by: 

The d ( x )  is the field induced by the external source. In the language 
of ferromagnetic systems, J(x) is the external magnetic field and, d(x),  
the induced magnetization. The vertex functional (in statistical language, 
the "Helmholtz potential") is defined by the Legendre transformation: 

' 

r{&) = d ( x )  J(x) dDx - G{J) .  I (5-3) 

Graphically this functional is known to generate 1-line irreducible 
(called 1-particle irreducible in relativistic QFT) Feynman graphs. Re- 
presenting the ver te~ functions: 

= I-'"'(xl . . . x,) 

it follows, from (5-3), that the graphs representing G(")(xl . . . x,) are 
"trees" in terms of the 1-irr. graphs. 

6G . 
For the two-point function, one obtains, by insertion of - into the 6J  
left hand side and functional differentiation with respect to J: 

r r 

Note that with the minus sign in the Legendre transform, the lowest 
order contribution to I'(4) will be identical to the positive coupling 
constant g. 

The introduction of the r's is helpful in problerns of re-parametriza- 
tion. In a theory without symmetry-breaking, as the A4 theory, the 
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parameters uo and mo of the bare Hamiltonian are inconvenient for 
the study of critica1 behaviour. Since the critica1ii.y can only be reached 
if the inverse correlation length, i.e., the physical mass, goes to zero, 
we will introduce a renormalized mass m. The introduction of a renor- 
malized coupling constant also simplifies the discussion of criticality, 
and it is of particular importance if we want to construct the scale 
invariant i@* theory as a limit of perturbatively constructed theories. 

There are many possibilities for introducing convenient parameters. 
Let us mention two of them: 

"mass-shell" parameters : 
(2) r lp2,-,2 = o ,  
r(4) - m2 = U ,  

with s.p. p2 given by pipj = 3(4dij - 1)p2 ; 

"intermediate" parameters : 
(2)  r = m2, 

r(4) o = u. 

Besides re-parametrizing the theory, one also finds it convenient to 
change the normalization of the field: 

A,(x) = 2- 'I2 A(x). (5-8) 
The 2-factor is fixed via normalization properties of the A, two-point 
function : 

a r(2) 

dp2 

Because of the multiplicative change (5-8), the trarisition from (mo, u,, A) 
to (m, u, A,) is usually called "re-normalization". However, the mere 
change of normalization properties of the field should not be confused 
with the (Wilson-) "Renormalization Group Transformation" which is 
a mapping T obtained by eliminating long range fluctuations. For this 
reason, we will deviate from the usual terminology of Q.F.T. and cal1 
(5-6, 5-7), including (5-6c, 5-7c), a "re-parametrization". 

= 1, for scheme (5-6), 
,2=-,2 

a F2) 
dpZ 

In order to have smooth transition for m + O, of the massive corre- 
lation function into mass-less functions, it is ciecessary to introduce 

= 1, for scheme (5-7). 
,=o 



a normalization spot ,u which is to be distinguished from the mass m 
which enters the free Hamiltonian 2, (i.e., Feynman rules). Histori- 
cally, Gell-Mann and Low2' first introduced such a ,u via a norma- 
fization spot in momentum space. However, for application of QFT 
to critica1 behaviour, it is much more convenient to introduce ,u as 
a "mass-normalization spot" and keep the momenta, as in (5-6), at 
p = 0. This new normalization scheme leads to scaling equations in 
which the "scaling mass", m, plays the role of the temperature. We 
will discuss this renormalization scheme in a separate section (Sec. 6). 

Re-parametrizations are conveniently done in the Bogoljubov-Parasiuk 
counter-term formalism3'. The Hamiltonian 8 ,  in the original para- 
metrization, 

is written as 

with 

and 

The a, b and c counterterms are determined by the normalizations 
(5-6, 5-7). 

One first evaluates the Gell-Mann and Low formula for the correla- 
tion functions : 

with 



and ao = free (euclidean) vacuum, Ao = free (euclidean) field with 
mass m, 

The Legendre-transform (5-3) leads to the I- functions which are re- 
presented by one-line irreducible Feynman graphs. The Feynman 

graphs are constructed from the massive propagator and the 
D' + m2 

u, a, b, c-interaction vertices. The normalizati~~n conditions (5-6), in 
terms of graphs, read (we restrict our discussion to the intermediate 
re-parametrization) : 

a 
ri211 = {i + b 

dp2 p=O p = o  

p = o  p = o  

the dash (') indicating the omission of the no-loop contribution. 

irp. indicates the set of all graphs whic'h start with one u-in- 0 
I 

teraction vertex and end on one line. Written in terms of operators: 

Analogously, we have : 



We obtain implicit (since higher order graphs contain in turn these 
counterterms) formulas for a, b and c in terms of higher order graphs. 
By an explicit low order computation, the reader may convince him- 
self that the determinant condition for the perturbative solubility in 
terms of a = I a ,  un, etc., is fulfilled. 

n 

The intuitively plausible formulas may be put on a more solid mathe- 
matical basis by introducing composite fields via a Gell-Mann and 
Low formula: 

x x N  = & (QO 1 A;(x) rp exp 

This may be easily generalized to arbitrary composite fields. The 
"proper" functions ( )PrOP are 1-line irreducible with respect to XN 

lines. They are defined via Legendre transformations of the corres- 
ponding generating functionals (for brevity we omit from now on the 
index r on the fields): 

They are related according to 

GA~x, J) = ~A"(X,  (5-21) 

where the connection between d and J is given by (5-2). 

The relations (5-15) can be formally derived by a Legendre transfor- 
mation of the field equations for the correlation functions (3-20). 

A11 manipulations are to be done for finite euclidean cut-off A (resp. 
finite lattice distance). Our re-parametrization of correlation functions, 
involving the basic field only, already assures the finiteness for A + a .  
This is particularly easy to see for the A4 coupling in D = 3 and 2. 
If we write the interaction part Zint(Ao), (5-12), as a Wick-product 
of free fields (we saw in Sec. 3 that this amounts to a trivial re-parame- 
trization), then, for D = 2, there are no divergent Feynman graphs. 
For D = 3, one finds terms which are logarithmically divergent for 
A + a .  These terms appear in the bare mass m o .  However, these 
terms are dropping out if one applies the usual Dyson momentum- 
space Taylor operator. The important point is that, in this situation, 
we have no overlapping divergencies. The proof of finiteness, for A + a ,  



of 4-dimensional correlation functions, normalized according to (5-6) or 
(5-7), is more complicated: the reason is the occurrence of overlapping 
divergencies. Here, the Bogoliubov-Parasiuk-Hepp3' method leads to 
the desired result. The intermediate re-parametrization (5-7) is par- 
ticularly simple to deal with in the BPH- renormalization. In order 
to construct a composite field A ~ ,  which stays finite for A -+ co, one 
makes the following Ansatz : 

Z(A2) is to be determined from the interrriediate normalization 
condition : 

(SN  [~'](0) Ã(pl) Ã(p2))prop I p =  C = 1. (5-21) 

For the defínition of a (A -+ co) - finite A4 cornposite field we write 

The normalizations are : 

The symbol N stands for "normal product" which is a generalization 
of the Wick-product. The proof of finiteness of 

(N [A2](x) X(IV)) and (N [A4](x) X ( N ) )  

can be given in the BPH-framework. The generalization to the cons- 
truction of normal products N[O](x) of more complicated field mo- 
nomials O is straightforward: write N[O](x) as a superposition of a11 
(Wick-products) monomials in A and derivatives of A which have 
the same transformation properties (including discrete symmetries) 
as O and whose canonical dimension is not bigger than that of O. This 
general Ansatz is only necessary for renormalizable couplings, e.g., 
A4-interaction in D = 4. 

~ i m m e r m a n n ~ ~  showed that one can avoid counter-terms and Z-fac- 
tors which diverge in the limit A -+ co, by giving directly a prescrip- 
tion for the re-parametrized correlation funci:ions respectively the 
composite fields N[O]. The Zimmermann formula is: 



(X(N)) = F.P. (Oo I XbN) exp [-- & i n t ( ~ o ) ]  I ao) o.  (5-24) 

The O indicates the omission of "vacuum bubbles" (i.e., division by 
C in (5-13)). The finite part operation, F.P., is defined in terms of Taylor- 
operators acting on the Feynman integrand and converting it into an 
absolute convergent expression. The counter-terms in Si,, are now 
finite in the limit A -+ co. In particular, for the intermediate re-para- 
metrization, there are no counter-terms. The Zimmermann F.P. ope- 
ration may be generalized to the definition of normal products. We 
will not discuss this formulation any further, since our main interest 
here will be the field theoretical description of superrenormalizable 
couplings (e.g., A4 in 2 and 3 dimensions) in which overlapping diver- 
gencies are absent. For a proof of the existence of the A -+ c~ limit, 
in the case of a three dimensional A6 coupling, this formalism would 
be useful. 

The change of parameters is particularly important for the discussion 
of symmetry-breakings in the "spontaneously broken limit". As an 
illustration, consider a two-component scalar model with O2 symmetry 
which is broken by a linear term: 

The re-parametrization (mo, uo, h) -t (m, u, h), (where the h = O part of 
& is treated as before), is not such a good procedure. The dependence 
in h, around h = O, Is expected to be non-analytic since the Goldstone 
behaviour contradicts the existence of a power series in h. The necessa- 
ry re-parametrization is the transition from the field h to the magne- 
tization (A(x)) it induces. The technique is the "loopwise resumma- 
t i ~ n " ~ ~ ,  which we briefly sketch in the following. Denoting the generating 
functional of the connected correlation functions, for the symmetric 
h = O theory, by G,{J), the generating functional of (5-25) is obtained 
by shifting the source. With h = (O, h), we have: 

The Legendre transformation 



with 

F = (O, F), F = -s- 
~ J z ( x )  (li I ,=h . 

The "loopwise summation" of the r,-functions leads to a new pertur- 
bation theory in which the new "zero order" 17eynman propagators 
of A,  and A2 have different masses ml and m 2 .  As the new parame- 

a a 

m$ - mí 
ters, one may use ml , m2 and u - 

F 2  
.Recently, one has been able 

to reexpress this rather involved technique in terms of a re-parametri- 
zation formalism which may be directly formulated in terms of X 
(Ref. 34). The main idea is to make the translation 

A =='A + F ,  ( A )  = F, 

directly in X :  

u . F  - + T ' A 2  . Â2 + (h + F m?) Â2 + counter terms. 

Here, 

U F ~  U F ~  mf = m2 +--- and mi  = ml +--, 
3 ! 3 ! 

are taken as new parameters. Since 

3u. F2 = m$-m?, 

one can either take u(F - u- ' I2) or F(u F P 2 )  as the third parameter. 
"Perturbation theory" will be a power series decomposition in powers 

1 
of u, resp., -. The coefficient of the linear terin is determined via a 

F 
Gell-Mann and Low formula, by the requirement 

(Â) = o. 

The most important point is now the following. [f we choose the coun- 
ter-term structure in (5-30) to be what we obtain by the translation 
applied to the a, b and c counter-terms of (5-12) and if, in addition, 
we do not Mck-order Xi,, , then a11 of the classical relations (i.e., those 
obtained by formal manipulations) are fulfilled in the quantized theo- 
ry35. In particular the Ward-Takahashi identities for the correlation 
functions are valid. 



The most convenient normalization conditions, which are consistent 
with the "translated counter-term structpre, are: 

r(4) 1 o,mi-,nf = ,, = u. (5-34~) 

In terms of Taylor-operations, the u-parametrization leads to the "soft 
quantization scheme" of Gomes, Lowenstein and Z immer rnan~~~~ .  The 
main point is that the Taylor-operations do not only act on externa1 
momenta of subgraphs, but also on certain parameters. A detailed dis- 
cussion of these interesting and recent developments in quantum field 
theory would go beyond the main purpose of the review. This method 
applied to 4-dimensional theories allows to discuss spontaneous symme- 
try breaking in perturbation theory. For D I 4, the spontaneous limit 
ml -+ O(h -+ 0) generates infrared-divergencies which increase iru in- 
creasing perturbation order. Therefore, the difficulties in dealing with 
1st order phase transitions, corresponding to continously broken sym- 
metries, are similar to the infrared problems one encounters in studying 
critica1 behaviour. For the latter case, we develop a non-perturbative 
discussion based on certain (non-perturbative) properties of parame- 
tric differential equations. Similar ideas may be applied to phase tran- 
sitions of first order and we will return to this problem in a future 
publication. 

The main reason why re-parametrizations are so useful in the discussion 
of phase transitions is that they allow a very simple description of 
what happens under scale changes x + Ax. To compensate such a scale 
change, by a change of physical parameters, leads, in general, to com- 
plicated and therefore useless transformation proprerties. Therefore, 
one should always attempt to change the (accidental) parameters, in 
terms of which 2 is given, to "intrinsic" parameters in terms of which 
physical properties (in our case, properties near the critica1 point) are 
simple. This remark sets the stage for the discussion in the next section. 

6. Derivation of Scaling Equations 

According to a hypothesis of Wegner15, the discussion of infinitesimal 
variations, around a fixed point X*, can be strengthened by assuming 
the existence of global scaling fields. Wegner's arguments, which we 



presented in Sec. 2, are, basically, consistency ai-guments. So, it is de- 
sirable to see how close onè can come to derive this hypothesis in the 
more restricted but, at the same time more manageable, framework of 
(euclidean) local quantum field theory. For the correlation functions 

(X) = G ( N ) ( ~ l  . . . XN 1 g ,g2 . . .), 
N 

with (X)  = 4(xi), the scaling field hypothesis leads to the global 
1 

Kadanoff scaling law : 

G'N)(~l  S . .  X~Igi ,g2  Â N d @ ~ ( N ) ( i L ~  1...~~N11by1$1,Ây2g2...), (6-1) 

which is equivalent to the following parametric differential equation: 

For reasons of simplicity, we have assumed that we are in a situation 
where there are no logarithmic modifications of these relations. In the 
following, we will show that, by a suitable parametrization of the 
(two-parametric) theory, via normalizatiori conditions, we can 
obtain the scaling e q u a t i o n ~ ~ ~  

where ,!? and y depend orily on g, whereas 6 has the representation3(j 

Here, p is a parameter which enters only via certain normalization 
conditions, i.e., it is not an intrinsic physical parameter of the theory. 
The meaning of the symbols is the following: dN = can. dim. of G'.') 
in mass units, y4 = "would be9' anomalous dimension of d>,26, = yb2 = 

= "would be" anomalous dimension of 4'. 

Furthermore, 62 is not independent since we have the relation 

61 + 62 = ~ 4 .  (6-5) 

0 - 2  
The terminology "would bem referes to the statement that d 

4 = - z  + y4 and db2 = D  - 2  i- y p  are the operator dimensions in a theory 
for which the coupling constant g is equal to a zero ("eigenvalue") 
of the functions ,!?(g). 



The global scaling law, following from (6-3) by the method of charac- 
t e r i s t i ~ s ~ ~ ,  is 

G ( N ) ( ~ l  . . . xhr I mlg) = ÜN(g, i) G(N)(A-l x1 . . . A - '  xN I m, a), (6-6) 

with g defined by 

and 

P 
dgf  + m2 exp r? dg'. (6-7c) 

The reader who is not familiar with the method of characteristics may 
easily verify that 

d 
3. - (right hand side of (6-6)) = O 

d2 
is just the differential equation (6-3) with g and m replaced by Zj and m. 

In the case of existence of a zero g, with 

P(gc) = O and co = /l'(g,) > O, 
Eq. (6-6) yields the (zero magnetic field) Kadanoff scaling law inclu- 
ding the "w-corrections" : [ k(~<;  gJ - N d9 + - + 

G'N)(x I . . . x,-, I ml g) = 3. 
- i + (3, + &(8 -dJ 1 

1% 
1 -i",+ 

(6-8) 
G(\)(jWp ' x l  . . . jL- x \  1 n d  , gc + (g -- gc) 2 + . . .h 

i > > 1 and the form of the asymptotic effective-mass results from the 
second part of (6-7c) which, for 6, = 6(g,) < I ,  is dominating in the 
limit 3, -t O. 

Interpreting the "scaling mass" m as a quantity proportional to 
T--T,  = -- , Eq. (6-8) is the Kadanoff scaling law with the critical in- 

T. 
dices (i; gadanoffs terminology) 



The interpretation of m - z will be a necessary consequence of our 
derivation. 

For the derivation of the parametric differential equation, we start 
from the Hamiltonian 

x = x o + 2 f , ,  

Instead of u and C we prefer to work with dimei~sionless parameters: 
= p4- 1) g, c^ = 4-1) C, 

where p is the already mentioned renormalization spot which enters 
the theory via renormalization conditions: 

2 
l'-(2)Ip=o,m=p = p , (6- 1 1 a) 

Choosin g the cou inter-terms, a l  , a 2 ,  b and c, iridependent of m, tlie 
four equations (6-1la)-(6-lld) will lead to their recursive perturbative 
determination. With the understanding that the interaction in (6-10) 

is either Wick-ordered : : (absence of a loops) or "triple dot 
.-.I . . 

ordered" : : (absence of , as well), we obtain for D = 3 the 
A 

wellknown logarithmic dependence of a2 on A, i.e., a, - p2 lnn-, 
P 

whereas a l  , b and c approach already a finite limit. For D = 2, a11 
counter-terms will stay finite for A + co. In case of D = 4, we have 
a quadratic divergence in a2 whereas al , b and c remain logarithmic 
divergent. In this particular case, it would have been simpler to have, 
instead of (6-lla), the normalization3' 



For D < 4, this normalization is known to introduce infrared-diver- 
gences into the correlation f ~ n c t i o n s ~ ~ .  Comparing the above Hamil- 
tonjan (6-10) with its unrenormalized form: 

we obtain, with 4 = Z-'I2 and the requirement that m -. O implies 
mo + O (with 6m$ remaining # O), the identifications: 

Note that rn; = m; - 6mi is the true "bare mass". The statistical mecha- 
nics origin of the Hamiltonian (Sec. 3) tells us that m~ has a T-depen- 
dence. On the other hand, mi is just the difference between the bare 
mass and its "critica1 value": 

2 2 2 2 ,i = mg - mgc , 6mo = m ~ ,  . (6- 14) 

T - T ,  
Therefore, m$ and hence m2 are proportional to z = --- . From 

T, 
the form of the Lagrangian (6-10), we obtain immediately: 

d 
7 ( X )  = - - (1 + al) ( 4 2 ( ~ )  X) dDx. dm 2 S (6- 15) 

Writing 42(x) = Zl(q52),(.w),. with an m-independent renormalization 
factor Z1 , which is determined by the normalization condition 

'YPI -P ;  O I m, Y, 9) /a=o,rn=r = - 1, (6- 16) 

we obtain, for the Legendre-transformed version of (6-15), 

That the constants on the right hand side combine to one, is most 
easily seen from (6-16), with (6-llc). We call, (6-17), the inhomogeneous 
parametric differential equation. The homogeneous equation has a 
more tricky derivation. Consider the unrenormalized vertex function 
rbN) which are obtained by Feynman rules based on the form of (6-13a), 
i.e., the mass in the propagator is m$ . The Tós do depend naturally 
on m$ , uo and A. But they also have a p-dependence through 6m$, 
(6-13b). Hence, 



and changing the parameters to m, g and A, we obtain: 

with 

For D = 3 and 4, one has to demonstrate that, in addition, to the 
renormalized vertex-function, also the +P, y and 6 approach a finite 
limit for A -t a. This is most concisely done with the help of the "Nor- 
mal Product Algorithm" which we described briefly in Sec. 5. For the 
derivation of the parametric differential Eqs. (6-17), (6-19), solely on 
the basis of normal products, we refer to Ref. 35. 

The generalized Kadanoff scaling law (6-6), in order to be useful for 
the description of critica1 phenomena, has to be supplemented by the 
statement that the G's, resp., T's, have "zero m,ass" limits m -t O. In 
our treatment, the existence of this limit as well as the interpretation 
of m = O as zero mass, i.e., 

is inexorably linked with the assumption that ,LI has a long distance 
zero g,. The vertex scaling equation, corresponding to (6-6), can be 
read directly off from (6-19): . 



We obtain, for small A, an effective cut off which is driven towards 
infinity. In the differential equation, 

have a dependence on the cut-off which is lost in the limit of the effec- 
tive cut-off approaching infinity (i.e., the limit for small A). Hence, by 
setting A = co from the outset, we have a euclidean version of a local 
cut-off independent quantum field theory which correctly describes 
the asymptotic behaviour. The argument, that the next to leading 
behaviour, in which o as well as the derivatives y é ,  6: enter, is still 
A-independent, is more involved and will not be given here. Let us 
from now on set A = m and omit it as an argument of r .  

The above scaling law (6-20) leads, for pi = O, in the presence of a 
"long distance eigenvalue" gi , to 

with computable corrections. This equation tells us, in particular, that 
m -+ O (for 6, < 1) is equivalent to zero mass (6.21). If the limit m + O 
could be performed for finite (nonexceptional) momenta pl . . . p, , then 
we conclude from (6-22) that the zero mass functions T(N)(;lpl . . . Ap, ; 
(O, p,g) will approach, for A-. co, those of a canonical (free field) 
theory since g -+ O. However, for R -+ 0, the same vertex functions will 
approach a noncanonical scale-invariant limit with dim 4 = d4. A 
slight generalization of these considerations to TiN,L), which we will 
discuss more explicitly later on, leads to 

dim$2 = D - 2 + 2 a 1 .  

The important remaining problem is therefore the existence of the 
m -+ O limit for the vertex functions. In order to discuss this, we need 
the integrated inhomogeneous differential equation: 

riN'(p1 . . .PN ;OIm,p,g) = r(N'(pl.. - P N  ;O I M,p,g)- 

- . . . f i  ; O 1 ml, p, g) dmt2 (6-24) 

For N > 2, the first term on the right hand side approaches zero for 

M - a> (for N = 2 this only happens for the derivative a r"). The 
ap2 



scaling law of the integrand in (6-24) follows from the differential 
equation for FN,'): 

The derivation of this equation parallels (6-18)-(6-20e). The only diffe- 
rence is that the renormalized in terms of rbNll) has in addition 
a ( 2 2 , )  factor whose p-derivative gives rise to the y,pcontribution. 

E 

From the normalization (6-16), one obtains: 

a 
Comparison with the ;jmi differentiated equation, 

which, in view of the normalization condition (6- 1 la) and due to (6-17) 
for N = 2, leads to 

finally yields : 

26, = y 4 ~  . 
The global scaling behaviour, obtained from (6-19), is 

It is convenient to perform a change of variables: 

l - a l  
mt3 - p2 exp 2 c- P dg', dmt2 = 2(1- 6,) mI2 3.- ' dl, . 

For 3, + co, the coupling constant approaches zero and the right hand 
side can be estimated in lowest order perturbat:ion theory. This yields 
the convergence of the integrand at the upper integration limit. For 
small Â, the integrand is 



So we are facing a large momentum problem, at a coupling constant 
which is practically g,. Here we follow an idea by Symanzik40 and 
use the operator short-distance expansion to determine the leading 
part : 

The homogeneous equation for I-(N+2,0) is 

The asymptotic contribution from the second term may be estimated 
according to 

p2 p + 2 )  (Pi - . . PN ,O, 0; 0 I P, P, 9) r(2,2)(0, 0; O, 0 1 p, p, g), (6-3 1) 

with 

2(6 - 1) p2 r(2,2)(o, o; o, o I p, p, g) = 2y6 - 2di , (6-3 I) 

which follows from taking the p-derivative of the normalization con- 
dition (6-16): 

We fínally obtain: 

Therefore, the integrand (6-27) behaves, for A -, O, as 



The condition for convergence is 
D - 4 + 2 6 , > - 1  

or, with 61 = y 4 2 ,  y,p(gC) > 1 -I- F .  

The inequalities (6-34) and y4i are consistency requirements on the 
dimensions of d2. 
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