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The theory of Moriyafor the temperature dependence of the exchange narrowed-hyperfine
broadened NMR linewidths in paramagnetsis reformulated so as to include the effects of
short rangeorder. A comparison is made between the present work and the Hubbard cor-
relation function theory, as wdl as with our own experiments on the F° NMR in MnF,
and KMnF; in the paramagneticregion. In both instances the resultsare most satisfactory.

A teoriade Moriyasobre a dependéncia com a temperaturada largurade linhaNMR alar-
gada por interacdo hiperfina e estreitada por interagdo de troca é reformulada de maneiraa
incluir os efeitos da ordem de curto acance. Os resultadosobtidos sdo comparados com os
da teoria da funcéo de correlagdio de Hubbard bem como com nossos resultadosexperimen-
tais de NMR do F'® em MnF, e KMnF; na fase paramagnética. Em ambos os casos se

obtém boa concordancia

1. Introduction

In three basic papers!-?, Moriya laid the groundwork for much o our
understanding o the relaxation and linewidth phenomena encountered
in nuclear magnetic resonance (NMR) o magnetic insulators, both above
and below the ordering temperature T. (Ref. 4). There have been a suc-
cesson o refinements and developments o  his theories® and extensive
comparisons made with experimental results’.
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Briefly summarized, the Situation with respect to theory and experirnent
is as follows:

1) Bdow T;, where the excitations of the spin sysem are well defined (Spin
waves), the observe. linewidths’ and relaxation rates® are now in excellent
agreement with the spin wave scattering theory predictions,

ii) At temperature T > T, the magnitude of the observed widths® cor-
respond reasonably wel to the high temperature correlation function
theoretical predictions!?;

iii) In theimmediatevicinity of T; ie, (| . — T| < T), the critical-like
“divergent behavior o the relaxation rates and linewidths, observed!! and
predicted®, are in qualitativeaccord. However, the measured temperature
dependence to the NMR linewidths through most o the paramagnetic
region has been given limited theoretical attention and henceisonly qua-
litatively understood. Since the form of the interactions between the
nuclear mmoment and the electronic magnetization are wel known, it is
clear that the problemsin the intermediate temperatureregion are a direct
consequence O the theoretical difficulties experienced in treating the spin
dynamics o a many-bodied sysem in the paramagnetic regime.

It isour intent here to provide an extenson d the theory originally deve-
loped by Moriya for treating the critical region, in which we now include .
the effects of short range order. To do so we uitilize the concept of the
"reaction field”*>!* to calculate the dynarnic susceptibility. The theory
of Mori and Kawasaki'# is employed to obtain the time evolution of the
spin correlationfunctions. In thisregard our work representsa refinernent
over the treatment of Maarschall's, who first recognized the importance
o the reaction fidd to the linewidth problem, but made a crude approxi-
mation for the spin dynamics.

As an applicationdf the theory, we compare our experirnents on the line-
width of the F'* NMR in MnF, and KMnF; with the extended theory.
The resultingimproved agreement between theory and experiment indicates
the importance of pair correlations in determining relaxation rates and
linewidths of nuclel in paramagnets.

Finally, we are able to make a favorablecomparison between our reaction
field-corrected Moriya theory and Hubbard's more sophisticated, but
also more complex and less transparent, caculation of the dynamic beha-
vior of the spin-correlation functions.
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2. Summary of Moriya's Linewidth Theory

In this section we give a brief summary of those parts of Moriyas theory
o theNMR linewidth that are relevant to calculationsin the paramagnetic
phase. The broadening of NMR lines has its origin in the interactions
between the nucleus and itsenvironment. These interactionsmay be clas:
sified in the following three categories:

1) Hyperfine and eectronic dipolar interactions (nuclear spin-electron
spin) modulated by the exchange and other interactions between the
electron spins and by the lattice vibrations'-2,

2) Indirect nuclear spin interaction via the hyperfine interaction'®!7:3,

3) Nuclear dipole-dipole interaction and other mechanismsin which the
electron spin does not take part'®.

Since theintent of this paper is to explore the effect that short range order
has on the spin dynamics of a paramagnet as manifest in its contributions
to the NMR linewidth and relaxation rates, we will confine oursgves to
the first category given above. Then the Hamiltonian describing interac-
tions between the resonant nucleus and neighboring magnetic ions can
be written in the form

H, =Y LF.S; (1)
=3

characterized by the interaction tensors (F;, to be specified in each par-
ticular ces2 In terms of these, the nuclear spin-lattice relaxation rate
1/T; is given immediately by the Fermi Golden Rule as

Lot [Ches o T
2. o L
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where w, is the nuclear resonance frequency, v and v are summed over
x, yandz, 64 ='4A — (A), () denotesan equilibrium thermal average,
and {AB} = (ABt BA)/2. The Fourier transform just providesthe usual
energy-conserving é-function (in thiscaseinitial and final electronic states
differ by theenergy w, associated with a nuclear spin flip) and the remaining
factors are the squares of the appropriate matrix dements of H, . Only
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F* and F" appear in H,,, with the operators I* and I’ which can flip a
nuclear spin, transfering energy to the lattice, and F therefore does not
appear in Eq. (2) for 1/T;.

The nuclear lineshape I(w) can aso be expressed in terms of the electron
spin correlation functions appearing in Eq. (2). As I(w) gives absorption
o energy by the nuclel from an electromagnetic field of frequency w, it is
essentialy the imaginary part of the transverse nuclear magnetic suscepti-
bility at frequency w, related in turn by the fluctuati on-dissipationtheorem

to the nuclear spin correlation function J dt <I*()’T(0)) exp (icot). Here

the tilde indicates that the time dependence of T*(z) is governed by the
full Hamiltonian, including H; ,. If this latter dependence is treated in
the interaction picture, then, within an approximation on the character
d the dectronic spin fluctuations vaid under rather general conditions,
one can write I{w) in the form

N~

I(w) = Jdt exp [ilw — wolt — ¥(1)], 3)
where

t

‘\y(t)=h“2[ -1 Y ¥
. a3

iy

{Fjv F;[v’ + % eiwor %

4

X (F5 Ty (FF - iF}’Y')}((GSﬁ(T)és}?(O)}% @)

where the time dependence of the operators S(t) is now governed by a
Hamiltonian without H;,. The corrections to Eq. (4)involve cumulant
averages of higher order (than second) in H,,.

The cdculation o 1/7; and of I(w) has then been essentially reduced to
the determination of various electronic two-spin correlation functions.
The expressions (2) and (4) are vdid in both magnetically ordered and
paramagnetic phases. We will be concerned here only with the latter case
and we can therefore replace 4S; by S; in all expressions.

If the electron spin correlation functions decay sufficiently rapidly, we can
characterize I(w) by a single parameter, the transverse relaxation time 75.
First, we specify the decay rate in terms of a correlation time t., defined as
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. = J di ({830 SIS0 5)

0

The vaues of time t important in Eq. (3) are of the order of A™!, where
A isthelinewidth d I(w), whereasthe irnportant vaues o 7 in Eq. (4) are
of theorder of 7.. Thus, when 7, < A™*, = may beneglected in thefactor
(t—7) o Ea. (4)and the upper limit of T integration extended to oo for all t
o interest. This approximation gives ‘¥(t) linear in t:

Y ~ t/T
or
IO I70)) oc e, (6)

where the second form results from the above association of I(w) with the
transverse nuclear susceptibility. Then I(w) is the Fourier transform of
exp (—t/T7), ie, a Lorentzian of width A = 1/7,. At short times t ~
~ 1, € T,, the approximation giving the exponential of Eq. (6) breaks
down; correspondingly,the Lorentzian for I(w) iscut of at largeo, o >
A = 1/T;. Since the frequency moments of I(w) are finite, whereas those
moments diverge for a Lorentzian, the cutoff is essentid, but the results
are relatively insengtive to its precise form.

Having demonstrated the essentia role played in the calculation of both
nuclear spin-lattice relaxation rates and NMR linewidths by eectronic
twospin correlation functions, we devote the remainder of this section
to a discusson o these functions. It is convenient to work with the col-
lective spin operators

S = N"12 Z Sj exp (|QR]) (7)

and the corresponding correlation functions {{S}(z)S*,}> (all others,
{S,S,> with d # —q, vanish by translationa invariance of the lattice).
We can conveniently separate the thermodynamic and dynamic features
o the behavior of these functions by rewriting them in terms of the cor-
responding "relaxation functions”, defined by

B
(A(r), BO) = J di {A(t — i%) B0)), ®)

6

where B = (kgT)~!. This is simply related to the ordinary correlation
function!® by
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e €4 BOY = 5 hoo coth (o) (40, BO ©)

TS

where the subscript on the last term denotes the Fourier transform of that
relaxation function at frequency o. The function (A(t), B(0))., describes
the response in a sysem o the observable A to an external field coupled
'to B at frequency w, that relation just being a staternent of the fluctuation-
_-dissipation theorem. In particular,for thespin operator of interest here,we
have the static wavevector dependent susceptibility x(g) given as

Xwlg) = (S3(0), $*,(0)). (10)

For a magnetically isotropic sysem y,.(q) = o, t{g), an approximation
we will use, consistent with the choice of a Heisenberg Hamiltonian to
describe interactions between the electronic spins  Furthermore for the
frequencies (0 = wy) and temperatures (7> T,) of interest in the present
work, we can take coth (fhw/2) ~ 2/(Bhw), so that we can write

U530 S200}) = ks T S1), Y

(S3(1), S240)
§:0), 5.,0) 12)

where

f =

Thus the thermodynamic variation of the correlation functions have been
isolated primarily in thefactor Ti(g); thenormalized function f,(¢) expresses
essentidly the dynamical features, and now one can make suitable sepa-
rate approximations for these two factors.

For x(g) Moriya uses the Weiss molecular field approximation (MFA)

X
wg) ~ T—m 13)

where y,, the "bare" susceptibility per atom (ie., the susceptibility of a
non-interacting spin), is given by the Curie law

Yo = BS(S T 13, (14)
The exchange interactions between spins are described by

J@) = 3. Jiy ep [iq.R; - Ry}, (15)



wherethe J;; are the standard exchange constantsdf a Heisenberg Hamil-
tonian

1
HH=_7ZJJ]SS (16)
JJ

For thedynamical function f(t), Moriyamakes use o a technique suggested
by Mori and Kawasaki'*. Theideaistowrite f,(t) in termsdf therelaxation
function of the torques $,(1):

S =1~ f dr (t—7) (S§(0), S OY(S50), S, 0), (17)

a mathernatical identity since £,{0) = 1 and £,(0) = Q" If the correlation
between torques decays much faster than that between spins, ie., if the
important timesin Eq. (17) for which (S%(t), $2 ,0)) |sappreC|abIeare much
smaller than the characteristictimest for which J4t) islarge, then Eq. (17)
can be approximated by

J40) = f0) exp (—T'g), (18)
with

r,= f dt (550), $7 JO)/(S50), 5%40) (19)

o

where the argument follows precisdly the same lines as that leading to
Eq. (6). That thisis the case for smdl g followsfrom the fact that for the
pure Heisenberg Hamiltonian S for g = 0 is a conserved quantity, which
therefore never decays, and by continuity f(t) decays dowly for small g,
whereasthere is no such conservation law for S,. In generd, for larger g,
thereisno smilar disparity in decay times. However in the critical region
(T-T)/T. {1, where Moriya originally applied this theory to nuclear
rel axatlon3 the approximation can be justified as follows. The suscepti-
bility x(q) diverges at T; for q = Ko, and this implies particularly large
amplitude fluctuations for q ~ K, and |T—T;|/T.{1. At the same
time, there is critical dowing down o these fluctuations, and both effects
imply a dominant contribution from wave vectors q near K, to the low
frequency fluctuations which determine 7; and 7,. Agan, no smilar
dowing down is expected®® for the torques S,(t) near q= Ko, and the
torque correlation functions will therefore decay much more rapidly than
f4(t) for these dominantly important values of g. For other values of q
and of T, we make use o the fact that we require only f(w) for @ = 0 to
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determine T; and T,. Since f(t = 0) is by definition normalized to unity,
Jdw ~ 0) isset by thedecay rated f,(t), whether that functionisexponential
(asin Eq. (18))or not. From Eq. (17), we see that the decay rate is appro-
ximately given by Eq. (19), whether or not S,(r) decays much faster than

S4t) (note: it never decays dower than S,(t)). Therefore, we continue to
use the result (19) for all g and all temperatures®!. Because of the integral
natureof therelation(19), theonly important featuredt thetimedependence
of (S4(1), $% ,(0)) which entersis the characteristicdecay time of that function.

Snceadf (Sq(t), $ -40) = Qat t = Q wechoose thesimple parameterization

(1), $2 (0)/(S3(0), 5%40) ~ exp (—1%/)), (20)

giving T, in terms of the parameter ¢, as

I'y= 7 1, (S50), SZ,0)/(S0), SZ,0)). (21)

|

Asbefore, the resultsare not highly sensitiveto the Gaussianformof Eq. (20),
which effectively implies a Gaussian cutoff to the Lorentzian Fourier trans-
form o ft), at frequencies o ~ ;*

By usng the identity

(H, A], B) = {[B, A]), 2
We can express (Sz, §7,) in terms of (S, S7.,) = y(q). Thisleadsto the form

T, = [7"7 1, ks Th 2 /@) N7* ; (k) — Jik+ g)] 2(k). (23)

With the Gaussian assumption (Eg. (20)) one can evaluate 7, in terms of
the second and fourth moments of the torque relaxation function. The
necessary numerica calculations have been carried out by Reiter?* for
the simple cubic.lattice. He finds that z, ~ h/JS is nearly independent of
both g and T (maximum deviationsdf about + 10%,, from a constant value)
for the antiferromagnet, but that there is substartially greater variation
in theferromagnet, particularly below a temperatured 27;. Wewill follow
Moriya in taking 7, = constant. Although this would appear to be a
rather poor approximationfor the ferromagnet, we show in thefina section
that for that case one nevertheless obtains resultsin quite good agreement
with a more sophisticated theory due to Hubbard?®. First, however, we
consider corrections due to short range order to the MFA for y(g), the
other mgjor approximation of the theory.
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3. Short Range Order. The Onsager Correction to x(q)

The MFA gives an increasingly inappropriate estimate o x(q) as the tem-
perature approaches T;, where the short range order o the ionic spins
playsan important role. AsMaarschall has pointed out'?, one can include
these effectsapproximately in the study of NMR linewidthswithin amodi-
fied mean fidd theory which takes into account the Onsager Reaction
Field!?. The central ideaisthat the part of the locd field acting on agiven
spin, which arises from the surrounding polarization due to the instan-
taneous orientation of the spin in question, should not be included in the
effective orienting field. That polarization smply follows the motion of
the spin in question and thus does not favor one orientation over another.
Thisisashort rangeorder effect which the MFA does not take into account.

Infact, asiswell known, the MFA isnot self-consistent, in that for-exchange
coupled spinsat sitesland j it replaces{S;.S;) byS,.{S;>=0for T> T,
whereas the same correlation function as obtained directly from the MFA
susceptibility

(8.8, ~ Y. g exp [ig. (-],

does not vanish. As Brout and Thomas have pointed out!?, a suitable
choice o (temperature dependent) Onsager reaction fiedd A(T) restores
the sdf-conastency. Thus, subtracting A(T) from the simple molecular
fidd J(g), we find for the susceptibility

X
) = T =) &9

and we require, by the definition of x(g) in terms of the relaxation function
(ie., by the fluctuation-dissipation theorem),

B
N1 g = N~1 3 (S50), $240) = J dA {S5(=i2) 540,

N='Y J(g) xg) = z J50 (S30), 530, (25)

wherej isagain asite index. 1n amean fidd theory, S5 commutes with the

effective Hamiltonian, and S*(—i4) can be replaced by S7, so that (S3, S7) ~
~ B{S; Si), Re. 24. Then, Eq. (25) can be written as
N™' Y Alg) = BSTP) = PSS+ 1)3 = 16
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N7 Y J@) x@) = BY. Jio <S50) 550))- (26)

From the definition (24), we have that
N7 Y [t + AT) - J@] 2@} =1
which, combined with Eq. (26), gives the requirement

iD= 75 BT T 510 510) = T, XFIED )

and we see that A(T) takes the form implied by the physical considerations
discussed in the first paragraph o this section.

The Onsager correction, as one would expect, leads to an improved pre-
diction of the magnetic critical temperature, 7;. Defining T; as the highest
temperatureat which y(q) diverges for some wave vector g, we have imme-
diaely from Eq. (24)

Xo— 1(’12) = J(Ko) - A‘(Tc")a (28)

where K, identifies the wave vector for which the instability,and resulting
magnetic ordering below 7, occurs. In particular, K, = O for the fer-
romagnet. In the MFA, where A = O, we find the Smple result

ks T(= J(K,) S(SH1)3 (29)

and we will sometimesfind it convenient to expressour resultsin termsof
this quantity. Thus we write

19 TT
o - S= TRy 30

where s = [1+ y, AT)]T/T: Now the self-consistency requirement (26),

(T/T?:)J g Q)3 [s — QUK = 1, 1)

implicitly relates s and the temperature 7. In particular, s(7;) = 1, and
s(T) > 1 for T> T.. Furthermore, the integra

Gs) = (2m)~° f d’q [s — J@)JK)]™ (32)
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has been numerically tabulated® for the smple cubic, bec, and fec lattices.

The relation (31) between s and T,
Gls) =T¢ /T, (33)

is readily solved numericaly for these lattices. Then the susceptibility
x(g) 1S given immediately by Eq. (30). It will be shown bdow that this
approach substantially improves the agreement between theory and expe-
riment for the F*°* NMR linewidth in MnF, and KMnF,, as compared
with the MFA.

The relaxation rate I’y is related by Eq. (23) to x(g), given in our approxi-
mation by Eq. (30). We can write I'; in a particularly smple form in the
common case where each spin is appreciably exchange coupled only to a
single set.of crystallographically equivalent spins (e.g., only to its nearest
neighbors). Then it is readily shown that the sum in Eq. (23) can be written

N7 % [J() — J(k+q)] (k) = N~* [1 = J(@)/J (O] ; J(k) x(k)
= [1 = J@/J©O)] x, AT), (34)

where the last equality follows directly from Egs. (26) and (27). Then we
have

-2 S8+ D[ Jg) | A
Iy=n"1h 3 |:1 J(O)] ) (35)

In thisform our result is readily compared with the expresson used by
Maarschall and others: I', ~ const./x(q). Thelatter has been particularly
useful?® in the discussion of critical phenomena. If AT) is dowly varying
for T~ T, (areasonableexpectation; short rangeorder variescontinuously
through the critical point) and if the critical behavior is dominated by a
small range of q near K, # 0, then this form and Eq. (35) will give very
smilar results. But Eq. (35) also correctly includes the long wavelength
behavior: T’y = 0 gnce $*(g=Q is a conserved quantity. Thismay be of
relatively smal importance in three dimensions, where the phase space
at small g, a factor ¢?dq in integrals, removes the divergence of 1/T", which
enters the expression for the linewidth; for example, see Eq. (41). In less
than three dimensions, however, the small g behavior can play a dominant
role in resonance behavior?’, and the approximation T, = const./x(q)
may no longer be ussful, even in the critical region. Of course, Eq. (35)is
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also unsatisfactory in this case and must be suitably modified to remove
the ¢ = O divergences in physicd integrals above T= T.. Even in three
dimensions the k-dependent factor [ 1 — J(g)/J(0)] in Eq. (35) is o impor-
tance outside the critical region. The find factor AT) in Eqg. (35) dso
includes temperature dependence not found in the simpler approximation,
which may beimportant if oneis considering awide range of temperatures
above T..

Finally, for explicit calculationswe can rewrite Eq. (35) once more, substi-

tuting for x(g) and A7) (see Eq. (30) and following line) their vaues as
functions o s:

T,=n'21h 2 JK) ks T l:s - J{g))} [1 - j((g)l] [sf - 1} - (36)

4. The NMR Linewidth

The interaction between the nucleus and the eectronic spins is generaly
characterized by asymmetric tensor F;; seeEq. (1). Wecan chooseasaco-
ordinate system the principal axes of this tensor, such that

F¥ = 6,, A (37)

In what follows we assume that all tensors F; have the same principal axes
and that the gpplied field H, isparalel to oned them. Of course, themore
genera cased non-collinear fields and principa axes may beeasily obtained
by convenient transformations of the coordinates.

From Eq. (6), the linewidth A = 1/T; ~ lim [W(z)/c], which is given ex-
plicitly by Eq. (4). We takethe form (37)for F;, make use of the symmetry

{850 S30)}) = {SH) S3O)}) (38)
and recognize that {{S}(z) $7(0)}» is independent of v = X, y, z, to obtain

A=N"1h? j 'y [AZ(q)i2 + %e"‘”‘” (4@ + 2@ |
° (S50 SZLO0D, (39)

where o
Ag) =3 APt (40)
Jj
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When we substitute for the correlation function, in Eq. (39), its value as
given by Egs. (11) and (18) and perfonn the integral over 7, neglecting the
small nuclear resonance frequency w, as compared to I',. thereis findly
obtained for the linewidth

A = kg Th 2 N1 Z A(‘]i_z X(q), 41)

where

1

[A@)” = [#@f + 5 (4@ + |4@)] 42)

and x(g) and T', are given by Egs. (30) and (36), respectively.

In Appendix A, we consider the asymptotic behavior o the linewidth at
high temperatures and make comparison with more familiar forms for A
in the T'= oo limit.

5. The F° Linewidth in MnF, and KMnF,
A. Theory

In this Section, we use the theory presented above to obtain the tempe-
rature dependencies o the F'® NMR linewidth in MnF, and KMnF3,
and compare them with the experimental results.

KMnF; has the Perovskite structure with the Mn spins forming a s.c.
lattice in the paramagnetic phase with near neighbor exchange, whereas
MnF, has theRutile(TiO,) structure with Mn spins on a body centered
tetragonal lattice. The primary exchange interaction in MnF, is between
next-near-neighbors. The crystal structures and F*° local environrnents
are shown in Fig. 1. For MnF,, there are three neighboring Mn spins to
each F. Mn(I) and Mn(I'), which belong to the same magnetic sublattice
in the ordered state, are coupled by the same transferred hyperfine inte-
raction tensor A, to a given F nucleus, while Mn(II) belongsto the other
sublattlg_g and}_l)as a different hyperfine interaction with the same nucleus
— ie., Ay # A;. In KMnF3, there is an identica hyperfine coupllng A
of a F nucleus to the two symmetric Mn spins. The exchange couplings
are also indicated in the figure. For MnF,, |[J| < |J|. The hyperfine
constantsfor both MnF, and KMnF; are given in Table I. In KMnF;,
the hyperfine tensor is diagonal with principal axes coinciding with the
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- (0) (b)
"Fig. 1 — Unit cells for rutile(a) and cubic perovskite (b) structures. The local environment
“of aF'? nucleus is shown below with hyperfineand exchangeinteractions indicated explicitly.

cubic lattice vectors. In MnF,, the off-diagond dement A, is small and
will be neglected since it entersonly to thesecond power in all caculations.

A** AY» A% A¥
Site I° 11.81 15.57 17.83 44
MnF3 !
Site II 1344 2334 129
KMnF% 16.09 16.09 1660 ———

Table | — Vauesof the transferred hyperfineinteraction constants in MnF, and KMnFs;.
Units are 107% ¢m™ !

(@ A. M. Clogston, J. P. Gordon, V. Jaccarino, M. Peter and L. R Walker, Phys. Rev. 117,
1222 (1960).

(b) R. G. Shulmann and K. Knox, Phys. Rev.119, 94 (1960).

) The definitions of the cartesian axesin ref. a) are such that there is a #/2 rotation about
the z axis when changing from Mn(I) to Mn(II).
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Substituting the values R; for the positions of the Mn ions into Eq. (40),
we obtain for KMnF;

| A%()|* = 24" (1 + cos k.a), (43a)
and for MnF,
|44 (k)| = 20487 + (48)* + 248 cos 21 -
+ 477 A% cos (c+~3os [, (43b)
where

1 1 1
éz_z—akx, 'I=Taky, C':TCkz

and a, c are lattice constants.

Substituting the hyperfine constants from Table | into Eqgs. (42) and (43),
we fid in units of 1078 cm™2, for KMnF,
|A(R)[? = 534 (L + cos k) (44a)
and
|A(k)[> = 500 [3.09 + 2.04 cos 2(+ 393 cos ((+n) cos {],  (44b)

for MnF,. It is interesting to note that Eq. (44b) is nearly the same result
that would be obtained if A¥ = A¥f, ie.

[A(k)|> = const. [3+2 cos2{+4 cos (¢+1n) cos {].
This result is coincidental.

For the final evaluation of Eq. (41), it is necessary tO know the function
J(k)/J(0).

The substitution of the lattice positions of the magneticionsinto Eq. (15)
leads to the results

Jk 1 _
7% =7 (cos k.a + cos kya +:cos k,a) (45a)
for KMnF;, and
Jo _ [ 4 J
JO) — [4J+J/—l cos & cos 1 cos { + [—‘_4,]4-,]'] cos 2( (45b)
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for MnF,. The first term on the right hand side of (45b) is the dominant
one and we shall henceforth neglect J' altogether. We note that we can
then continue to use Eq. (34) for MnF, as wdl as for KMnF3. In each
cax J(K,) = —J().

Theevauationd the linewidth for the smple cubic caseis straighfonvard
once Eq. (41) is expressed in terrns of the tabulated integrals in Eq. (32)
and their derivatives. First, as usual, the sum over k in Eq. (41) s replaced
by a triple integral over k-space. After substituting from Egs. (30), (36),
(44a) and (41), we find an expressiondf the form given by Hessand Hunt?®
for KMnF,:

A _ G + Gs)] (14972 + (s—1) (0G(s)/ds) (1+9)7*

A, 6[sG(s) — 1] [2G(0) — 1] (46)

We compute the linewidth only relative to its vdue at infinite temperature.

The evauation of Eq. (41) for the MnF, structure is somewhat more com-
plex. Usng the vaue d x(g) given in Eq. (30) and obtaining for each tem-
perature the correspondingvaue o s viathe prescriptiongiven by Eq. (33),
we obtain an integral o the form

"+nd§ dndl [c; + ¢, cos 20 + ¢5 cos (€ i- ) cos 4 @7

1 Ty R B R )
where ¢y, ¢,, and ¢3 are the coefficients in EQ. (44b) and y = — cos & cosy
cos {. Thedetailsd theevaluation o thisintegral aregiven in Appendix B.
It is important to note that the Onsager correction appears in these cal-
culationsonly in thefunctiona dependence of thevariable s on temperature.
Also, thisis the only way in which temperature appears. Thus, insofar as
linewidth calculationsare concerned, the Onsager correction is equivalent
to a nonlinear rescaling of the temperature, the: correction being most
sgnificant in the immediate vicinity of 7.

B. Experiment

Experiments were carried out on conventiona crossed-coil cw. NMR
spectrometers operating at 15.6 mHz and 60mHz. No frequency depen-
dente to the NMR linewidths was observed. Single crystal sarnpleswere
shaped to approximate elipsoids o revolution to minimize demagnetizing
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field corrections. Temperature was regulated to within 1°K using a hea
ted strearn of cold N, gas. Linewidths reported are the separation in fied
units between the extrema o a derivative resonancessignal. All resonances
have the Lorentzian shape, characteristic of exchange-narrowed hyperfine
broadened profiles*°.

Due to the anisotropy o the hyperfine interaction in both KMnF; and
MnF,, there are magneticaly inequivaent fluorine Stes for arbitrary
crysta orientationsreative to the external field. For the data given here
the samples were oriented as follows. MnF, was postioned such that
the external field H, was pardld to the crystal ¢ axis (seeFig. 1) where.all
sites are equivalent and a single resonance line is observed, KMnF; was
positioned with H, along a cubic axis and two separately resolved reso-
nancesresult. The resonance studied was the one for which Hy, is directed
perpendicular to the Mn-F bond direction. Actual data was taken up to
600K. An experimenta vaue o Ar-,, was then obtained by plotting
A(T)vs1/Tand extrapolatingto T= o ashasbeendoneinhigh temperature
expansionsd thelinewidth®. In thismanner weobtain AH ,,(00),y 1 F=
= 226 Cg and AH, (o), o = 446 Qe .
2

1ol
KMnF3

osf . ¢
E
= 06}
N
E —— MFA WITH OC
9 04k

- -~ MFA WITHOUT OG.
02k
1 I3 ] 1

A 0 20 30 1,70 30
Te (EXP) Te
1 1 1 1 1 1
883 1330 200 300 400 500
T(°K) '

Fig. 2— Temperature dependence of F'° NMR linewidth in KMnF; relative to "infinite
temperature”" value (seetext). Calculated linewidth ratios from the Moriya theory with (solid
line) and without (dashed line) Onsager corrections are shown.
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In Figures 2 and 3, we compare experimental lineviidthswith calculations
from Egs. (50) and (51). Thelinewidthin the cubic casedoes not divergeat
the Néd temperature. The critical fluctuationsat q = K, correspond to
antiparallel dignment of the two neighboringM n spinsto agivenF nucleus,
so the amplitude of the corresponding hyperiine iidd vanishes by sym-
metry®®. It is apparent that the Moriya theory, with or without Onsager
corrections, yields semi-quantitative agreement with experiment for the
two systems studied. However, for both MnF, and KMnF3, the Onsager
corrections provide improved agreement with expcriment, particularly in
the vicinity o the ordering temperature. The lack of agreement, in scale,
at high temperature, may be attributed either to the extrapolation proce-
dure for obtaining (AH),, or to the fact that the hyperfine interaction is
noticeably temperaturedependent above 300 — 600K, necessitatingappro-
priate correctionsto be made to AH,  Thisiscurrently being investigated
in our laboratory.

J J 70 T(0.C) T(Exp)
MnF, —1.76° + 032 85.9 61.7 67.3¢
KMnF, 38 0 1330 8738 88.3¢

Table II. Computed vaues for the antiferromagnetic transition temperature are shown for
the uncorrected MFA (T?) and with Onsager corrections (7,(0.C.)). Calculations are based

upon the exchange constants (J, J') given. Experimentally determined valuesdf T; are shown
for comparison. All quantities given in degrees Kelvin.

a) C. Trapp and J. W. Stout, Phys. Rev. Letters 10, 157 (1963).

b) S. J Pickart, M. F. Collins, and C. G. Windsor, J. Appl. Phys. 37, 1054 (1966).
©) P. Heller, Phys. Rev. 146, 403 (1966).

d) G. L. Witt and A. M. Portis, Phys. Rev. 135, A1616 (1964).

Short range order effects substantially modify the predicted vaues o the
critical temperatures. The vaues for T, with Onsager corrections (OC),
obtained from Eq. (33) are T(0.C.) = 066 T? fo: drnple cubic systems
(e.g, KMnF3) and T,(0.C.) = 0.72 T for the body centered structures(e.g.,
MnF,). The former vadue is in good agreement with a Green's function
calculation in the random phase approximation made by Lines®®. 772 is
computed from known valuesdf the exchange constants (givenin Tablell)
and Eqg. (29). In computing 77 for MnF,, a correction due to the small
near-neighbor ferromagnetic exchange coupling is taken into account.
The various theoretica transition temperatures are compared with expe-
rimental onesin Tablell. It isseen that the T(0.C.) agreeswdl with T.(Exp.),
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Fig. 3— Temperature dependence of F'® NMR linewidth in MnF,. Moriya theory linewidths
with (solid line) and without (dashed line) Onsager corrections are shown. The inset shows
details of the minimum linewidth region where normalization made to the minimum linewidth
rather than to the “infinite temperature” linewidth.
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Fig. 4 — Comparison ismade between the temperature and wave-vector dependence of T,
the spin correlation function decay constant of the present theory and the closely related
quantity & that appears in Hubbard's numericai calculations?®. All results here are for the
simple cubic ferromagnet with nearest neighbor exchange interactions. Details are given in
the text.
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particularly for the cubic sysem. Apparently theri: is a tendency for the
OC. theory to slightly underestimate T;, wheress the uncorrected MFA
serioudy overestimates T..

6. Comparison with Hubbard's Correlation Function Theory

It is possble to make limited comparison betweeri our analytical results
and other more recerit theoretical work on the dynamica behavior o the

spincorrelation function of the Heisenberg systems in the paramagnetic
phase??:23:31.32 " Since these latter resulfs for the correlation function

involve non-linear integro-differential equations, they are somewhat
difficult to compare directly with our theory. However, we can immedia-
tely compare our numerica results for I'y with the corresponding quan-
tities caculated by Hubbard?® for the simple cubic ferromagnet.

Hubbard's results are given in terms of the quantity
Fw) = 2 j filt) cos wt dt. (48) -
0

Using Eq. (18), we obtain

5 2
Fi(0) = T, “9)
Hubbard points out that the shapesdf the curves I*(w) are such that, to a
reasonably good approximation,

T

F0) ~ 35, (50)

whered;, is the haf-widthof Fi(w) at hdf height. Inthediscussionfollow:az
Eg. (18), in fact, we have interpreted I'; in thissomewhat generalized sense,
recognizing that the exponential form is not valid for all k at all tempe-
ratures. From Egs. (49) and (50), it follows that

Ty oc 6. (51)

In Fig. 4a, we have re-drawn Hubbard's calculated valuesof &, for the case
o a simple cubic ferromagnet. The spherical model temperature scale is
used because, as is shown by Brout and Thomas'?, it is equivalent to the
Onsager Corrected MFA to second order in the reaction fidd. Fig. 4b
representsI', asgiven by Eq. (36) with 7, taken to be constant. Thequantity
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T, is normalized in such a way that
I [k=(1/2, 0, 0); T= 0] = J.

The components o k are written in units of 2rn/a, where a is the lattice
congtant. Thereasonably good agreement between Figs. 4aand 4b provide
a heurigticjudtificationfor the approximation of taking t, to be a constant.
Unfortunately,a numerical calculationof Hubbard's theory for the antifer-
romagnet is not available. We might expect, however, that reasonably
good agreement between his results and our I', would result in that case
aswel. We have pointed out above that calculationsby Reiter®? suggest
that the replacement of 7, by a constant is a better approximation in that
case than it is for the ferromagnet.

Appendix A

It is of some interest to examine the high temperature behavior of certain of the formulae
given in the text, with the view in mind of obtaining an estimate for the torque correlation
decay time in this limit. For example,as T— oo, xg) — 70 = XS+ 1)/3kzT and Eq. (41)
becomes

1 e |4
Ay = SE+) AN 1; r

IZ

(A-1)

For the important case of a nucleusdf an ion interactingonly with the spin moment of the
same ion (e.g., Mn®® in MnF;) then |A(g)|> = 42, independent of g, and (A-1) reduces to

Ay, = A? b2 % SS+D)NT Y T (A-2)
q

In this T— oo limit, the low order moments of the line profile I(w) have been calculated
exactly. With any reasonable assumption (e.g., a suitably truncated L orentzian) on the form
o I(w), these results imply!®

Ao =C A2 LSS+ Dor, @)

where w? = 2z(J/h)* S(S+1)/3 is the square of the "exchange frequency™ and C is a constant
of order unity whose precise vaue depends on the detail sof the assumed form of I(w). Then
we can make the identification
NLY T = o, (T — o0). (A4)
4

The T — oc limit f T, — or even thefact that the finitelimit exists, asimplied by (A-4) — 1s
not immediately transparent in the form (36)for IT',. High temperatureexpansion of Eqs. (32)
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and (33), for a lattice with nearest neighbor antiferromagnetic exchange, gives
s x (T/TY (14271 (TeYTY], (A-5)

where z is the number of nearest neighbors. The second term in brackets is the lowest order
correction to MFA due to short range order. It is clearly essential to keep this correction
for the last factor of Eq. (36) even in the T— oc limit. Then

I =

2 of [1 - QO (T— ) A9

0| —

Since
N™UY [ = J@o] ™t = G(D) (A-7)

is @ number of order unity, we have from (A-4) and (A-6) that 7w, ~ 1. This is consistent
with the view that the torque correlation functions decay in atime ¢ of the order of the mi-
croscopic exchangetimeto, 1, rather than alonger time associated with some collectivemotion.

Appendix B
The integral Eq. (47) can be decomposed by partial fractions into integrals of the form:

dédndl 1 ! dédndf 1

I THATET Ty 2 = X IDRTITY

en) Y

dédn dl cos®

Qn? (s+75)?

13= ]4=

dE dy d¢ cos®(
@mp s+
Integral 1, is just G(s) (see Eq. (32))and integral I, is its derivative G'(s). Tabulated values
for G(s) are available?®. Integral |, can be transformed into one which is more convenient
for numerica integration by using the symmetry properties of the integrand and performing
the integral over { analyticaly. The result is

A dc_dn ,
PR s + (s> — cos? & cos? )2
0

Similarly, one gets

sin? ¢ dn d¢
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