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We review the work of Kadanoff, Wilson and Wegner, in the language of Euclidian
field theory. In addition to Wilson’s renormalization group method, which is based on
the idea of eliminating short range fluctuations, we discuss the renormalization method
of quantum field theory which, in the present context, we call reparametrization (in
order to avoid confusion). A reparametrization which is of particular interest in the
theory of critical phenomena is the one which leads to scaling equations. We derive
new scaling equations which remain free of infrared divergences in two and three di-
mensions. Our method allows us to give a rather compact and unified discussion of
Kadanoff's scaling laws and the related concept of global scaling fields, as well as the
scale invariant correlation functions.

Revemos aqui o trabalho de Kadanoff, Wilson ¢ Wegner, na linguagem da teoria eucli-
diana de campos. Além do método do grupo de renormalizagdo de Wilson, que se baseia
na idéia de eliminar as flutuagdes de curto alcance, discutimos o método de renorma-
lizagdo da teoria quantica de campos o qual, no presente contexto, denominamos
reparametrizag¢do, a fim de evitar confusdo. Uma reparametrizacdo de especial interesse,
na teoria dos fendmenos criticos, ¢ a que conduz a equagdes de escala. Obtemos novas
equagoes de escala, livres de divergéncias infravermelhas, em duas e trés dimensdes.
Nosso método permite-nos apresentar uma discussdo bastante compacta e unificada
das leis de escala de Kadanoff como também do conceito relacionado de campos de
escala globais, assim como das fungdes de correlagdo invariantes por escala.

Introductory Remarks

The material in these, lecture notes was presented to an audience with
some formal training in field theory at the University of Sdo Paulo,
in 1973/74. Most of it is standard, only the last section containing new
results. These results on Kadanoff scaling equations and the field
theoretical discussion of the Riedel-Wegner hypothesis of scaling fields
are an elaboration of: Comment on a New Approach to the Renormali-

*This paper was written while the author stayed as a guest at the Universidade de Sdo
Paulo, Séo Paulo, Brazil, with the financial support of the brazilian National Research
Council and K.F.A. Julich, Germany.

"Postal address: 1, Berlin 33, Arnimallee 3, Germany.
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zation Group, by M. Gomes and the present author. (University of
S&0 Paulo preprint, March 1973).

1. Basic Observations and Some Simple Formalism

In connection with first order phase transitions, which physicists have
studied in liquid-gas systems, ferromagnets and in many other systems
for over a century, there is the interesting phenomenon o critical
behavior which one encounters at the high ternperature end o the
phase coexistence curve.

The first phenomenological theory for phase transitions was that of
Van der Waals, while further theoretical develogmentsin this century
are associated with the namesof Weliss, Ornstein and Zernicke, Landau
and Ginsburg'. Those developments are all different versions of what
is nowadays known as mean field theory.

In the late forties, the shadows of doubt were spreading. They origi-
nated, on the one hand, from Onsager's? resul: that critical indices,
in the two-dimensional Lenz-Ising model, are different from mean
fidd theory predictions and, on the other hand, from Guggenheim's®
experimentson the liquid-gas transitions of many different substances.

Many subsequent measurements with refined experimental techniques
have demonstrated the breakdown o the mean field theory description
near to the critical point.

During the last couple of years, some new model-independent ideas
have paved the way towards a new theoretical framework which we
will sketch in the following Sections.

When lecturing to an audience with some background in quantum
field theory, the question why afield- (or elementary particle — ) theorist
should be interested in critical phenomena naturaly comes up. The
answer is really very smple.

The conceptual idealizations and the accompanying mathematical for-
malism for critical phenomena are very close to those o relativistic
quantum field theory. To be more specific, the probabilistic language
o classical statistical mechanics is equivalent to the description in
terms of euclidean field theory. In particular, lattice systems near the
critical point "lose their memory” of the lattice distance and become
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identical to self-coupled euclidean theories with a local polynomial
interaction. On the other hand, one knows from Schwinger's* and
Symanzik's® work that one obtains an euclidean theory if one continues
relativistic correlation functions to imaginary times.

Although the important " short distance problem™ o relativistic theory
is different from the "long distance problem" o critical behaviour,
these problems can be formulated in such a way that they just corres-
pond to two different “fixed points” of the same parametric scaling
equation®.

In short, such similarities between critical correlations and vacuum
expectation values ,of local fields are more striking than the formal
similarities between relativistic theories and the quantum theoretical
many-body problems (in the framework of second quantization).

In the following, we briefly explain the language of critical phenomena
in the case of a ferromagnetic phase transition. In many excellent
articles, the reader may look up for the "trandation key" which turns
that language into that appropriate to other systems, e.g., liquid-gas
transitions.

hi
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Fig. 1 - The h x T ferromagnetic phase diagram.

Ferromagnetic transitions only happen in a zero magneticfidd (Fig. 1).
The magnetization m, below the critical temperature 1c, has a jump,
i.e., by letting the field h go to zero through positive values, one only
reaches the points of the upper curve and, by doing the same for ne-
gative values o h, the limiting magnetization is given by the lower
curve (Fig. 2).

The vanishing of an "order parameter™ (m, in our case), as one
approaches T, from the ordered side, is a distinctive feature of a cri-
tical point.
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Fig. 2- The m x T diagram with lines of constant magnetic field strength.

Experimental results and model considerations suggest the following
parametrizations near the critical point:

magnetization: m ~ (—t)%, with g defined only for t = (T- T.)/T. < O;
susceptibility: x ~ [t]™7;
specific heat at constant field: ¢, ~ |t|™%
correlation length: &~ el (1-1a)
gn thg_) above quantities, one has h = 0, while, on the critical isotherm -
t=4),

m = |h|"?sign h (1-1b)
holds.

There are, furthermore, indices for critical pair correlation functions
which we will introduce later on.

In the above parametrizations, it is tacitly assumed (consistent with
experimental facts) that a, y and v are the same, independently of
whether one approaches T, from either the Ieft or the right hand side.

Important experimental findings are:

I) critical indices are different from mean fidd indices,

i) different critical systemsform "universality classes’. After subjecting
the experimental parameters to a suitable transformation (“law of
corresponding states'), the critical behaviour within each universality
class is described by the same universal functions’.

The characteristic features of a universality class are that the systems
in one class, although possessing the same dimensionality, lattice
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symmetry and (perhaps) other "hidden" symmetries, have vastly diffe-
rent interactions.

We now turn to a (very schematic) discussion of the mathematical
description for the special case of a Lenz-Ising system. Such a system
belongs to a Hamiltonian

H=-K Y 0,0p0-h) 0., (1-2)
where the ¢, are lattice spin variables which take only the values + 1,
while K = J/kT, J denoting the nearest neighbour exchange coupling,
positive for ferromagnets and negative for antiferromagnets. The brac-
ket under the sum stands for summation over nearest neighbours
and h = H/kT is the external field in suitable units.

All thermodynamic quantities can be derived from the Gibbs free
energy f which is introduced by means of the partition function.
With N = number o lattice spins, we have

exp(-Nf) = Z =Trexp (- )

= {Z}eXp (= {a}), (1-3)

in which the sum extends over all configurations (i.e., distributions
o + 1 over all lattice points).

The dynamical variable () or functions thereof are called operators.
Fields are the parameters in # which multiply operators, i.c., they
are "'thermodynamically conjugate™ to the corresponding operators.
If afunction @(c¢) only depends on the o's around one point, we call
O a local operator. Because of translational invariance, the operators
in # are global, i.e., they appear as sums over local operators. An
important example of a local operator is the energy density,

1
En = 7 Z Op Oy, (1'4)

n'(n,n,)n

where the sum extends over nearest neighbours (n.n.); z denotes the
number o nearest neighbours.

In terms of E,, the Hamiltonian reads
=2’f=—KZE,,—hZ(f,,. (1-5)
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Viewing
P{o) = %eXp(— H{0)) (1-6)

as the probability for finding a particular configuration {0), we in-
troduce expectation values

{0y =Y 0(o) P{c}. (1-7)
{o}

The expectation values
{On - .On, (1-8)

are cdled n-point correlation functions of the magnetization o den-
sty. One may introduce correlation functions, involving composite
variables,e.g.,

<En En’>’

the 2-point correlation function of energy density.

It is a wel known fact that thermodynamical quantities can aways
be written as sums (integrals) over correlation functions. The reader
may convince himself, by a simple computation, of the validity of the
following expressions

m=T = (05 = (o, (1-9)
*f
1= g5z = L <%0 On)e (1-10a)
o*f
Cp = ﬁ(“z = Zn: <Eo En>c (1-10b)
o*f
XK= 2R = ;<00 E>.. (1-10c¢)

Here the subscript ¢ denotes the connected part of the correlation
function, ie.,

<60 6n>c = <O'0 0n> - <0>2

Since each spin variable o is bounded by 1, the only way that Eg. (1-10)
can be divergent at the critical point is that the connected functions
become "long ranged"”, ie., that the sum diverges for large n.

From the study o the two-dimensional Lenz-Ising® model, one knows
that the expressions
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const.

{80 Onpnoco = W[ (1-11a)
(Eo Exduor =ﬁ%§§§p (I-11b)

give the correct description at t = 0 and for asymptotic separation.

According to one’s background, one uses either the indices # and v
defined by
D-2 D-2

c-e Yol B
dy =23+ 5 =75+ Vs, (1-122)

dE=D—%=DA2+vE, (1-12b)

where D stands for the space dimensionality of the model, or one
chooses to talk about "anomalous dimensions” s, vz, defined on the
right hand ddes. of Egs. (1-12).

For the D = 2 Lenz-Ising model®, the values are n = 1/4, v = 1L

The mixed expectation value of o and E do vanish. Thisis no surprise
for a fidd theorist who is familiar with the close connection of scale
invariance and conformal invariance®. According to a general theorem
o conformal invariant theories, the 2-point function of two opera-
tors with different dimensions has to vanish.

Using a method developed, for the D = 2 Lenz-Ising model, by Ka-
danoff'® and Ceva and Kadanoff"", one may in principle compute
the "long distance” dimensions of any composite fluctuation. In order
to check the consistency of interpreting d, and dy as "operator di-
mensions” (rather then numbers just showing up in the 2-point func-
tion), one may, by applying again the Kadanoff technique, prove that,
at t =0, for example, one has

<O-ln1 --~O'lnN>/1—voo ~ l—Ndc_ (1-13)

We shall not, however, go into details of any model, since the frame-
work described in the next Section, which is made more precise in
the subsequent Sections, alows us to achieve a model-independent
understanding.
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2. The Phenomenological Kadanoff-Wilson-Wegner Framework

The first attempt to explain how the scale invariance of correlation
functions and the thermodynamic scaling laws come about was given
by Kadanoff*? and is nowadays referred to as the Kadanoff “block-
picture”.

In order to supply a clear conceptual basisfor Kadanoffs rough pictu-
re, Wilson!3 introduced the fundamental Renormalization Group Trans-
formation, emphasizing the significance of fixed points.

Wegner'* converted Wilson's ideas into a detailed and quantitative
phenomenological description of critical phenomena.

Let # (o, ...0on) be a Hamiltonian for a system of N spins, with a
translational invariant interaction (imagine, for simplicity, -periodic
boundary conditions). The first step will consist in extending the system
by doubling its linear dimensions but keeping the same interaction
for the larger systein. The Hamiltonian is #(oy ...0,0y). Now di-
vide the 2P~ |attice points into cells of size 2* (i.e., each cell contains
2" lattice sping). Introduce then, within each cell, the cel spin
Si= Y o, and (2”-1) relative variables (spin differences in the ith

ceilt

cel) of .. The next step is to rewrite the Hamiltonian as
J/O(S'l ...S;\v, O'Ei)...)

and perform the partial sum over the o' (an integral if the original
spins have a continuous distribution):

Cexp[-#1(S1...5%] = J exp [- #o(S1 ... S, 0. )] d[o"). (2-1)
{o'}

(Note that the integration means summation for discrete spins). Here
we have absorbed the c-number part (which is independent of the Ss).
After this elimination procedure for certain short range spin fluctua-
tions, we rescale our spin variables and our length scale:

S; =0, 20%2°M2 p = m, (2-2)

where m stands for integer vectors. The resulting Hamiltonian is called
H oy ...0x) and the transformation

%0*«7%1
330



is called a (Wilson) Renormalization Group Transformation. The new
Hamiltonian has different interactions than the origina one. For all
physical questions which do not depend on short range fluctuations,
the new Hamiltonian should give the same answer.

In the probabilistic language, the Renormalization Group Transfor-
mation is clearly a transformation of the probability,

.1
dPo{c} = lim — exp [- #0{c}]d[a]. (2-3)
into a rescaled conditional probability

dP{c} = J dP,{c, a). (2-3)
{o'}

We call a Hamiltonian 5#, critical if we can adjust the parameter #
so that the sequence of subsequent renormalization group transfor-
mations,

Ho D, SH, DD , (2-4)

has a limit s#*. Only Hamiltonians #, in which the interaction pa-
rameters have suitable chosen values will have such a property.

In order to see why this must be so, let usimagine that the Renorma-
lization Group Transformation T has a fixed point, i.c.
T #* = #* (2-5)

and that we restrict our attention to Hamiltonians #, which are infi-
nitesmally close to #*. By definition of "infinitesmal™, the transfor-
mation (for this, the number 1 of repeated applications T' must be
allowed to be continuous, an assumption which will be justified later)

H* Y oH#05 w*t+ 5, (2-6)

is linear on the interaction parameters (“fidds"') pertaining to 6, .
This transformation may be represented by a matrix. To obtain it,
let usimaginethat we have a basis @; of trandational invariant opera-
tors (sums or integrals over local composite operators):

$H=2 05 oA =Y [0, (2-7)

with
=Y ay ;. (2-8)
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Let us then assume that the matrix A = (d;;) can be diagonalized
(ie., that we do not need associated eigenvectoss as occur for Jordan
forms). As we wrote the rescaling in terms of powers of two, we now
write, for the eigenvalues o A,

A= 2V (2-9)
We shall denote, by ¢;, the basis operators on which the Renormali-
zation Group acts diagonally. Hence,
#5210, (2-10)
and
0H o = Yuw 05 Y uw2i0;, (2-11)
1 [

Repesating, the Renormalization Group transformations, ! times, we
obtain

SHo Y 1 2% 0, (2-12)

One classifies the eigenoperators @; according to the sign o y;:

yi >0 reevant;
y:; <0 irrelevant,
yi=0: margind.

In the irrelevant case, the transformed fields y, are contracting each
time by a factor 2711, The relevant case leads to an increase of fields
(so that the infinitesmal considerations become meaningless after a
certain number o steps). The marginal case requires a more detailed
discussion which we will come back to.

A necessary condition for the criticality of #, = #* + 54, isclearly
that all relevant operators have zero fields. Note that in this language
the identity operator 1 = ¢, , which we absorbed into the constant C,
would be a relevant operator with y, = D. To the free energy, it only
contributes in an additive fashion. We obtain

Nf(#1) = 2P Nf (#,)
or, repeating the process 1 times,
f {,uo yH1 5. } = 2_Dl f {,U() 2Dl, 2y1l, . } (2'13)

The temperature t and the magnetic field h are expected to be among
the relevant fields since their conjugate operators XE, and X¢, are
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expected to have dimensions till near to their canonical (free field)
vaues D-2 and (D-2)/2 (in mass units, ie., inverse length units).
So let us set g =t, u, = h We chose 1to be so large that (assuming
t<<1)

|¢] 275 ~ 1. (2-14)

The part of the free energy f;, after splitting of the (regular) contri-
bution, coming from the unit operator, namely,

f{#o,t,h,ﬂs,..-} =uo + fi{t.h,.. .},
fulfills the functional equation
e, ) =[PP £{E Lh|t ™% |t 74, (2-15)
with A; = yi/ye.
In the case o only two relevant fields t and h, the other arguments
belonging to irrelevant fields drop out for very small t and we obtain

the well known Kadanoff scaling law for the singular part of the free
energy:

k) = [t f(£ Lt ™). (2-16)

The critical exponents a, f, y and 6, in terms o yg and y», follow from
the scaling law o the free energy. As an example, consider the specific
heat. Differentiating f; twice with respect to t and putting h= 0, we
have

oty = |t|PPP 72 F (£ 1,0) T less singular terms;  (2-17)
hence a =2 (D/yg).
Similar considerations lead to scaling laws for correlation functions.
We obtain, for example, for the connected spin correlation:
Joolr, t, ) = 2200~ Dl g (271 ¢ 2VEL 20w, (2-18)

The factor in front is just the rescaling of the spin (2-2).Since o is con-
jugate to h,

The elimination of [, by using (2-14), leads to
Goolr, t,0) = [t PP g (r [e]1E, £+ 1, h|t]=*%). (2-19)

We prefer to use the symbol r in the argument o the connected 2-point
o-correlation instead o writing the lattice vector n. The reader may
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for himsdf derive the analogous scaling law for the energy correla-
tion function gge .

In the K.W.W. phenomenological framework, all critical indices for
ferromagnetic systems will be reduced to two basic numbers: yr and
v (Refs 12, 13).

Later, we will show how, by a more quantitative discussion of the
Wilson Renormalization Group, one can actually compute these num-
bers approximately.

A further important contribution to the critical phenomenology is the
idea o "scaling fidds' of Wegner'® and Riedd and Wegner!®. In the
discussion up to now, the fidds u; had to be infinitesmal, i.e., we do
not have strictly speaking a global scaling law o the form (2-19). In
order to obtain a useful global form, the authors proposed to rfiake
the following hypotheses:

There exist scaling fields g; in terms of which the (non infinitesimal)
ui’s can be expanded:

1
M =gi + jjzkbijk gige+ ... (2-20)

In terms of the g,’s, the free energy and the correlation functions fulfill,
in the typical case, global scaling laws, i.e.,

fagit = e f{g: 2 (2-21)

Criticality is now determined by the global condition of the vanishing
o all relevant scaling fields. Note that to neglect irrelevant scaling
fields, for large /, is only judtified in the case that the free energy has
a smooth limit for vanishing scaling fields with y; < Q Hence, a ne-
cessary condition is that the Hamiltonian remains bounded below for
vanishing irrelevant scaling fields. There are cases for which this con-
dition is not met (mean field theory for D > 4). A more detailed stud%/
shows that one has to take into account at least one relevant field"®.

The arguments in favour of the existence of scaling fields are basically
consistency arguments.

In order to avoid clumsy notation and lengthy arguments, let us assu-
me that instead of the discrete scale transformation 2°¥, with 1 integer,
we may use instead the continuous transforrnation exp(y;l), with a
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continuous ! (in Sec. 6, we will justify such an assumption). Infinite-
smally, the old g; fields transform linearly,

550 = yiu(d, (-22)
but, in higher orders, we ha\./e
L =y + ST agempuc+ ... 22
The Ansatz of scaling fields, (2-20), with

360 = yigi, globaly, (2-24)

is consistent with (2-23) if the b;; can be computed from the a;; and
the y/’s by means of

;i + Y=y bije = Gije. (2-25)

If y;t y, # y;, there is a unique solution. A similar consideration
holds for all higher terms.

If however, the equality y; = y; Ty holds, we can only save the si-
tuation by working with [-dependent bs Instead of (2-25), we have

0
E’[bijk = Qijk - (2-26)
This leads to a linear I-dependence in b if there is no I-dependence

in a The quadratic term in (2-20) leads to an /-dependence (/, = inte-
gration constant)

i ~ ePyl t lo), (2-27)
which is now the leading term. Fixing ! by the condition
|g1] & ~ 1, (2-28)
the ith argument of the free energy has now a logarithm, namely,
g1~ *In g1 ]

If a margina fied occurs, one then obtains powers o logarithms.
The reader is referred to the article of Riedel and Wegner!® for a dis-
cussion o several special examples.

Thus, the consistency discussion of the hypothesis of scaling fields
does not only yield the typical form o the global scaling law (2-21),
but also leads to the exceptional logarithmic modifications.
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It is often helpful to picture the condition of criticality in terms of
scaling fields in a geometric fashion. Suppose we introduce a para-
meter space whose axes are the scaling fields. Then the critical surface
Ji.reter, = 0 1s @ subspace o irrelevant (and, perhaps, marginal) coordi-
natesonly (Figs. 3 and 4). Each #, , whose pararneterslie in the critical
subpace, belongsto a critical system and the repeated Renormalization
Group transformations will transform s#,, along a path, into #*.

E\/RNTEQ CRITICAL
2 Nm SURFACE

o |RRE P!
X Cooﬂ
\ 7

\\ f

| RELEVANT
COORDINATES

——

PHYSICRL PRRAMETERS
RS COORDINATES

Fig. 3 - Critical surface in terms of "'sca- Fig. 4 - Critical surface in terms of “phy-
ling-field” coordinates. sical-parameter” coordinates.

L/CRJT!CF‘\L SUBSPACE

The Lenz-Ising model, in two dimensions, in zero magnetic field is,
for T = 7., a point on the critical surface. It is known that this model
has critical correlations which are only asymptotically invariant. We,
therefore, only reach the point s#* if we leave the (too small) model
space. On the other hand, the A* coupling modcl, which approximates
the Lenz-1sing model to any degree of accuracy, has enough parameters
(namely, the quadrilinear coupling g in addition to the temperature)
to be able to reach s#* without enlarging the model space.

There are models, e.g., the 4° couplingin D = 3 (equivaentto a classi-
cal spin which can take on three values), which, ia addition to a symme-
try breaking relevant field (in analogy to h), have two relevant non-
symmetry breaking fields.

Such models where there is, in addition to the temperature field,
another field, are called tricritical. The mixture of He® and superfluid
He* is an example of a system described by a tricritical model. In
fact, the above mentioned model gives a good quantitative description
o that system. It iseasy to exhibit, for D = 2, perturbative fixed points
which have any wanted "degree” o criticality.
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3. Euclidian Fied Theory and Functional Integration

Consider a multicomponent classica fidd variable @(x) with a cut-
off Fourier-Transforrn:

D(x) = (Zn)_D/ZJ e B,(k) dPk. (3-1)
jk| <A

Regard such a variable as a random variable in the sense o probabi-

lity theory by assigning a differential probability via a Gibbs type

formula:

P[®] = % o1, (3-2)
with

z= j d[0] ™M
and
H[D] = Z% Jvhilmin(xl X)) @iy () L D) AP xq AP X, (3-3)

Here the "'functional integral" our @ is defined in the " physicistsway":
replace the field variable @,(x) by a "periodic box field”,

D(x) - DP(x) = L2 Y o= Pyk), (3-4)
with k = 2—E n, n = vector of integers, iglrfd\ then form
Z, = J I]—l[ dd{k)exp[- #[PP]], (3-5)
i, (k| <A

where, because of the reality condition (k) = ®4- k), the integration
may be resctricted to a half-space by combining k and (- k):

Im j dd (k) j d®(— k) = J ) d Re ®(k) J ) dIm ®k). (3-6)

— o0 —

In a formal sense these equations are generalizations of the sum (1-3)
for the Lenz-Ising model. The main difference is that ® may now have
a continuous range instead o just having the discrete values + 1
As in the Lenz-Ising model, we can expect Z,, for large L to have an
exponential volume factor whereas the correlation functions,

337



" Pag. 16 do art. 9 O.V.

(Diy(x7) ... Dy en))™ = Jl_[d@”(k) PO 0P(x))... DE(xy),  (3-7)
i,k
are expected to stay finite in the ""thermodynamic limit" L — cc.

An explicit characterization of an optimal "interaction space” #[®],
which leadsto amathematical defined L — oo limit measure, P[®@] d[ @],
is not presently known. There are detailed disciissions of special mo-
dels on which we will comment later on. It is clear, from physical in-
tuition, that #[®] should be essentially bounded from below, i.e.,
those parts where »#, in ® space, is not bounded from below should
be of "measure zero™.

The " parameter space” is defined as the set of al! coefficient functions:
h = (hix), hiyip(X1 5 X2), . . ). (3-8)

Most physicdly interesting models are locdl, i.c., the Fourier-transfor-
formed functions,

hil__.in(xl e X,) = (27'C)_D(n_ b J\I”; in(kl e k,) eizkixi 5(2](1) de| - de,
(39

have the form
hiy ks ... k) = polynomial in k;. (3-10)

Needless to say that the parameter functions h may, without loss of
generdity, be assumed to be symmetric:

hipcty. avontkray .. kp) = Pyl ). (3-11)

Because of the redlity o the fields, the parameter functions are real
in x-space, ie.,

Fiy ke - k) = hiyad—ky ..~ k). (3-12)

Of gpecid interest to us are A-cut-off euclidean theories which, in
addition to the trandation al invariance, aready insured by the mo-
mentum space S-function in (3-9), are also rotational invariant in
k-space. Lattice systems, as the Lenz-Isng model, do not have this
invariance, but their renormalization group properties near fixed points
‘are not expected to change if we "euclidianize" them. In any case (this
will become clear later on), most of the techniques we are going to
introduce in the following, can be carried out to lattice theories with
Brillouin zones of any shape. If not stated otherwise, we will restrict
our considerations from now on to euclidean tfieories.
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The standard method consistsin splitting off the bilinear part from s#:
H=Ho+ Ky,
with

#Ho=1 [[cp(k)[z G (k) = %((D, Go' Q) (3-13)

and to write the generating functional of the correlation functions as

Z{J}=C Jexp [[——%(d), Go! d))jﬂ d[®] exp[~ #:[®] + (J,D)]

= Cexp [[— H [%ﬂ] Jexp [[——%— (@, Gy * @) + (J, @)}] d[®].
(3-14)

Here (J, D) = (J(x) ®(x) d°x and C contains the Jindependent part,

J
i.e., is determined by the requirement that, Z{0} = 1. The remaining
integral is Gaussian and may be reduced to alimit of ordinary integrals
using the methods described after (3-3). The result is

z{J} = C'exp (:—21 [%jﬂl Zo{J}, (3-15)

with Zo{J} exp[(1/2)(J, G, J)] = free generating functional. By expan-
ding the exponential of ##; in a power series, one obtains for the corre-
lation functions,

WZ{J}‘FO = (D(xy)... D(xn)), (3-16)

the Feynman rules

Golk): © ) °. m:><+—><‘+....

The number of the momentum-carrying lines emanating from each
vertex (momentum conservation at each vertex!) agrees with the degree
in ® of each term in #,. If #,[®] contains x-space derivativesin @,
the corresponding lines will represent powers in the momenta. The
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general Feynman graph for the n-point correlation function in mth

n—1
order in #; will be of the form (k, =- ) ky):
1

where, inside the shaded region, one has m vertices from 5 ; connected
to each other and to the external points by Go-lines, the internalGo-line
being integrated over.

Example:

k
£1 &1+Q2;Q ks

« ﬁ Golk:) fGo(l) Golky + ky— 1) d”l
i=1

Note that all the arguments o G, are restricted to the inside of the
A-sphere.

The full combinatorics of Feynman diagrams (i.c., the combinatorical
weight factors) are contained in the process of differentiation 6/6J
with respect to the source J.

An important subclass of Hamiltonians, which under the Wilson re-
normalization group procedure will be transforrned into itsdlf, is the
class o interaction polynomials s#; o even degree. One or more
component "classcal" ferromagnets (i.e., Lenz-Isng models or classi-
ca limit o non-commutative ¢(N)-Heisenberg models), in a zero
magnetic field, for T > T;, are belonging to this class. In Section 4,
we will see that all known fixed points can be reached by doing renor-
malization group transformations in this class. It is customary to
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remove selfclosing loops as_Q‘by introducing Wick-products for
the Gaussian theory Z,{J} by the standard recursion

Do(x) = : Do(x) :, Do(x) Do(y) = : Po(x) Do(y) : + {Dolx) Do(y)),
Dg(x1) Po(x2) Polx3) = : Polxy) Polx2) Polx3) « + <®0(X1) (Do(xz)>><
x My(x3) + Permut. (3-17)

and so on.

Without loss of generality, one may assume that 5, is given in the
Wick-ordered form relative to #,. This just amounts to a simple
reparametrization in the parameter-space of h's For a Gaussian theory
H# o, one defines composite fields :@3(x):. The most genera loca
function ¢(x) is a sum over Wick-products, at one point, involving
X-space derivations. Note that the field

Folx) = JGE (X =) Do(x') X’

belongs to this set if G is a local expression, for example:
G5 '(x) = (- d, d, T m?)(x). (3-18)

In the case o a relativistic free fidld of mass m?, the corresponding
¥, would be zero. However, in the cut-off euclidean theory, ¥, does
not drop out from the basis of local functions, but it will be a" short
ranged" field. For example,

{Folx) Do(y)) = 0,(x— ), (3-19)

where we have indicated that the 8-function has a cut off A in mo-
mentum space, i.e., is a short ranged function. Therefore, our set of
local composite fields consists of "normal” composite fields as, e.g.,
:@%(x): and short ranged composite fields as :@5(x) Wo(x): . Thesefeatu-
res remain essentially preserved if we go from the free Gaussian theory
to the interacting theory. By a straightforward computation, one veri-
fies that Z{J} obeys the Schwinger functional differential equation:

{fdx‘ Go l(x - X)) 8J(X3 —Hix {;J} + J( x)} Z{J} =0, (3-20)

i —_ 0| D
with o, [®] = 5Jf>[c) 1.
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By taking the n™ functional derivative and putting J = 0, we obtain
the "field equation™ for correlation functions. Specializing, for the
moment, to Gy (k) = k> + m? and

Hy = %‘,2 D) dPx,
we see that

Wo= (02 +m) 0+ L5 03 (3-21)

is a short ranged field. Here the : @3(x) : etc. are interacting composite
fields corresponding to free fields whose expeclation values are defi-

ned, e.g., by

(:0(x):X) =C [3 D5(x) : X (o) expl- #1[ Do 1] dP[Do ], (322)
with

dP[®y] = exp [—%(@0, G ' @) |d[D],

X(O) = 1_—[1 q)o(xi).

Up to now we have emphasized the probabilities, i.e., the measure
theoretic aspect of our framework. We may eguivaently describe our
correlation functions as vacuum expectation values of a commuting
set of euclidean field operators'’. Consider, for example, the Gaussian
theory. Introduce an euclidean Fock-space, #y, via creation and
annihilation operators, which satisfy

[A(k), A(K)] = 0 = [4'(k),A"(K)],

[A4lk), A'(K)] = 6™k - K), (3-23)
and the euclidean "free vacuum™ |®g o> with
A(k)| Do) =0, (3-24)
by defining
A g = {polynomial (A™)| @z o> 1.
The field,
- ~Dj2 —ikx gt . d’k
Ao(x) = (2n) {e" ™ 4'(k) + + he} ————, (3-25)

Kl <a \/k2+m2
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leads to the desired two-point function
(@0 |Ao(x) Ao(y)| Pr0y = Golx—). (3-26)

The fidd Ao(x), successively applied to the vacuum, defines the cut-off
Hilbert-space #g,, ¢ # ; it generatesa maximal abelian set of ope-
ratorsin A%, with the euclidean vacuum being a cyclic state. In order
to obtain a complete (irreducible) set of operators, it is convenient to
introduce a "canonical conjugate” of the form

T(x) = %JW {e7™ A'(k)-h.c.} /K + m* dPk,

which is such that: [4(x), TI(y)] = id(x — ), [TI(x), TI(»)] = 0 and

ije”‘x A(k) K2 + m? dPk = i T (x) + %(— 8,8, + m?) A(x),

so that the euclidean Hamiltonian (generator of time tranglations in

Hr,) is
——J ) :dPx. (3-27)

As expected, one can not write euclidean generators of symmetry trans-
formations in #; solubly in terms of commuting fields A4(x). Note
that theintegrand isnot the component of aconserved Noether current.
Theintegral over 0, : 1 6 A : is however, zero since it just gives boun-
dary terms at |nf|n|ty and due to the fall off of Go in all directions,
those boundaries do not contribute

In the euclidean operator language the functional expressions for the
n-point correlation function

(Xy=cC j X expl #,[@o]]dP[00], (28)

with

C 1= Jexp[[— H1[®o]]dP[Do ], (3-29)
' corresponds to

(E,0|A(xy). .. A(x,)| E, 0
= C{®@p,o | Aolx1). .. Ao(xy) exp[~ #1[4o]] | @507
= <(DE,0 |A0(x1) oo Aolx) EXPII— J/I[AO:”” CDE,0>®,~

where ® = omission of vacuum bubbles.
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Thisis most easily seen by expanding the exponentials in power series
and then using the correspondence of Gaussian ard euclidean theories:

(D] ... # [ @] X[®o]) = Dp,0 [ #:{Ao] ... #1[Ao] X[Ao]|
. Ppoy.  (3-30)

Therefore, the probabilistic versions and the euclidean field version
are just different mathematical formulations of the same theory. The
first formulation leads to a very refined and powerful mathematics,
whereas the euclidean language is formally closer to relativistic quan-
tum fied theory. The formula (3-29), for example, is nothing but the
euclidean version of the famous Gell-Mann and Low formula which,
in most text books, is the starting point for the Feynman perturbation
theory o the relativistic time-ordered functions. Note that the statis-
tical Hamiltonian # corresponds to the Lagrangian & o relativis-
tic QFT.

The cut off A is essentia in order to be able to talk about euclidean
operators, in interacting theories. Unlike in relativistic QFT, where
through "wave function renormalization™ and re-parametrization in
terms of more "physical” masses and coupling constants (Secs. 5, 6),
one obtains " operator-valued distributions” for A — oo, the euclidean
theory alows one to talk about smeared out operators only if the two-
point functions of these objects are not too singular. For example, the
operator : 43 :, i.e. the Wick-ordered square of a free field, exists as an
operator valued distribution in the Minkowski-version. The corres-
ponding euclidean cut-off version has, however, only a limit A + X
as a hilinear form, not as a smeared out field operator. Whereas the
euclidean norm }| : A% () 1| Deoy || ceases to exist in the limit A — oo,
the correlation functions behave as

(Dpp| A3, ((f)... A3, :(f) | Prod == finite limit,

if f...f, are non-overlapping test functions. Orly, in D = 2, the field
and all its non-derivative powers and, in D = 3, the field A and its
square: A% :, survivethe A — oo limit as operator-valued distributions.
A satisfying framework, for bilinear forms and their products for non-
overlapping arguments, does (in the opinion of the author) not exist
at the present time. The lack o euclidean operator-conceptsis a severe
handicap in the formulation of certain properties o the scale invariant
theory of Sec. 2, which because of its infinite cor'relation length looses
all "memory" o any cut-off'®. Here, even the restriction to D = 2
does not, in general, bypass this difficulty since the anomalous dimen-
sionsd 4", n =1,2,..., may be quite large. There are, essentially, two
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ways out. One, advocated by Mack!®, is to view operator-properties
as, for example, the Kadanoff-Wilson?® operator expansion in the #*
theory, as a mere statement on the correlation function. The other
possihbility, which we will use in this review, is to affiliate with the
statistical mechanics correlation of the s#* theory the corresponding
scale invariant relativistic theory. It has been emphasized by Wilson
and Kogut?! that thisis a useful construction even if ongs prime in-
terest is the understanding of critical behaviour.

Let usfinaly look at lattice theories. For a lattice system of classical
spins a,, for which the values at each lattice point are distributed
according to the function

expl- #;[o]],
the generating functional Z{J} is

Z{J}=C ﬁ—[ da, exp[— #[a] + J;, an]]exp[z Kom On O] (3-31)

Here the n's are D-dimensional vectors with integer components
(lattice-vectors).

Without loss of generality, we may assume that K; = O (the diagonal
part may be absorbed in ).

If the coupling matrix, K;;, between different sites, has only non nega-
tive elements, the system is caled ferromagnetic. Consider now the
specid case of a nearest ferromagnetic coupling. On functions f, of
the lattice, K acts in the following way (use trandation invariance):

(Kf = 2. Kn-mim » (3-32)
with

0 for |n|>1 n=0,

= {K, ] = 1.
Therefore,
+r
K, = (Qn)™" j R(k) e qPk, (3-33)

with N '

N )
K(k) = 2K ) cosk;
<1
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The propagator in this theory has, according to (3-14), the form:
Go(k) = —[2K Y cos k;—h] ™, (3-39)

where h appears in the bilinear part of #;,

Near the origin of k-space, Go(k) agrees, up to a factor K~ *, with (3-18).
We will absorb this factor in the integration variable o. K, therefore,
appears as a multiplication factor o the h's in #; as wel as o the
source (/K with every o). The new propagator has the form

Golk) = - [2X cos ki~ h] ™",

where because o K ~ T~ h' is a linear function of the temperature.
For large wave-length (which are unaffected by the renormalization
group procedure o Sec. 2), the lattice propagator behaves as an eucli-
dean propagator

Gok) = [k2 + m3]™ 1, (3-35)
with m$ = linear function of T.

For reasons which become obvious in Sec. 5, it is important to know

that discrete lattice spin theories, as the Lenz-Ising model, can be

approximated by continuous "lattice fidds'. With

Z 0p Kyw 0w = 0Ko, ZJ,, o, = Jo, (3‘36)
n

n.n

we have .
ZiNJ} = C J‘ﬂ a2 -1)do, exp (% cKo + J’a)

n
N

= lim C,, Jn do, exp[—uo(1 —02)*] exp <~§- oKo + Ja)
n

(3-37)
Here, we used §(x> - 1) = lim (uo/m) exp[- uo(x* - 1)*]and C,. is the

up—> o

normalization factor of the fourth-degree polynomial theory:

Ho] = —% oKo ;uo(l —g?)?

_ K j&(k) [} 2cos k;] 6(- k) T polynomial.  (3-38)

< i
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This "approximation™ statement is, for our later discussions, more im-
portant than the statement that the Lenz-1sing model can be converted
(by Laplace transformation of the spin distribution) into a non-poly-
nomial model with a continuous range of the dynamical variable. Since
this last possibility plays a rolein various important papers on critical
phenomena??, we briefly discuss it in the following.

The use of
exp (—;— aKo) =g N2p-i? Jﬂ dps exp <*;¢K_1¢ * Gd))’ (3-%)

where N is the number o latticesand D = det K (notethat the factors
in front are independent o the external source and, therefore, may be
absorbed in C) in Eq. (3-36) leads to a linear o-dependence so that
the o-integration can be performed. The result is

Z,{Jp=C J [Tddnexp <«% $K~ 1¢>> exp[Y. In cosh(¢, + Ju)]-

(3-40)

Note that, in this description, the dependence on the source J isfairly
complicated. The correlation functions, at different lattice points, are
expectation values gztanh ¢, ie, for n # n;, one has

L

5T SJ = (tanh s, ...tanh¢,,). (3-41)

4. Wilson's Form of Renormalization Group Transformation

The qualitative idea of constructing renormalization group transfor-
mations, which "wipe out” the short-range fluctuation but retain
the long range fluctuation unmodified, can be quantitatively formu-
lated in different ways. All these different transformations should lead
to the same number of fixed points. The totality of composite operators
d various dimensions, around each fixed point, should be isomorphic
for corresponding fixed points of different renormalization group
transformations. With other words, different renormalization group
transformations are expected to lead to different "coordinate” des-
criptions o the intrinsically identical "fixed point physics" for corres-
ponding fixed points. A step towards a fixed point equivalence theorem,

347



in this sense, has been recently made by Wegner?®. We will return
to this point later on.

A particular renormalization group transformation, which implements
theidead elimination of short rangefluctuation, was given by Wilson'?.
It is most conveniently constructed by using the probabilisticlanguage
d euclidean fields, explained in the last section.

Let # be a A-cut-off Hainiltonian, written in terms of the fields ®{"),
within the periodic box L”. For notational convenience, we will sup-
press theiindex L as wel as the internal index i. We define a transfor-
med Hamiltonian 5" by:

4-1)

exp[-#' ~LPEy] = [dcb[% <k < A}e‘” ,
i B(k)~— asD(s,k)
A
db|— <k <A |= 'D(K"). 4-2
[s< <} whe, @ 2

The integration variables are the (discrete) ®(k’) within the "shel”
[%,A—l. After the integration, the necessary *'rescaling” of momenta

and O are performed. The additive contribution L’E,, in the exponent,
is just the value of the right hand side for O = O. In other words, we
want to define #” in such a way that it contains no constant (O-inde-
pendent) term. s is a Hamiltonian with cut-off A but it is written
in terms of fields ®(k) with a lesser number of k-values: since the shell
has been wiped out (the subsequent rescaling does not change the total
number of k-values), we have SP L? k-values. Writing #” in terms
- of interaction parameters h, one should keep in mind that the @ is
really a ®/9L, The subsequent “transition” to ®*), before repeating
the momentum-shell "wipe-out™, is the trivial extenson procedure of
Sec. 2. The L is superfluous if we view the renormalization group
transformation as a transition from the (infinite volume) probability
measure du = —é—e‘” d[®], in the space o the @’s, to the “rescaled
conditional measure':

dury = j du[@]
D)

in shell

@3)

D(k)~ 2,D(sk)
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Therescaling allowsto view the conditional measureagain asa measure
over the original probability space. Since our measures are aways
written in the exponential Hamiltonian form, we obtain a transfor-
mation in parameter-space

W ="Th, . 44

which only enjoys semi-group properties if the rescaling factor a,,
for s < O, fulfills:
Uy Oy = Ogr g, 1€, 0 = s~ 12 4-5)

Here, 5 is the quantity already introduced in Sec. 2.

Wilson’s renormalization group transformation (4-4) is still too com-
plicated for the explicjt determination of fixed points. Some simplifi-
cation is reached if one works with % T; |s=0 . Using this infinitesimal
version, Wegner and Houghton?* have shown how to find, by pertur-
bation theory in € = 4- D, the non-guassian fixed point which, using
adifferent method, was already studied before by Wilson and Fischer?>.
(The Wilson-Fischer method was restricted to first order perturbation
theory in g. For models, with N-component fields, one can also obtain
this non-gaussian fixed point by (1/N) expansions?®.

From a practical point of view, a simplified vérsion of the renormaliza-
tion group, the so called "approximate renormalization group trans-
formation™ of Wilson®'?, has been most useful. Here, the word “appro-
ximate" does not necessarily mean that the operator-properties around
the fixed points (i.e., their dimensions) are not correctly described.
It rather means that, in addition to the "wiping out” procedure for
large momenta fluctuations, some other more or less plausible sim-
plifying assumptions are made. In the present state of affairs, it is not
known how "far" we may deviate from the "orthodox™ formulation
(4-12), without wrecking the intrinsic physics o fixed points. In parti-
cular, it is not clear whether the " approximate renormalization group™
is an exact or approximate description of the intrinsic fixed point
physics. However, the perturbative e-expansions, of the exact and the
approximate R.G., are known to be different?”.

Let us consider the class of Landau Ginsberg Hamiltonians:

#=1 [ dPx (3, D) + J dPx P[O(0)], (4-6)
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where P is a local polynomial, resp., an infinite power series in ®(x)
(without constant terms). We imagine that we rescaled our momentum
space cut-off to be A = 1. We then decompose @(x) into a long range
fluctuation @, and a short range (rapidly varying) part:

D(x) = Dy(x) + D'(x), (4-7)
with
Do(x) = (27n)~ P2 I dk Dy e™, k| < b L (4-8)

Note that, in this consideration, we think in terms of square Brillouin
cut-off's instead of a rotationaly invariant cut-off. Imagine, now,
D(x) as being affiliated with a square lattice of lattice length b x.
The small wave length part, ®'(x), has the density (1/z)” —(1/bn)”, so
that we can formally relate the variable with a lattice of lattice dis-
tance a = n(1-b~P)" Y2, Therefore, a description of @ in terms of
real localized wave functions ¥(x), with an effective localization region
o size a, as expressed by the formula

D'(x) = ) OpF(x —xy),
with
f‘P(x ~ X)X = Xu) dPX = Oy . (4-10)

does not seem to be totaly unreasonable.

The gradient o such wave packets is expected to behave as
j 005~ 1) 0, (x — x) = B Oun

where p* is a mean vaue of momenta in the shell, ie.,

b~2<p*< 1l
With these assumptions we are able to separate the ®, and @' variables
inthegradient part of 22.The additional assumption isthat ®y(x) varies
dowly within one a-cell and that ¥ may be approximated, in half of
the cdll, by the constant a™?/? and, in the other half, by (- a~?%). Then,
J# has the form,

1 1 _ p
=1 j X[, O + 45 Y 07

F A @Y (P[Ouls) +a PP+ PL-L ) L)
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We are now able to perform the integration over the @,. With

b —2 Py —D+2
PH®) =-d°p*In jdy exp {_yz_%P[b~(D/2)+1 O + B%_’*)’:l

D

a
-5 Pl - ]} (4-12)

we obtain for the new Hamiltonian, in which the @ fluctuations have
been integrated out according to (4-1),

Hp = %J(au @)% dPx + J PH®(x)) dPx. (4-13)

It is again o the original form, only the local interaction, i.e., the cou-
pling constants in form o the »™ degree local polynomial,

P@) =Y hy % o, (4-14)
has changed.

Repeating this process many times, we arrive at a Hamiltonian 7«
which is again of the form (4-6), i.e., we obtain a recursion relation
for the T"h,. This relation may be studied for various classes of input
Hamiltonians on a computer. For example'?, in the class P(®) =
= r®? + 4®* (as input), one finds for a particular vaue o r, a con-
vergent sequence Pr-(®).

For analytic computation, one has to make further smplifyingassump-
tions. Neglecting all terms which contain higher powers than quadratic
terms in r and u, one easlly obtains:

Fnv1 = b2(rn + 3uy— Uty — qur%):
U1 = b* " Pun— qui).

A trivia solution is u* =0, r* = 0. This solution is unstable within
the above class, i.e., the s#* cannot be viewed as a point in a critical
surface (line!) within the two parametric (r, u)-space. One can show
that such a critical surface exists for D = 3, if one enlarges the class
to 6consist o three parameters r, u and v, by adding the interaction
v®°.

(4-15)

This Hamiltonian has been used by Riedel and Wegner for®* a des-
cription o the tricritical He®*— He* mixture. We will come back to
this problem in our field theoretica part. For D < 4, there exists
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another non-trivial solution o the quadratic approximation to the
recursion relation (4-15):

9

The neglect of terms higher than quadratic is only justified for small
E=4-D. For infinitessimal g, we obtain

(4-16)

u* = i.s Inb + 0@,

9
« elnb 2
r* = —3—(2;2':—-{)* + (9(8 ) (4-17)

This perturbative method does not tell us anyth ng directly for D = 3
and 2. For continuity reasons, it is plausible that the infinitesmally
established fixed point should not get lost. There is up to date, however,
no rigorous analytical derivation of non-canonical fixed points. The
perturbative method in lowest order can aso be used for the deter-
mination of eigenoperatoi-s O, and their dimensions.

5. Legendre Transforms and Re-Parametrizatioa

The Renormalization Group Transformation, of last Section, starts
from a physica Hamiltonian which is loca apart from a cut-off A.
The intermediate Hamiltonians are generaly non-local Hamiltonians
but the fixed point s#* is (as a scale-invariant Hamiltonian) again a
local one. One may, therefore, expect that methods o relativistic
local quantum field theory alow one to link the given local Hamil-
tonian in a more direct way with the scale invariant fixed point Ha-
miltonian, without leaving the set of local Hamiltonians. The interpo-
lation is done using Gell-Mann Low?® type of parametric differential
equations, which also have been called Renormalization Group equa-
tions. In order to avoid confusion, we will just smply talk about para-
metric differential-equations and, for reasons explained later, we will
call the fidd theoretical "renormalization procedure” a "'re-parame-
trization”. In order to develop these techniques, we need some more
definitions and formalism.

The generating functional for connected Green’s functionsis defined

Z{J} = expG{J}. (5-1)
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Generalizing the wellknown technique o Legendre transforms for re-
lating different thermodynamic potentials to functionals®?, one defines
a new "source" by:
' oG

The «/(x) is the field induced by the external source. In the language
o ferromagnetic systems, J(x) is the external magneticfidd and, .<#(x),
theinduced magnetization. The vertex functional (instatistical language, -
the "Helmholtz potential™) is defined by the Legendre transformation:

[N} = J&{(X) J(x) dPx - G{J}. (5-3)

Graphically this functional is known to generate 1-line irreducible

(called 1-particle irreducible in relativistic QFT) Feynman graphs. Re-
presenting the verte~functions:

5T |

0L (x1) ... 0 (x,)

— T, ... x) (5-4)

4=0

by

it follows, from (5-3), that the graphs representing G"™(x, ...x,) are
“trees” in terms of the 1-irr. graphs.

For the two-point function, one obtains, by insertion of (?T? into the

left hand side and functional differentiation with respect to J:
rr

JJ G(z)(x —X() F(Z)(x/, y/) G(Z)(y' _ y) dl)x/ dl)y/ — G(Z)(x *y),

e, re = [6¥]-1.

Note that with the minus sign in the Legendre transform, the lowest
order contribution to I'® will be identica to the positive coupling
constant g.

(5-5)

The introduction of the I'’s is helpful in problerns of re-parametriza-
tion. In a theory without symmetry-breaking, as the A* theory, the
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parameters u, and m, of the bare Hamiltonian are inconvenient for
the study of critical behaviour. Since the criticality can only be reached
if the inverse correlation length, i.e., the physical mass, goes to zero,
we will introduce a renormalized mass m. The introduction of a renor-
malized coupling constant also smplifies the discussion o criticality,
and it is of particular importance if we want to construct the scale
invariant #* theory as a limit of perturbatively constructed theories.

There are many possihilities for introducing convenient parameters.
Let us mention two of them:
"mass-shell" parameters:
I =0, (5-6a)
T@f e =1, (5-6b)
with s.p. u* given by pp; = 46, - 1)p?;
"intermediate” parameters:
[P, =m% (5-7a)
', =u (5-7b)

Besides re-parametrizing the theory, one aso finds it convenient to
change the normalization o the field:

Afx) = Z7 12 A(x). (5-8)

The Z-factor is fixed via normalization properties of the A, two-point
function:

a_azrm = 1, for scheme (5-6), (5-6¢)
p plz —m?2
0
jr(z) = 1, for scheme (5-7). (5-7¢)
6p p=0

Becaused the multiplicativechange (5-8), thetrarisitionfrom (mo, 15, A)
to (m,u,A) is usudly called "re-normalization”. However, the mere
change of normalization properties of the field should not be confused
with the (Wilson-) " Renormalization Group Transformation™ which is
amapping T obtained by eliminating long range fluctuations. For this
reason, we will deviate from the usua terminology of Q.F.T. and call
(56, 5-7), including (5-6c, 5-7¢c), a “re-parametrization”.

In order to have smooth transition for m— 0, of the massive corre-
lation function into mass-less functions, it is necessary to introduce
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a normalization spot x which is to be distinguished from the mass m
which enters the free Hamiltonian 5, (i.e., Feynman rules). Histori-
cdly, Gell-Mann and Low?® first introduced such a p via a norma-
fization spot in momentum space. However, for application of QFT
to critical behaviour, it is much more convenient to introduce p as
a "mass-normalization spot” and keep the momenta, as in (5-6), at
p = 0. This new normalization scheme leads to scaling equations in
which the "scaling mass*, m, plays the role o the temperature. We
will discuss this renormalization scheme in a separate section (Sec. 6).

Re-parametrizations are conveniently donein the Bogoljubov-Parasiuk
counter-term formalism*!. The Hamiltonian #, in the origina para-
metrization,

H = % f (a,l Ad, A + %éAZ + %A“) dPx, (5-10)
is written as
=Ko+ H o, (5-10)
with
= j 6 oA, 5#A,+m72z4r2> P (5-11)
and |
Hoin = J(% AF+ 5 A2+ %a# Ay A+ 4 A:‘) dPx. (5-12)

The a, b and ¢ counterterms are determined by the normalizations
(5-6, 5-7).

One first evaluates the Gell-Mann and Low formula for the correla-
tion functions:

.

C= <(DO €xXp [i— J\%im(z‘lo) dDX]

xy exp[ —I Hm (Ag) dnx} <I>0> . (5-13)

with

(I)o> , (5-14)
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and @, = free (euclidean) vacuum, A4, = free (euclidean) fidd with
mass m,

N N
X§ = H Aolxy), XV = ﬂ Alxy).
i=1 i=1
The Legendre-transform (5-3) leads to the I- functions which are re-
presented by one-line irreducible Feynman graphs. The Feynman
graphs are constructed from the massive propagator DT'IW and the

u, a b, c-interaction vertices. The normalization conditions (5-6), in
terms of graphs, read (we restrict our discussion to the intermediate
re-parametrization):

AN

e = {pz +m? 4+ a+bp” + } 0 m?,  (5-15a)
p=0 p=
s T® =i +b a } — 1, (5-15b)
14 “lp=0 | J |p=0

3 b

r(4) =du+c+ 11'!’. 1‘ = 0.) (5-15C)
p=0 J Ip=0

the dash () indicating the omission of the no-loop contribution.

AN
indicates the set of all graphs which start with one u-in-

teraction vertex and end on one line. Written in terms of operators:

= 37 (420 Ap)™™. (5-16)

Analogoudly, we have:

/N
@ = T))u_' {<Ar3(0) /Tr(pZ) Zr(p3))gr(p4)>pmp —ZE€ro Order} :

(5-17)
Pz P3 PL.—
356



We obtain implicit (since higher order graphs contain in turn these
counterterms) formulas for a, b and c in terms o higher order graphs.
By an explicit low order computation, the reader may convince him-
of that the determinant condition for the perturbative solubility in
terms of a= Y a,u", etc., is fulfilled.

The intuitively plausible formulas may be put on a more solid mathe-
matical basis by introducing composite fields via a Gell-Mann and

Low formula:
<A§'(x) X(N)> = i <(I)0 o(x) X%N) €xXp I:_ J‘%im(AO) de:I (Do>~ (5-18)

ThIS may be easly generalized to arbitrary composite fields. The
“proper* functions ( »*™P are 1-line irreducible with respect to XN
lines. They are defined via Legendre transformations of the corres-
ponding generating functionals (for brevity we omit from now on the

index r on the fields):

G anlx, J) = Z—l— j CAYX) A(xr) . . AG) e J(x1) - . I Cm) X1 - .. Ao,

(5-20)

T p(x, o) = Z J(A A YPP o (x1). .. L (Xp)dXy o d Xy
They are related according to

G.a(x,J) = Tpulx, o), (5-21)

where the connection between d and J is given by (5-2).

The relations (5-15) can be formally derived by a Legendre transfor-
mation o the fidd eguations for the correlation functions (3-20).

All manipulations are to be done for finite euclidean cut-off A (resp.
finite lattice distance). Our re-parametrization of correlation functions,
involving the basicfield only, already assuresthe finitenessfor A — co.
This is particularly easy to see for the A* couplingin D =3 and 2
If we write the interaction part 5 ;,(4o), (5-12), as a Wick-product
o freefields (wesaw in Sec. 3 that thisamounts to a trivial re-parame-
trization), then, for D = 2, there are no divergent Feynman graphs.
For D = 3, one finds terms which are logarithmically divergent for
A — 0. These terms appear in the bare mass m,. However, these
terms are dropping out if one applies the usual Dyson momentum-
space Taylor operator. The important point is that, in this situation,
we have no overlapping divergencies. The proof of finiteness, for A — o,
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o 4-dimensional correlation functions, normalized according to (5-6)or
(5-7),is more complicated: the reason is the occurrence of overlapping

divergencies. Here, the Bogoliubov-Parasiuk-Hepp*! method leads to
the desired result. The intermediate re-parametrization (5-7) is par-
ticularly simple to deal with in the BPH- renormalization. In order
to construct a composite field 42, which stays finite for A — co, one
makes the following Ansatz:

N[A%](x) = Z(4?) : A*x) :

Z(A? is to be determined from the interrriediate normalization
condition:

GN[A%0) A(py) Alp2))" P |p=c = 1. (5-21)
For the definition of a (A — o) —finite A* corposite field we write

N[A¥](x) = Z(4%) : A%x) : + Z(A*, (0A)?) : (DA(x)) -
+ Z(A%, A0 A)  A(x) 2A(x) : + Z(A* A?) A%%) . (5.22)

The normalizations are:

21 ONLA*10) A Apa))>lpi=o = 1, (5-23)
(N[A*](0) 9A(p1) GAP2))"" |pi=0 = 0, (5-23b)
(N [A4](0) Alpy) 62:4(172)2pmplp5=0 =0, (5-23¢)

(N[A*](0) A(p,) A(p))"™® = 0. (5-23d)

The symbol N stands for "normal product” which is a generalization
o the Wick-product. The proof o finiteness of

(N[A7]) X and (N [A4*](x) X7

can be given in the BPH-framework. The generalization to the cons-
truction of normal products N[¢](x) of more complicated fiedd mo-
nomials O is straightforward: write N[¢](x) as a superposition of all
(Wick-products) monomials in A and derivatives of A which have
the same transformation properties (including discrete symmetries)
as 0 and whose canonical dimension is not bigger than that of O. This
general Ansatz is only necessary for renormalizable couplings, e.g.,
A%interaction in D = 4.

Zimmermann®2 showed that one can avoid counter-terms and Z-fac-
tors which diverge in the limit A — oo, by giving directly a prescrip-
tion for the re-parametrized correlation functions respectively the
composite fields N[@]. The Zimmermann formula is:
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(XM = F.P.{® | X§" exp[~ # in(Ao)] | Do) 0. (5-24)

The ® indicates the omission o "vacuum bubbles” (i.e., divison by
Cin (5-13)).Thefinite part operation, F.P., is defined in termsof Taylor-
operators acting on the Feynman integrand and converting it into an
absolute convergent expression. The counter-terms in ¢, are now
finite in the limit A — co. In particular, for the intermediate re-para-
metrization, there are no counter-terms. The Zimmermann F.P. ope-
ration may be generalized to the definition o normal products. We
will not discuss this formulation any further, since our main interest
here will be the field theoretical description of superrenormalizable
couplings(e.g., A* in 2 and 3 dimensions) in which overlapping diver-
gencies are absent. For a proof of the existence of the A - oo limit,
in the case of a three dimensional 4% coupling, this formalism would
be useful.

The change o parameters 1s particularly important for the discussion
o symmetry-breakings in the “spontaneously broken limit". As an
illustration, consider a two-component scalar model with @, symmetry
which is broken by a linear term:

1
=5 (0u
The re-parametrization (my, uo, h) — (m, u, h), (wherethe h = 0 part of
A is treated as before),is not such a good procedure. The dependence
in h, around h =0, is expected to be non-analytic since the Goldstone
behaviour contradicts the existence of a power seriesin h. The necessa-
ry re-parametrization is the transition from the fidd h to the magne-
tization {A(x)) it induces. The technique is the "loopwise resumma-
tion”*3, whichwe briefly sketch in thefollowing. Denoting thegenerating
functional o the connected correlation functions, for the symmetric
h = 0 theory, by G,{J}, the generating functional of (5-25)is obtained
by shifting the source. With h = (0, h), we have:

G{J} = G/{J + h} - G,h). (5-26)
The Legendre transformation

H) = (0, AT + T A + 0 (A2 +hAs(). (529

I} = J () I(x)d°x - G{I}, o = %,

leads to
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with

At
F=0P. =30 - (5-28)

The "loopwise summation™ of the I'~functions leads to a new pertur-
bation theory in which the new "zero order" Feynman propagators
o A, and 4, have different masses m; and m,. As the new parame-
2 2
ters, one may usem,; , m, and u ~ Ma - .Recently, one has been able
2
to reexpress this rather involved techhi guein terms of a re-parametri-
zation formalism which may be directly formulated in terms of #
(Ref. 34). The main idea is to make the trandation

A=A+F, (A)=F, (5-29)
directly in s#:
1 n m% ~ m% ~ u =
+ g5!157-*2-42 + (h+ Fmd) 4, + counter terms.  (5-30)
Here,
 F2 2 :
mi =P+ e and i =md T, (5-31)
are taken as new parameters. Since

one can either take u(F ~ u™Y2) or F(u ~ F~2) as the third parameter.
" Perturbation theory" will be a power series decomposition in powers

o u, resp., % The coefficient of the linear terin is determined via a
Gell-Mann and Low formula, by the requirement
(A) =o. (5-33)

The most important point is now the following. If we choose the coun-
ter-term structure in (5-30) to be what we obtain by the trandation
applied to the a b and c counter-terms of (5-12) and if, in addition,
we do not Wick-order # i, , then all of the classical relations (i.e., those
obtained by formal manipulations) are fulfilled in the quantized theo-
ry*3. In particular the Ward-Takahashi identities for the correlation
functions are valid.
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The most convenient normalization conditions, which are consistent
with the "translated counter-term structure, are:

T, _om w0 =mi, (5-34a)
e =1, (5-34b)
ap p=0,m-mi=0

IO, omm=0 = u. (5-34c)

In terms of Taylor-operations, the u-parametrization leads to the " soft
guantization scheme" of Gomes, Lowenstein and Zimmermann?®*. The
main point is that the Taylor-operations do not only act on external
momenta o subgraphs, but also on certain parameters. A detailed dis-
cussion of these interesting and recent developmentsin quantum field
theory would go beyond the main purpose of the review. This method
applied to 4-dimensional theories allowsto discussspontaneous symme-
try breaking in perturbation theory. For D < 4, the spontaneous limit
m; — 0(h — 0) generates infrared-divergencies which increase irr in-
creasing perturbation order. Therefore, the difficulties in dealing with
1<t order phase transitions, corresponding to continously broken sym-
metries, are similar to the infrared problems one encountersin studying
critical behaviour. For the latter case, we develop a non-perturbative
discussion based on certain (non-perturbative) properties of parame-
tric differential equations. Similar ideas may be applied to phase tran-
sitions o first order and we will return to this problem in a future
publication.

The main reason why re-parametrizations are so useful in the discussion
o phase transitions is that they allow a very simple description of
what happens under scale changesx — Ax. To compensate such a scale
change, by a change of physical parameters, leads, in genera, to com-
plicated and therefore useless transformation proprerties. Therefore,
one should aways attempt to change the (accidental) parameters, in
terms of which & is given, to "intrinsic" parameters in terms of which
physical properties (in our case, properties near the critical point) are
smple. This remark sets the stage for the discussionin the next section.

6. Derivation of Scaling Equations

According to a hypothesis of Wegner*?, the discussion of infinitesimal
variations, around a fixed point s#*, can be strengthened by assuming
the existence of global scaling fields. Wegner's arguments, which we
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presented in Sec. 2, are, basicaly, consistency ai-guments. So, it is de-
sirable to see how close one can come to derive this hypothesisin the
more restricted but, at the same time more manageable, framework of
(euclidean) local quantum field theory. For the correlation functions

(X) = G™(x, ---xN|gl PR

N
with (X) =[] #(x), the scaling field hypothesis leads to the global
1

Kadanoff scaling law:
G(N)(xl v legl g2 .. .)=lNd¢G(N)(/lx1 v /IXN ‘ }vylgl , /ﬂlyzgz .. .), (6'1)
which is equivalent to the foIIowing parametric differential equation:

{me A y ZJ’z gi ) }G(N) _"Nd G(N) (6"2)

For reasons of simplicity, we have assumed that we are in a situation
where there are no logarithmic modifications of these relations. In the
following, we will show that, by a suitable parametrization of the
(two-parametric) A* theory, via normalizatiori conditions, we can
obtain the scaling equations®$

{Z Xip Zy 25-1)m 57707 + /30‘2} GM = —(dy + N,3)- G, (6-3)

where ﬁ and y depend only on g, whereas 6 has the representation3®

1
0 = d1(g) + W(Sz(g)- (6-4)

Here, u is @ parameter which enters only via certain normalization
conditions, i.e., it is not an intrinsic physical parameter of the theory.
The meaning of the symbols is the following: dN = can. dim. of GV
in mass units, y, = "would be” anomalous dimension of ¢, 26, = 74" =
= "would be" anomalous dimension of ¢?2.

Furthermore, J, is not independent since we have the relation
51 + 52 = 'Vq) . (6-5)
D 2
2
+ 74 and dy2 = D - 2+ 42 are the operator dimensions in a theory

for which the coupling constant g is equal to a zero (“eigenvaue™)
of the functions f(g).
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The global scaling law, following from (6-3) by the method of charac-
teristics®®, is

GM(xy ...xy [mig) = A~V a Mg, H GV xy ... 27 xy| MG (6-6)
with g defined by

g
1
Ind=| »—dg 6-7
" f By Y (6-72)
and
g
alg, 2) = expf %dg’, (6-7b)
g
d _ _ _
T = 28:G) - 1] + 22 5:(0),
ie.,
g g g
m? = p? { dg/éTZ'exp ( 01 -1 dg" + m?exp 0, -1 dg. (6-7¢)
g p Jg ﬁ g ﬁ

The reader who is not familiar with the method of characteristics may
easily verify that

3.9 (right hand side of (6-6))= 0
is just the differential equation (6-3)with g and m replaced by g and m.

In the case of existence of a zero g, with

Blg)=0 —and o=p4)>0
Eq. (6-6) yields the (zero magnetic field) Kadanoff scaling law inclu-
ding the "w-corrections":
- Nlig’+l&/~:ﬂ_]‘+ :|,
G(N)(Xl e XN | mlg) =3 - s
. (6-8)
g+ g-g) 4+ )

i >> 1 and the form of the asymptotic effective-mass results from the
second part of (6-7c) which, for 6, = d{g.) < 1, is dominating in the
limit £ — 0.

Slg—g)
N . \ ) _|+(S(+*J',jt7 L+
GV Xy A7 xy [ m2 @ T

Interpreting the “scaling mass® m as a quantity proportional to

T;I;Tc, Eq. (6-8) is the Kadanoff scaling law with the critical in-

dices (i;1 Kadanoff's terminology)

T =

363



D-2 1
X¢=d¢=*‘—“+7}¢, Xz=2(1‘51):7, =29, y=0Q2-nv.

2
(6-9)

The interpretation of m ~ 7 will be a necessary consequence of our
derivation.

For the derivation of the parametric differential equation, we start
from the Hamiltonian
% = %O + %1 s

1
Ho =3 OHF + hmt 7, (6-10)

1 b 1 1 ¢
Hy = grud* + 5 C0P + 5 arm? § + a7 + 4 6%
Instead of u and ¢, we prefer to work with dimensionless parameters:

4-D PN 4—-D
u=4mu g, C = C,

where 4 is the already mentioned renormalization spot which enters
the theory via renormalization conditions:

T, _o mep = 15, (6-11a)
51‘%1"(2) =0, m= = 1, (6-11b)
ST oo = 1, (6-110)

I |peo mmp = gu*™? = u. (6-11d)

Choosing the couinter-terms, a, , a,, b and c, iridependent of m, the
four eguations (6-11a)-(6-11d) will lead to their recursive perturbative
determination. With the understanding that the interaction in (6-10)

is either Wick-ordered : : (absenceof _ ()  loops) or "triple dot

ordered" : : (absenceof @ , as well), we obtain for D = 3 the

wellknown logarithmic dependence of a, on A, ie., a, ~ y? In”%,

whereas «;, b and ¢ approach already a finite limit. For D = 2, all
counter-terms will stay finite for A — . In case of D = 4, we have
a quadratic divergence in a, whereas a, , b and ¢ remain logarithmic
divergent. In this particular case, it would have been simpler to have,
instead of (6-11a), the normalization33

T, o eu = 0. (6-12)
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For D < 4, this normalization is known to introduce infrared-diver-
gences into the correlation functions®*®. Comparing the above Hamil-
tonian (6-10) with its unrenormalized form:

H = 0G0 + 3 B3y DR B3+ gruo 9, (6-130)

we obtain, with ¢ = 712 ¢, and the requirement that m— O implies
mo — 0 (with dm§ remaining # O), the identifications:

1+ -a +c

224 emi=2, go=Y77" (613b)
Note that mj = m3 — dm isthe true' bare mass'. The statistical mecha-
nics origin of the Hamiltonian (Sec. 3) tells us that m~has a T-depen-
dence. On the other hand, m{ is just the difference between the bare
mass and its "critical vaue"

Z=1+b mi=m

md = mb_mb., Omd=mi. (6-14)
Therefore, m§ and hence n? are proportional to t = Z%E. From
the form of the Lagrangian (6-10), we obtain immediately:
d 1
(X)) =-5 1t a) f<¢2(x> X) dPx. (6415)

Writing ¢2(x) = Z;(¢?)p(x), with an m-independent renormalization
factor z,, which is determined by the normalization condition

T D, ~p;0|m 1, g) lp=om=n = -1, (6-16)
we obtain, for the Legendre-transformed version o (6-15),

0
FZ L1 py ;0 |m,u,g) = -T®Yp,...py;0|m, p,9) (6-17)

That the constants on the right hand side combine to one, is most
easily seen from (6-16), with (6-11c).We cal, (6-17), the inhomogeneous
parametric differential equation. The homogeneous equation has a
more tricky derivation. Consider the unrenormalized vertex function
't which are obtained by Feynman rulesbased on the form of (6-13a),
ie., the mass in the propagator is m§. The I'ys do depend naturally
on m§, u, and A. But they also have a u-dependence through dm2,
(6-13b) Hence,

0 0 omi
2 Ny — 9,2 0 N.1)
aﬂz mﬂ,uo,/\r% B 2:” < a# ) r% (pl"'pN’O,m09ﬂ’uO)~

mo, g, A
(6-18)
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Rewriting this statement, in terms of the renormalized I'’s:
™ = ZN2 T, WD = ZVN27Z 7, To(N,1),
and changing the parameters to m ¢ and A, we obtain:

{2;1 86 +2 6m? —;—T + ﬁ@g_NW’} ™ =0 (6-19)

with
g2 (6-20a)
aﬂ mo,Uo, A
Yo = 1 951—“72— , (6-200)
u mQo,Uu0, A
0 = 51 + Wéz', (6'20C)
2 2
_ K Om i
R R (6-20d)
2
5, = ~a—§% zZ7,. (6-20¢)

For D = 3 and 4, one has to demonstrate that, in addition, to the
renormalized vertex-function, also the g, y and 6 approach a finite
limit for A — co. Thisis most concisely done with the help o the' Nor-
mal Product Algorithm™ which we described briefly in Sec. 5. For the
derivation of the parametric differentia Egs. (6-17), (6-19), soldly on
the basis of normal products, we refer to Ref. 35.

The generalized Kadanoff scaling law (6-6), in order to be useful for
the description of critical phenomena, has to be supplemented by the
statement that the G's, resp., I'’s, have "zero mass” limits m— 0. In
our treatment, the existence of this limit as well as the interpretation
of m=0 as zero mass, i.e.,

T®|,_, 280 (6-21)

is inexorably linked with the assumption that £ has a long distance
zero g,. The vertex scaling eguation, corresponding to (6-6), can be
read directly off from (6-19):

d—2
T™(p; ... Apx ;0| m, u,gA) = 2 P~ N7
A
a " T® (m —.pn ;0 p, !7,7)' (6-22)
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We obtain, for small A, an effective cut off which is driven towards
infinity. In the differential equation,

(2) afod). ) m (o)

have a dependence on the cut-off whichislost in the limit of the effec-
tive cut-off approaching infinity (i.e., the limit for small 1). Hence, by
setting A = oo from the outset, we have a euclidean version of a local
cut-off independent quantum field theory which correctly describes
the asymptotic behaviour. The argument, that the next to leading
behaviour, in which « as well as the derivatives y,, &, enter, is ill
A-independent, is more involved and will not be given here. Let us
from now on set A = oo and omit it as an argument of T.

The above scaling law (6-20) leads, for p; = Q in the presence o a
"long distance eigenvaue” g;, to

2
), : moq (M \Ndy—D :
I™0...0;0|m,u,9) (W>2(5c—1)r 0...0;0| M, 1, g.),

(6-23)

with computable corrections. This equation tells us, in particular, that
m— 0 (for 6. < 1) is equivalent to zero mass (6.21).1f the limit m — O
could be performed for finite (nonexceptional) momenta p; . .. py , then
we conclude from (6-22) that the zero mass functions T™(Ap; ... 2py ;
(Ow, g) will approach, for A — oo, those of a canonica (free field)
theory since g — O. However, for R — 0, the same vertex functions will
approach a noncanonical scale-invariant limit with dim¢ =d,;. A
dight generdization of these considerations to IT'™", which we will
discuss more explicitly later on, leads to

dim ¢*> = D—2 + 25, .

The important remaining problem is therefore the existence of the
m-> O limit for the vertex functions. In order to discuss this, we need
the integrated inhomogeneous differential equation:

l—‘(N)(pl ..-DN 901m7.u'7g) = F(N)(pl '-~pN;0’M,ng);

- ™Yy ...px; 0|, u,g)dm'® (6-24)

For N > 2, the first term on the right hand side approaches zero for
M — oo (for N = 2 this only happens for the derivativeégz ' The
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scaling law o the integrand in (6-24) follows from the differentia
equation for I'™-1:

{2“20“27 + 2w 5l + 5%_NW - ')’qu} o =,

The derivation of this equation parallels (6-18)-(6-20e). The only diffe-
rence is that the renormalized T™-1 in terms of I'Y™! has in addition
a (Z z,) factor whose p-derivative gives rise to the y,:contribution.

From the normalization (6-16), one obtains:

0
2(5# 1) mza—mz‘ F(Z,l) ip=0,m=u = (2%1)‘ ’y¢,2) re.n !pZO,m=u

Comparison with the differentiated equation,

m?
0 Jour 0 4 2om?- 2y 4 gL _2ylro —0,
e amr TP p=om=u

which, in view of the normalization condition (6-11a) and due to (6-17)
for N =2, leads to

”2(5— 1) mZ %1"(2,1) ‘pzo’m:‘u + 25] —2'))4,2 = 0,
finaly yieds:

201 = Y42 (6-25)
The global scaling behaviour, obtained from (6-19), is
TV, ... py ;0,1 g) = inND';g”/eXﬂr%dg“
Js
.a—Nr(N,1)<p71 P01 g ) (6-26)
It is convenient to perform a change of variables:
-y epo[ 101 4ot am® = 21 5,y m? 4=t di.,

For . — o, the coupling constant approaches zero and the right hand
side can be estimated in lowest order perturbation theory. This yields
the convergence o the integrand at the upper integration limit. For
small 4, the integrand is

~ 2PN N D <%1—%ﬂ 20| 1, g>dﬂ~. (6-27)
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So we are facing a large momentum problem, at a coupling constant
which is practically g,. Here we follow an idea by Symanzik*® and
use the operator short-distance expansion to determine the leading
part:

F‘”’l’(i—l..fﬁ ;0|u,u,g) = F(N”’O’(%l--.gf ;0,0 ;Olu,y,é)-
‘T@200;00] 1, g) + non leading terms. (6-28)

The homogeneous equation for T™*29 ig

0 , 0 D-2 (N+2,0) _

0
(6-29)
The asymptotic contribution from the second term may be estimated
according to

0
m2a_mz_l“(N+2,0)(p1 -+« DPn 907090 ( m, U, g) lm=u

= -2 T 200, . py 0,050 1, 1, g) (6-30)

~ 2T py o A, 0,0;0| w1, 9) T32(0,0;0,0| 4, 11, 9), (6-31)
with

2(6 - 1) > T>2(0,0;0,0| p, 1, g) = 24 - 25, , (6-31)

which follows from taking the p-derivative of the normalization con-
dition (6-16):

o - 0
0= 2% 5 g T ey = =20 - ) 2 5 oy TP ey 29 + 20,

We finally obtain:

0 0 D-2
{_Zpiugl‘);“251+2V¢+ﬁb§+D—(N+2)T—(N+2))’¢ '™ =0
(6-32)
Therefore, the integrand (6-27) behaves, for A — Q as
g
~ l”_“eXPQJ %Idg"l“‘”’”’(pi w00 ). (6-33)

g
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The condition for convergence is
D—4 + 26, > -1
or, with 51 = Ye2 '))¢2(gc) >1+e

The inequalities (6-34) and y,. are consstency requirements on the
dimensions of 2.
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