
Revista Brasileira de Física, Vol. 4, N.' 2, 1974 

Short Range Order Effects on NMR Linewidths in 
Paramagnets* 

C. SCHERER, and J. E. GULLEY ' 
Physics Department, UCSB, Santa Barbara, C A  93106, U.S.A. 

DANIEL HONE 
Physics Department, UCSB and Laboraroire de Pliysique des Solides**, Université, Paris-Sid 
91405 Orsay, France 

V. JACCARINO 
Physics Departrnent, UCSB arul Institict hue-Langevin,B.P. 156,38042 Grenoble Cedex, France 
and Laboratoire de Spectrométrie Physiqire**; U.S.M.G. 38041 Grenoble Cedex, France 

Recebido em 15 de Maio de 1974 

The theory of Moriya for the temperature dependence of the exchange narrowed-hyperfine 
broadened NMR linewidths in paramagnets is reformulated so as to include the effects of 
short range order. A comparison is made between the present work and the Hubbard cor- 
relation function theory, as well as with our own experiments on the F19 NMR in MnF, 
and KMnF3 in the paramagnetic region. In both instances the results are most satisfactory. 

A teoria de Moriya sobre a dependência com a temperatura da largura de linha NMR alar- 
gada por interação hiperfina e estreitada por interação de troca é reformulada de maneira a 
incluir os efeitos da ordem de curto alcance. Os resultados obtidos são comparados com  os 
da teoria da função de correlação de Hubbard bem como com nossos resultados experimen- 
tais de NMR do F19 em MnF2 e KMnF3 na fase paramagnética. Em ambos os casos se 
obtém boa concordância. 

1. Introduction 

In three basic p a p e r ~ ' ~ ~ ~ ~ ,  Moriya laid the groundwork for much of our 
understanding of the relaxation and linewidth phenomena encountered 
in nuclear magnetic resonance (NMR) of magnetic insulators, both above 
and below the ordering temperature T, (Ref. 4). There have been a suc- 
cession of refinements and developments of his theories5 and extensive 
comparisons made with experimental results6. 
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Briefly swnmarized, the situation with respect to theory and experirnent 
is as follows: 

i) Below T,, where the excitations of the spin system are well defined (spin 
waves), the observe. linewidths7 and relaxation ratess are now in excellent 
agreement with the spin wave scattering theory predictions; 

ii) At temperature T %  T,, the magnitude of the observed widths9 cor- 
respond reaGonably well to the high temperature correlation function 
theoretical predictiond0 ; 

iii) In the immediate vicinity of T, i.e., (I  T, - TI < T,), the critical-like 
-. 

divergent behavior of the relaxation rates and linewidths, observedl and 
predicted3, are in qualitative accord. However, the measured temperature 
dependente to the NMR linewidths through most of the paramagnetic 
region has been given limited theoretical attention and hence is only qua- 
litatively understood. Since the form of the interactions between the 
nuclear nioment and the electronic magnetization are well known, it is 
clear that the problems in the intermediate temperature region are a direct 
consequence of the theoretical diffículties experienced in treating the spin 
dynamics of a many-bodied system in the paramagnetic regime. 

It is our intent here to provide an extension of the theory originally deve- 
loped by Moriya for treating the critica1 region, in which we now include , 

the effects of short range order. To do so we utilize the concept of the 
"reaction f~eld"~'.'~ to calculate the dynarnic susceptibility. The theory 
of Mori and Kawasaki14 is employed to obtain the time evolution of the 
spin correlation functions. In this regard our work represents a refinernent 
over the treatment of Maarschall15, who first recognized the importance 
of the reaction field to the linewidth problem, but made a crude approxi- 
mation for the spin dynamics. 

As an application of the theory, we compare our experirnents on the line- 
width of the F19 NMR in MnF2 and KMnF3 with the extended theory. 
The resulting improved agreement between theory and experiment indicates 
the importance of pair correlations in determining relaxation rates and 
linewidths of nuclei in paramagnets. , 

Finally, we are able to make a favorable comparison between our reaction 
field-corrected Moriya theory and Hubbard's more sophisticated, but 
also more complex and less transparent, calculation of the dynamic beha- 
vior of the spincorrelation functions. 



2. Summary of Moriya's Liewidth Theory ' 

In this section we give a brief summary of those parts of Moriya's theory 
of the NMR linewidth that are relevant to calculations in the paramagnetic 
phase. The broadening of Nh4R lines has its origin in the interactions 
between the nucleus and its environment. These interactions may be elas; 
sified in the following three categories: 

1) Hyperfine and electronic dipolar interactions (nuclear spin-electron 
spin) modulated by the exchange and other interactions between the 
electron spins and by the lattice vibrationsl>', 

2) Indirect nuclear spin interaction via the hyperííme in te ra~t ion '~~ '~ ,~ ,  

3) Nuclear dipoledipole interaction and other mechanisms in which the 
electron spin does not take part18. 

Since the intent of this paper is to explore the effect that short range order 
has on the spin dynamics of a paramagnet as manifest in its contributions 
to the NMR linewidth and relaxation rates, we will confíne ourselves to 
the first category given above. Then the Hamiltonian describing interac- 
tions between the resonant nucleus and neighboring magnetic ions can 
be written in the form 

characterized by the interaction tensors x, to be specified in each par- 
ticular case. In terms of these, the nuclear spin-lattice relaxation rate 
1/K is given irnmediately by the Fermi Golden Rule as 

where o, is the nuclear resonance frequency, v and v' are summed over 
x, y and z,  6A ' A  - (A), ( ) denotes an equilibrium thermal average, 
and (-ÃB) = (AB + BA)/2. The Fourier transform just provides the usual 
energyanserving b-function (in this case initial and final electronic states 
differ by the energy o, associated with a nuclear spin flip) and the remaining 
factors are the squares of the appropriate matrix elements of Hlnt. Only 



Fxv and FYv appear in H,,, with the operators I" and IY which can flip a 
nuclear spin, transfering energy to the lattice, and Fzv therefore does not 
appear in Eq. (2) for l/Tl. 

The nuclear lineshape I (o )  can also be expressed in terms of the electron 
spin correlation functions appearing in Eq. (2). As I (o )  gives absorption 
of energy by the nuclei from an electromagnetic field of frequency w, it is 
essentially the imaginary part of the transverse nuclear magnetic suscepti- 
bility at frequency co, related in turn by the fluctuation-dissipation theorem 

to the nuclear spin correlation function dt (I"+(t)'f-(O)) exp (icot). Here S 
the tilde indicates that the time dependence of T f ( t )  is governed by the 
full Hamiltonian, including H;,, . If this latter dependence is treated in 
the interaction picture, then, within an approximation on the character 
of the electronic spin fluctuations valid under rather general conditions, 
one can write I (o )  in the form 

w 

where 

x (Fj"" + i FJ") ( ~ 7 " '  - i F?''') ( (6  q(z) 6 s~": (O) ) )  , (4) i 
where the time dependence of the operators S(t)  is now governed by a 
Hamiltonian without H,,. The corrections to Eq. (4) involve cumulant 
averages of higher order (than second) in Hint. 

The calculation of 1/z and of I(w) has then been essentially reduced to 
the determination of various electroníc two-spin correlation functions. 
The expressions (2) and (4) are valid in both magnetically ordered and 
paramagnetic phases. We will be concerned here only with the latter case 
and we can therefore replace 6Sj by Sj  in a11 expressions. 

If the electron spin correlation functions decay sufiiciently rapidly, we can 
characterize I(co) by a single parameter, the transverse relaxation time &. 
First, we specify the decay rate in terms of a correlation time z,, defmed as 



The values of time t important in Eq. (3) are of the order of A-', where 
A is the linewidth of I(o), whereas the irnportant values of z in Eq. (4) are 
of the order of z,. Thus, when z, < A- z may be neglected in the factor 
(t -7) of E ~ .  (4) and the upper l h i t  of z integration extended to co for a11 t 
of interest. This approximation gives Y(t) linear in t: 

where the second form results from the above association of I(@) with the 
transverse nuclear susceptibility. Then I(co) is the Fourier transform of 
exp (-t/Tz), i.e., a Lorentzian of width A = 11%. At short times t - - z, T2, the approximation giving the exponential of Eq. (6) breaks 
down; correspondingly, the Lorentzian for I(w) is cut off at large o ,  o % 
A = 11%. Since the frequency moments of I(o) are íinite, whereas those - 
moments diverge %r a Lorentzian, the cutoff is essential, but the results 
are relatively insensitive to its precise form. 

Having demonstrated the essential role played in the calculation of both 
nuclear spin-lattice relaxation rates and NMR linewidths by electronic 
twospin correlation functions, we devote the remainder of this section 
to a discussion of these functions. It is convenient to work with the col- 
lective spin operators 

S, = N-ll' 1 Sj exp (iq .Rj) 
j 

and the corresponding correlation functions ({Si(t)S"!,)) (a11 others, 
(S,S,.) with q' # -q, vanish by translational invariance of the lattice). 
We can conveniently separate the thermodynamic and dynamic features 
of the behavior of these functions by rewriting them in terms of the cor- 
responding "relaxation functions", deíined by 

where p = ( k B q P 1 .  This is simply related to the ordinary correlation 
function19 by 
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J dt eimt ( ~ ( t )  B(O)) = $ h o  coth $ h / Z )  (A@), B(O)Im (9) 

where the subscript on the last t em denotes the Fourier transform of that 
relaxation function at frequency o. The function (A(t), B(O)), describes 
the response in a system of the observable A to an. externa1 field coupled 
to B a t  frequency a, that relation just being a staternent of the fluctuation- 

:-dissipation theorem. In particular, for the spin operator of interest here, we 
have the static wavevector dependent susceptibility ~ ( q )  given as 

For a magnetically isotropic system xV,.(q) = ;c(q), an approximation 
we will use, consistent with the choice of a Heisenberg Hamiltonian to 
describe interactions between the electronic spins Furthermore for the 
frequencies ( o  = oo) and temperatures (T> T,) of interest in the present 
work, we can take coth (Ptio/2) N 2/$hc9), so that we can write 

Thus the thermodynamic variation of the correlation functions have been 
isolated primarily in the factor Tx(q); the normalized functionf,(t) expresses 
essentially the dynamical features, and now one ciin make suitable sepa- 
rate approximations for these two factos. 

For ~ ( q )  Moriya uses the Weiss molecular field approximation (MFA) 

(13) 

where x,,, the "bare" susceptibility per atom (i.e., the susceptibility of a 
non-interacting spin), is given by the Curie law 

xo = PS(S + 1)/3. (14) 

The exchange interactions between spins are described by 

J(q) = 1 JjY exp [iq.(Rj - Ry:l], 
.i 

(15) 
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where the J j y  are the standard exchange constants of a Heisenberg Harnil- 
tonian 

1 
H,, = - - C JjY S j . S j . .  

2 j ,  

For the dynamical functionf,(t), Moriya makes use of a technique suggested 
by Mori and Kawasaki14. The idea is to writef,(t) in terms of the relaxation 
function of the torques S,(t): 

a mathernatical identity since f,(O) = 1 and &O) = O." If the correlation 
between torques decays much faster than that between spins, i.e., if the 
important times in Eq. (17) for which ($(t), S-,(O)) is appreciable are much 
smaller than the characteristic times t for whichf,(t) is large, then Eq. (17) 
can be approximated by 

where the argument follows precisely the same lines as that leading to 
Eq. (6). That this is the case for small q follows from the fact that for the 
pure Heisenberg Hamiltonian S; for q = O is a conserved quantity, which 
therefore never decays, and by continuity f,(t) decays slowly for small q, 
whereas there is no such conservation law for S,. In general, for larger q, 
there is no similar disparity in decay times. However, in the critica1 region 
(T- TJT, < 1, where Moriya .originally applied this theory to nuclear 
relaxation3, the approximation can be justified as follows. The suscepti- 
bility ~ ( q )  diverges at T,  for q = Ko, and this implies particularly large 
amplitude fluctuations for q z K, and I T- T, I/T, < 1. At the same 
time, there is critica1 slowing down of these fluctuations, and both effects 
imply a dominant contribution from wave vectors q near Ko to the low 
frequency fluctuations which determine 7i and G. Again, no similar 
slowing d o m  is expected20 for the torques ~ , ( t )  near q = Ko, and the 
torque correlation functions will therefore decay much more rapidly than 
f,(t) for these dominantly important values of q. For other values of q 
and of we make use of the fact that we require onlyf,(w) for w z O to 



determine TI and Tz. Sincef,(t = O) is by definiticm normalized to unity, 
f,(w z O) is set by the decay rate of f,(t), whether that function is exponential 
(as in Eq. (18)) or not. From Eq. (17), we see that :he decay rate is appro- 
ximately given by Eq. (19), whether or not S,(t) decays much faster than 
S,(t) (note: it never decays slower than S,(t)). Thlxefore, we continue to 
use the result (19) for a11 q and a11 temperatures2'. Because of the integral 
nature of the relation (19), the only important feature of the time dependence 
of @(t), k,(0)) which enters is the characteristic decay time of that function. 

d 
Since - (~,(t), S-,(O)) = O, at t = O, we choose the simple parameterization 

dt 

giving T, in terms of the parameter z, as 

As before, the results are not highly sensitive to the Gaussian form of Eq. (20), 
which effectively implies a Gaussian cutoff to the Lorentzian Fourier trans- 
form of f,(t), at frequencies co - 24 l. 

By using the identity 

( [H,  AI, B) = (rB, AI), (22) 
we can express ($, &,) in terms of (Sq, S?,) = ~(q) .  This leads to the form 

r, = [nl" zq ks T h- 2/~(q)] N - ' [J(k) - J( k + q)] ~(k) .  
k 

(23) 

With the Gaussian assumption (Eq. (20)) one can evaluate z, in terms of 
the second and fourth moments of the torque relaxation function. The 
necessary numerical calculations have been carried out by ~ e i t e r ~ '  for 
the simple cubic. lattice. He finds that z, z h/JS i!; nearly independent of 
both q and T(maximum deviations of about _+ 10% from a constant value) 
for the antiferromagnet, but that there is substaritially greater variation 
in the ferromagnet, particularly below a temperature of 2T,. We will follow 
Moriya in taking z, = constant. Although this would appear to be a 
rather poor approximation for the ferromagnet, we show in the final section 
that for that case one nevertheless obtains results i1 quite good agreement 
with a more sophisticated theory due to HubbarclZ3. First, however, we 
consider corrections due to short range order to the MFA for ~(q) ,  the 
other major approximation of the theory. 



3. Short Range Order. The Onsager Correction to ~ ( q )  

The MFA gives an increasingly inappropriate estimate of ~ ( q )  as the tem- 
perature approaches T,, where the short range order of the ionic spins 
plays an important role. As Maarschall has pointed out15, one can include 
these effects approximately in the study of NMR linewidths within a modi- 
fied mean field theory which takes into account the Onsager Reaction 
Field12. The central idea is that the part of the local fíeld acting on a given 
spin, which arises from the surrounding polarization due to the instan- 
taneous orientation of the spin in question, should not be included in the 
effective orienting field. That polarization simply follows the motion of 
the spin in question and thus does not favor one orientation over another. 
This is a short range order effect which the MFA does not fake into account. 

In fact, as is well known, the MFA is not slf-consistent, in that forexchange 
coupled spins at sites 1 and j it replaces (Sl . Sj) bys1 . {sj) = O for T > T,, 
whereas the same correlation function as obtained directly from the MFA 
susceptibility 

(S, .sJ - 1 ~ ( 4 )  exp [iq.(l-j)l, 

does not vanish. As Brout and Thomas have pointed out13, a suitable 
choice of (temperature dependent) Onsager reaction field Â(T) restores 
the self-consistency. Thus, subtracting Â(T) from the simple molecular 
field J(q), we fínd for the susceptibility 

and we require, by the definition of ~ ( q )  in terms of the relaxation function 
(i.e., by the fluctuation-dissipation theorem), 

where j is again a site index. In a mean field theory, Sj" cornmutes with the 
effective Hamiltonian, and S(- ia) can be replaced by S", so that (S;, Si) N 

Y /3 (SjZ Si), Ref. 24. Then, Eq. (25) can be written as 



From the definition (24), we have that 

which, combined with Eq. (26), gives the requireiment 

and we see that A(T) takes the form implied by the physical considerations 
discussed in the first paragraph of this section. 

The Onsager correction, as one would expect, 1ead.s to an improved pre- 
diction of the magnetic critica1 temperature, T,. Defining T, as the highest 
temperature at which ~ ( q )  diverges for some wave vcxtor q, we have imme- 
diately from Eq. (24) 

where Ko identifies the wave vector for which the instability, and resulting 
magnetic ordering below T,, occurs. In particular, K,, = O for the fer- 
romagnet. In the MFA, where Â. - O, we fmd the simple result 

kB 5 (= J(Ko) S(S + 1)/3 (29) 

and we will sometimes find it convenient to express our results in terms of 
this quantity. Thus we write 

where s = [ l  + X o ~ ( ~ ) ] ~ / ~ C  Now the self-consistmcy requirement (26) 

implicitly relates s and the temperature 7: In particular, s(T,) = 1, and 
s(T) > 1 for T > T,. Furthermore, the integral 



has been numerically tabulated2' for the simple cubic, bcc, and fcc lattices. 

The relation (31) between s and ?: 

is readily solved numerically for these lattices. Then the susceptibility 
~ ( q )  is given immediately by Eq. (30). It will be shown below that this 
approach substantially improves the agreernent between theory and expe- 
riment for the F19 NMR linewidth in MnF2 and KMnF3, as compared 
with the MFA. 

The relaxation rate Tk is related by Eq. (23) to ~(q) ,  given in our approxi- 
mation by Eq. (30). We can write Tk in a particularly simple form in the 
common case where each spin is appreciably exchange coupled only to a 
single set. of crystallographically equivalent spins (e.g., only to its nearest 
neighbors). Then it is readily shown that the sum in Eq. (23) can be written 

where the last equality follows directly from Eqs. (26) and (27). Then we 
have 

In this form our result is readily compared with the expression used by 
Maarschall and others: r, N const./x(q). The latter has been particularly 
u ~ e f u 1 ~ ~  in the discussion of critica1 phenomena. If A(T) is slowly varying 
for TN T, (a reasonable expectation; short range order varies continuously 
through the critica1 point) and if the critica1 behavior is dominated by a 
small range of q near Ko # 0, then this form and Eq. (35) will give very 
similar results. But Eq. (35) also correctly includes the long wavelength 
behavior: To = O since Sz(q = O) is a conserved quantity. This may be of 
relatively small importance in three dimensions, where the phase space 
at small q, a factor q2dq in integrals, removes the divergence of 1/T, which 
enters the expression for the linewidth; for example, see Eq. (41). In less 
than three dimensions, however, the small q behavior can play a dominant 
role in resonance behaviorZ7, and the approximation r, N const./x(q) 
may no longer be useful, even in the critica1 region. Of course, Eq. (35) is 



also unsatisfactory in this case and must be suitalAy modified to remove 
the q = O divergences in physical integrals above T= T,. Even in three 
dimensions the k-dependent factor [I - J(q)/J(O)] in Eq. (35) is of impor- 
tance outside the critica1 region. The final factor Â(T) in Eq. (35) also 
includes temperature dependence not found in the simpler approximation, 
which may be important if one is considering a wide range of temperatures 
above T,. 

Finally, for explicit calculations we can rewrite Eq. (35) once more, substi- 
tuting for ~ ( q )  and Â(T) (see Eq. (30) and fo1lowi:ng line) their values as 
functions of s: 

4. The NMR Linewidth 

The integaction between the nucleus and the electronic spins is generally 
characterized by a syrnmetric tensor F j ;  see Eq. (1). We can choose as a co- 
ordinate system the principal axes of this tensor, such that 

In what follows we assume that a11 tensors F j  have the same principal axes 
and that the applied field H, is parallel to one of them. Of course, the more 
general case of non-collinear fields and principal axes may be easily obtained 
by convenient transformations of the coordinates. 

From Eq. (6), the linewidth A = l/Tz - lim [Y(t),'t], which is given ex- 
t+m 

plicitly by Eq. (4). We take the form (37) for Fj ,  make use of the symmetry 

and recognize that ((SJ(t) Sj".(O))) is independent of v = x, y, z, to obtain 



When we substitute for the correlation function, in Eq. (39), its value as 
given by Eqs. (11) and (18) and perfonn the integral over z, neglecting the 
small nuclear resonance frequency o. as compared to r,. there is finally 
obtained for the linewidth 

where 

and ~ ( q )  and T, are given by Eqs. (30) and (36), respectively. 

In Appendix A, we consider the asymptotic behavior of the linewidth at 
high temperatures and make comparison with more familiar fonns for A 
in the T =  cc limit. 

5. The F19 Linewidth in MnF, and KMnF, 

A. Theory 

In this Section, we use the theory presented above to obtain the tempe- 
rature dependencies of the F19 NMR linewidth in MnF2 and KMnF,, 
and compare them with the experimental results. 

KMnF, has the Perovskite structure with the Mn spins forming a s.c. 
lattice in the paramagnetic phase with near neighbor exchange, whereas 
MnF2 has the Rutile (Tio2) structure with Mn spins on a body centered 
tetragonal lattice. TIxe primary exchange interaction in MnF2 is between 
next-near-neighbors. The crystal structures and F19 local environrnents 
are shown in Fig. 1. For MnF2, there are three neighboring Mn spins to 
each F. Mn(1) and Mn(I'), which belong to the same magnetic sublattice 
in the orderedgate, are coupled by the same transferred hyperfine inte- 
raction tensor A,  to a given F nucleus, while Mn(I1) belongs to the other 
sublattisandhas a different hyperfine interaction with the same nucles 
- i.e., AII # AI.  In KMnF3, there is an identical hyperfine coupling A 
of a F nucleus to the two syrnmetric Mn spins. The exchange couplings 
are also indicated in the figure. For MnF2, I J' I 4 1 J 1 .  The hyperfine 
constants for both MnF2 and KMnF3 are given in Table I. In KMnF,, 
the hyperfine tensor is diagonal with principal axes coinciding with the 



MnF KMnF 

- -- (o )  (b) 
I Fig. 1 - Unit cells for rutile (a) and cubic perovskite (b) structures. The local environment 
õ f  a F19 nucleus is shown below with hyperfine and exchange interactions indicated explicitly. 

cubic lattice vectors. In MnF2, the off-diagonal element A, is mal1 and 
will be neglected since it enters only to the second power in all calculations. 

Table I - Values of the transferred hyperfine interaction constants in MnF2 and KMnF3. 
Units are W4 cm-'. 
(a) A. M. Clogston, J. P. Gordon, V. Jaccariio, M. Peter and L. R. Waker, Phys. Rev. 117, 
1222 (1960). 
(b) R. G. ShuImann and K. Knox, Phys. Rev. 119, 94 (l%D). 
c) The definitions of the cartesian axes in ref. a) are such thaí there is a 4 2  rotation about 
the z axis when changing from Mn(1) to Mn(I1). 



Substituting the values Rj for the positions of the Mn ions into Eq. (40), 
we obtain for KMnF3 

and for MnF2 

1 AM(k) l 2  = 2(AfW)' + + 2 ( ~ ? ~ ) ~  cos 2 !_- 
+ 4 A?" A?? cos ( c + ~ )  cos - c, - (43b) 

where 

and a, c are lattice constants. 

Substituting the hyperfie constants from Table I into Eqs. (42) and (43), 
we f i d  in units of 10-8 ~ r n - ~ ,  for KMnF3 

( ~ ( k )  1' = 534 (1 i- cos k a )  (444 

and 

I A(k) l 2  = 500 C3.09 + 2.04 cos 2 5 + 3.93 cos (t+q) cos 51, (44b) 
for MnF2. It is interesting to note that Eq. (44b) is nearly the same result 
that would be obtained if Af = A#, i.e. 

This result is coincidental. 

For the final evaluation of Eq. (41), it is necessary to know the function 
JMlJ(0). 

The substitution of the lattig positions of the magnetic ions into Eq. (15) 
Ieads to the results 

for KMnF3, and 

-$# = [&I cas i cas a cai C + [A] cas 2 i (45b) 



for MnF2. The fírst t em on the right hand side of (45b) is the dominant 
one and we shall henceforth neglect J' altogether. We note that we can 
then continue to use Eq. (34) for MnF2 as well a!< for KMnF3. In each 
case J(K,) = - J(0). 

The evaluation of the linewidth for the simple cubic case is straighfonvard 
once Eq. (41) is expressed in terrns of the tabulated integrais in Eq. (32) 
and their derivatives. First, as usual, the sum over k in Eq. (41) is replaced 
by a triple integral over k-space. After substitutirig from Eqs. (30), (36), 
(44a) and (41), we find an expression of the form gixn by Hess and HuntZ8 
for KMnF3 : 

We compute the linewidth only relative to its value: at infínite temperature. 

The evaluation of Eq. (41) for the MnF2 structure is somewhat more com- 
plex. Using the value of ~ ( q )  given in Eq. (30) and obtaining for each tem- 
perature the corresponding value of s via the prescription given by Eq. (33), 
we obtain an integral of the form 

+ n 
d5 dy d i  [cl + c2 cos 25 + c3 cos (5: i- y) cos 51 

(s + q2 (1 + Y) (47) 

where cl, c2, and c3 are the coeficients in Eq. (44)  and y = - cos 5 cos 
cos 5. The details of the evaluation of this integral are given in Appendix B. 
It is important to note that the Onsager correction appears in these cal- 
culations only in the functional dependence of the v,ariable s on temperature. 
Also, this is the only way in which temperature appears. Thus, insofar as 
linewidth calculations are concerned, the Onsager correction is equivalent 
to a nonlinear rescaling of the temperature, the: correction being most 
signifícant in the imrnediate vicinity of T. 

B. Experiment 

Experiments were carried out on conventional crossed-coil c.w. NMR 
spectrometers operating at 15.6 mHz and 60 mHz. No frequency depen- 
dente to the NMR linewidths was observed. Single crystal sarnples were 
shaped to approximate ellipsoids of revolution to minimize demagnetizing 



field corrections. Temperature was regulated to within 1°K using a hea- 
ted strearn of cold N, gas. Linewidths reported are the separation in field 
units between the extrema of a derivative resonance signal. A11 resonances 
have the Lorentzian shape, charatteristic of exchange-narrowed hyperfme 
broadened pr~files'~. 

Due to the anisotropy of the liyperfine interaction in both KMnF3 and 
MnF2, there are magnetically inequivalent fluorine sites for arbitrary 
crystal orientations relative to the external field. For the data given here 
the samples were oriented as follows: MnF2 was positioned such that 
the external field H. was parallel to the crystal c axis (see Fig. 1) where,all 
sites are equivalent and a single resonance line is observed; KMnF3 was 
positioned with H, along a cubic axis and two separately resolved reso- 
nances result. The resonance studied was the one for which H. is directed 
perpendicular to the Mn-F bond direction. Actual data was taken up to 
600K. An experimental value of A,=, was then obtained by plotting 
A(T) vs l/Tand extrapolating to T= co as has been done in high temperature 
expansions of the l i n e ~ i d t h ~ ~ .  In this manner we obtain M, , (<x> )~~  = 
= 22.6 Oe, and A H , , ( w ) ~ ~ ~  = 44.6 Oe. nF3 
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Fig. 2- Temperature dependence of F19 NMR linewidth in KMnF, relative to "infinite 
temperature" value (see text). Calculated linewidth ratios from the Moriya theory with (solid 
lhe) and without (dashed line) Onsager corrections are shown. 



In Figures 2 and 3, we compare experimental lineviidths with calculations 
from Eqs. (50) and (51). The linewidth in the cubic case does not diverge at 
the Néel temperature. The critica1 fluctuations at q = K ,  correspond to 
antiparallel alignment of the two neighboring Mn spins to a given F nucleus, 
so the amplitude of the corresponding hyperiine iield vanishes by sym- 
metryi5. It is apparent that the Moriya theory, with or without Onsager 
corrections, yields semi-quantitative agreement with experiment for the 
two systems studied. However, for both MnF2 and KMnF3, the Onsager 
corrections provide improved agreement with expcriment, particularly in 
the vicinity of the ordering temperature. The lack of agreement, in scale, 
at high temperature, may be attributed either to the extrapolation proce- 
dure for obtaining (AH), or to the fact that the hyperfine interaction is 
noticeably temperature dependent above 300 - 600 K, necessitating appro- 
priate corrections to be made to AH,. This is curr~ntly being investigated 
in our laboratory. 

Table 11. Computed values for the antiferromagnetic transitioil temperature are shown for 
the uncorrected MFA (Te) and with Onsager corrections (z(0.C.)). Calculations are based 
upon the exchange constants (J, J') given. Experimentally determined values of Z are shown 
for comparison. A11 quantities given in degrees Kelvin. 
a) C. Trapp and J. W. Stout, Phys. Rev. Letters 10, 157 (15163). 
b) S. J. Pickart, M. F. Collins, and C. G. Windsor, J. Appl. Phys. 37, 1054 (1966). 
c) P. Heller, Phys. Rev. 146, 403 (1966). 
d) G. L. Witt and A. M. Portis, Phys. Rev. 135, A1616 (1964). 

Short range order effects substantially modify the predicted values of the 
critica1 temperatures. The values for T, with Onsager corrections (O.C.), 
obtained from Eq. (33) are X(0.C.) = 0.66 T: fo: sirnple cubic systems 
(e.g., KMnF,) and x(0.C.) = 0.72 TC for the body centered structures (e.g., 
MnF2). The former value is in good agreement with a Green's function 
calculation in the random phase approximation made by ~ ines~ ' .  T: is 
computed from known values of the exchange constants (given in Table 11) 
and Eq. (29). In computing T," for MnF2, a corr&ion due to the small 
near-neighbor ferromagnetic exchange coupling is taken into account. 
The various theoretical transition temperatures are compared with expe- 
rimental ones in Table 11. It is seen that the Z(0.C.) agrees well with T,(Exp.), 



Fig. 3 -Temperature dependence of FI9 NMR linewidth in MnF,. Moriya theory linewidths 
with (solid line) and without (dashed line) Onsager corrections are shown. The inset shows 
details of the minimum linewidth region where normalization made to the minimum linewidth 
rather than to the "infinite temperature" linewidth. 
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Fig. 4 - Comparison is made between the temperature and wave-vector dependence of Tk 
the spin correlation function decay constant of the present theory and the closely related 
quantity hl, that appears in Hubbard's numericai c a l c ~ l a t i o n s ~ ~ .  AI1 results here are for the 
simple cubic ferrormgnet with nearest neighbor exchange interactions. Details are given in 
the text. 
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particularly for the cubic system. Apparently theri: is a tendency for the 
O.C. theory to slightly underestimate T,, whereas &e uncorrected MFA 
seriously overestimates T,. 

6. Comparison with Hubbard's Correlation Function Theory 

It is possible to make limited comparison betweeri our analytical results 
and other more recerit theoretical work on the dynamical behavior of the 
spincorrelation funktion of the Heisenberg systen-,s in the paramagnetic 
phase22,23,31,32. Since these latter results for the correlation function 
involve non-linear integro-differential equations, they are somewhat 
dificult to compare directly with our theory. However, we can m e d i a -  
tely compare our numerical results for rk with the corresponding quan- 
tities calculated by ~ u b b a r d ' ~  for the simple cubic ferromagnet. 

Hubbard's results are given in tenns of the quailtity 

Using Eq. (18), we obtain 
n 

Hubbard points out that the shapes of the curves ?k(o) are such that, to a 
reasonably good approximation, 

where dk is the half-width of Fk(o)  at half height. In the discussion followk~ 
Eq. (18), in fact, we have interpreted Tk in this somewhat generalized sense, 
recognizing that the exponentihl form is not valiti for a11 k at a11 tempe- 
ratures. From Eqs. (49) and (50), it follows that 

In Fig. 4a, wè' have re-drawn Hubbard's calculated values of 6,  for the case 
of a sirnple cubic ferromagnet. The spherical model temperature scale is 
used because, as is shown by Brout and Thomas13, it is equivalent to the 
Onsager Corrected MFA to second order in the reaction field. Fig. 4b 
represents rk as given by Eq. (36) with zk taken to h: constant. The quantity 



r, is normalized in such a way that 

The components of k are written in units of 2n/a, where a is the lattice 
constant. The reasonably good agreernent between Figs. 4a and 4b provide 
a heuristic justification for the approxima?ion of taking zk to be a constant. 
Unfortunately, a numerical calculation of Hubbard's theory for the antifer- 
romagnet is not available. We might expect, however, that reasonably 
good agreepent between his results and our Tk would result in that case 
as well. $%e have pointed out above that calculations by ~ e i t e r ~ ~  suggest 
that the replacement of zk by a constant is a better approximation in that 
case than it is for the ferromagnet. 

Appendix A 

It is of some interest to examine the high temperature behavior of certain of the formulae 
given in the text, with the view in mind of obtaining an estimate for the torque correlation 
decay time in this limit. For example, as T -+ co, ~ ( q )  + zo = S(S + l)/3kBTand Eq. (41) 
becomes 

For the important case of a nucleus of an ion interacting only with the spin moment of the. 
same ion (e.& MnS5 in MnF,) then [A(q)(' = A', independent of q, and (A-1) reduces to 

In this T -+ m lh i t ,  the low order moments of the line profile I(o) have been calculated 
exactly. With any reasonable assumption (e.g., a suitably truncated Lorentzian) on the form 
of I@), these results imply1° 

where o: = 2z(J/h)' S(S+ 1)/3 is the square of the "exchange frequency" and C is a constant 
of order unity whose precise value depends on the details of the assumed form of I(o). Then 
we can make the identification 

~ - l C l - ; l = ~ ~  ( T - ~ c o ) .  ( A 4  
4 

The T -+ rc limit of r, - or even the fact that the finite limit exists, as implíed by (A-4) - 1s 
not irnmediately transparent in the form (36) for rq. High temperature expansion of Eqs. (32) 



and (33), for a lattice with nearest neighbor antiferromagnctic exchange, gives 

where z is the number of nearest neighbors. The second t e m  in brackets is the lowest order 
correction to MFA due to short range order. It is clearly essential to keep this correction 
for the last factor of Eq. (36) even in the T-. ~r limit. Then 

Since 
N - '  1 [ I  - J(q)/J(O)]-I G(1) 

0 

is a number of order unity, we have from (A-4) and (A-6) that .rue - 1. This is consistent 
with the view that the torque correlation functions decay in a time r of the order of the mi- 
croscopic exchange time to; l ,  rather than a longer time associated with some collective motion. 

Appendix B 

The integral Eq. (47) can be decomposed by partia1 fractions into integrals of the form: 

Integral 1 ,  is just G(s) (see Eq. (32)) and integral 1, is its derivative G'(s). Tabulated values 
for G(s) are a~ai lable*~.  Integral I ,  can be transformed into one which is more convenient 
for numerical integration by using the symmetry properties of ihe integrand and perfoming 
the integral over analytically. The result is 
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