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In this work, the principal methods and results concerning the problem of disordered 
alloys are discussed on the base of the Green operators formalism. The particular case 
of binary aIloys is first analyzed. It is shown how Green's functions can be applied 
to the problem and how one can obtain physical results from them. Dyson's equation 
is established thus developing a perturbative series with the introduction of the proper 
self-energy operator. Then, some model calculations are presented in order to show 
how the different existing theories differ in the way the ensemble average of the Green's 
functions is performed. Generalizations that include the effects due to short range 
correlations responsible for the formation of clusters are introduced and also the rela- 
tions between them and localized alloy states. In spite of the enormous effort expended, 
no theory exists that explains a11 the important observed phenomena, thus remaining 
many challenging problems open to theoretical investigation, some of them being dis- 
cussed here. 

Neste trabalho, os principais métodos e resultados relativos ao problema das ligas 
desordenadas são discutidos com base no formalismo dos operadores de Green. Ana- 
lisa-se, primeiramente, o caso particular das ligas binárias e mostra-se com as funções 
de Green podem ser aplicadas ao problema, para a obtenção de resultados físicos. 
A equação de Dyson é então obtida desenvolvendo-se uma série perturbativa, com a 
introdução do operador de auto-energia. A seguir, são apresentados alguns modelos 
de cálculos, para mostrar como as teorias existentes diferem na maneira com que são 
feitas as médias sobre as configurações das funções de Green. São introduzidas genera- 
lizações que incluem efeitos devidos a correlações de curto alcance, responsáveis pela 

- formação de "clusters", e também as relações destes com os estados localizados da liga. 
A despeito de enormes esforços, não existe ainda uma teoria que explique todos os 
fenômenos observados, sendo que muitos problemas permanecem abertos desafiando 
a investigação teórica, alguns desses problemas são aqui discutidos. 
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In this work, the principal methods and results concerning the pro- 
blem of disordered alloys are discussed on the basis of the Green's 
operators formalism (the so called, resolvent method). 

The problem of binary alloys, is first analyzed in Section 2. There, 
a perturbative treatment for the expansion of the resolvent is developed 
by introducing the self-energy operator and it is explicitly shown how 
physically important results, as the spectra and the density of states, 
can be obtained from the knowledge of the Greenian operator. 

In Section 3, the analytical properties of the resolvent and the self- 
energy operator are discussed and the notion of "ensemble average" 
is introduced. Also, a collection of formulas to be used in the next 
Sections is derived. 

Section 4 is devoted to the discussion of some of the zero order approxi- 
, mation properties of the problem and in obtaining the so called 

Coherent Potential Approximation. Other theories are also discussed, 
mainly to show how they differ in the calculation of the ensemble 
average of the Greenian operator. 

In Section 5, the importance of Clusters and the relations between 
them and localized states are stressed. Some methods proposed to 
take them into account are analysed. 

As a conclusion, one can say that, despite the enormous efforts of 
physicists working on the subject, no theory exists that explain a11 
observed phenomena and so there remáins many challenging pro- 
blerns open to theoretical investigation. 

It is interesting to mention here that the earlier papers on the sub- 
ject were based on the Rigid Band Model of Jones and Mottl. Then, 
carne the Virtual Crystal Approximation of Korringa2 which was 
used for a long time because it provided a simple way to calculate 
energy bands and which is, presumably, a good zero order aproxi- 
mation for the problem. In Section 4, it is shown that this is not exactly 
the case3. 

The theories based on the Multiple Scattering Theories of Beeby and 
Edwards4, which do not make use of the concept of Bloch states, basically 



dBer from the ones mentioned above. The prelirninary version of 
this theory had the inconvenience that the perturbation expansions 
used were only valid for small impurity concentrations and the results 
did not apply when the concentrations of the alloy components were 
of the same order. 

The version due to Beeby5, however, treated the alloy components 
in an equal footing and did not suffes from that limitation. 

The theories that treat the alloy components symmetrically are the 
one of Yonezawa and Matsubara6 and the so called Coherent Potential 
Model of Soven7, extensively used for reasons which will be made 
clear in the following Sections. 

AI1 the above mentioned theories, however, do not include the effects 
due to short range correlations responsible for the formation of clusters. 
This is one of the most important questions to be stressed out and many 
intrincate methods have been developed to take them into account. 
As mentioned before, these questions are treated in Section 5 

2. Binary Alloys, the Greenian Operator and the Density of Stattes 

Let us start this Section giving a cristallographic description of binary 
alloys. A binary alloy is defined as a system consisting of two types 
of constituents, A and B (for example, closed shell positive ions), em- 
bedded in a medium of electrons and distributed in a random way 
at the lattice points. The lattice parameters have to be experimentally 
determined for a given concentration of the constituents. Random 
here means that no 1ong.or short range order correlations are present. 
As a consequence, clusters cannot be explained by the theory to be 
developed here. 

If N is the total number of lattice points and NA and NB are respectively 
the number of the A and B constituents, then the concentrations are 
defined by 

mA = NA/N, m~ = NB/N, (2- 1) 

where obviously m~ + mB = 1. We do not name A and B solute or 
solvent because we are interested in a theory valid for a11 possible . 
concentrations of both constituents. 



Our principal aim is to determine the electronic properties of the 
alloy and its transport properties. For that purpose, as a first step, 
we introduce a Greenian formalism for the problem in the one-electron 
approximation. We will use the vectors k in reciproca1 space as one 
of the labels for the quantum mechanical states. This can be done 
because the alloy Hamiltonian is written as 

H = H, + (H - H,) = H, + H', (2-2) 

where H, is always periodic over the lattice and H' is always non 
periodic. No matter the functional form of H,, the real effects due 
to the random distribution of the constituents in the lattice will be 
described by H'. This is a very important remark because, as will 
be discussed8 in Section 4, an arbitrary choice of H, and H' may lead 
to trivial results for the density of states. 

The Greenian or resolvent operator, G(z), of the Schrodinger energy 
equation

g
, 

H 1 1,Y; E 1 I,), (2-3) 
is defined as 

It is an analytic (operator-valued) function of the complex variable 
z, whose singularities constitute the spectrum of H. G(z) is bounded 
in the whole complex plane except at the eigenvalues of H. If A(z) 
is the square of the distance from z to the closest eigenvalue of H, 
then 

Let us also define 

Then, using (2,-2), we obtain 

G(z) = Go(z) + G,(;) H'G(z) 

Go + GoHfGo + GoHtGoH'Go + 
Suppose now that 

H. I ak) = E , ~  I ak) . 
Then, 

(ak / G(z) I ak) G(z, k, a) 



- 1 -- 1 + --- 
Z - E& Z - E& 

(ak I H' I ak) (ak I G(z) I ak) 

1 +- C' (ak I H' I a'k') (a'k' I G(z) I ak). 
- Eak a',k' 

The primed sum, in Eq. (2-9), means that the term with intermediate 
state I ak) has been excluded. On the other hand, for I a'k') # I ak), 
we obtain 

1 
(a'k' I G(z) I ak) = - 

Z - E , y  
(a'k' I H' I ak) (ak I G(z) I ak) 

C' (a'k' I H' 1 af'k") (a"k" I G(r) / ak). +- 
Z - E&, a",k" 

(2- 1 O) 
Iterating (2-10), we obtain 

(a'k' I G(z) I ak) 

- 1 
- - I a % '  I H' / ak) + r' (a%' jH. ( a'%") 

1 
Z - &,q" a",k" Z - E a , y  

(ar%" ( H' I ak) 

+ . . . } G(Z, k, a). 

Now, since 

we can write (2-11) as 

1 
(a'k' I {H' + H' --- z - E,.k 

H' + . . .)I I ak) G(z, k, a), 
2 -  H. (2- 13) 

where ( )' means that, for a11 complete sets to be used in the expression, 
the state I ak) is missing. 

Using (2-13), Eq. (2-9) can be written as 

1 +- (ak / {H' + H' 1 H' + . . .) 1 ak) G(z, k, a). (2-14) 
- Eak Z -  H. 



Now, the proper self-energy, Z(z, k, a), is introduced. By definition, 

H +  . . . ) ' I  ak). (2-15) C.(z,k,a)= (akI{H1+ H' 

Then, Eq. (2-14) can be written as 

G(z, k, a) = (ak I G(z) I ak) = 
1 

z - cak - C(Z, k, a) 

We first observe that (a'k' / G(z) 1 ak3 has a pole at z = Eak, where 
E,, is the pole of G(z, k, a), i.e., it satisfies 

We can now construct the state vector 

1 1, ak) = C lim (z - Eak) G(z) I ak), (2- 18) 
z-rEak 

where C is a normalization constant. Taking the identity 

Eak - H = (Z - H) + (Eak - z), (2- 19) 

and applying it to C(z - E,,) G(z) I ak), we obtain 

In the limit z -+ Eak, both terms, on the right-hand side of Eq. (2-20), 
vanish and we are left with 

(H - Eak) I 1,a k) = 0. (2-2 1) 

This means that the state constructed through (2-18) is an eigenstate 
of H belonging to the eigenvalue (which is a pole of G(z, k, L I ) .  

Now, the simplest and most important information contained in the 
Greenian operator is the density of states. This last quantity is of 
fundamenta1 interest in band theory and can be defined through the 
following staternent: "The density of state functions is such that 
p(E)dE is the number of states, per volume Q of the material (for each 
direction of the electron spin), with energies between E and E + d E .  



As is well known in band theory, once the band structure c,(k) is known, 
the formula, 

gives the density of states (the integral goes over the surface of constant 
energy E = ~,(k)). Since 

Tr G(z) = 1 (ak I G(z) ( ak) = (z - cak - (ak I H' ( ak))-', (2-23) 
a,k a,k 

then, for a given band, defined by the quantum number a, we have 

R 
Using the usual prescription + and the fact that 

k ( 2 4  

it followi that 

which is precisely p(E) as given by Eq. (2-22). 

3. Analytical Properties of the Resolvent and Self-Energy Operators. 
The Ensemble Average" 

In Section 2, G(z)  has been defined. Here its analytical properties are 
determined in order that its spectral representation and that for the self- 
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Fig. 1 - Singularities of G(z) in the complex =-plane. 
axis 



energy can be derived. The discussion is also important in the sense 
that one can observe what happens when a discrete spectrum is appro- 
ximated by a continuous one. 

As is well known, the spectrum of H has, in general, a discrete and a 
continuous part. The discrete points correspond to poles of G(z)  
and the continuous part to a branch cut extending from E,  to E;, in the 
case of a bounded spectrum. Eventually, E; can go to infinity. In order 
to obtain this, let E,,  E,, . . . E,, . . . be the discrete eigenvalues of H, 
and E the continuous eigenvalues. Introducing the projector operators 
P, and P(E) such that 

and remembering that 

it follows that 

Then 

and, from Eq. (3-2), one obtains 

Thus, each discret eigenvalue E, of H is a simple pole of G(z), whose 
residue is the projector Pi, i.e, 

where Ti is a closed contour in the complex plane including Ei and 
excluding a11 the other singularities of G(z).  Since H is an Hermitian 
operator and G(z)  is real for real z not on the cut, one has 

~ ( z )  = G(Z). (3-7) 



On the other hand, in order to unaerstand the meaning of the integral 
in Eq. (3 -3 ,  it is assumed that H has only a continuous spectrum. 
Using the fact that G(z) satisfies Eq. (3-7), one obtains 

for z outside the real axis and using the countour of Fig.2. Eq. (A-5) 
allows us to write 

From the comparison between the integral part of Eq. (3-5) and Eq. (3-9), 
it follows that 

Eq. (3-10) shows that dP/dE is the boundary value of the imaginary part 
of the "Greenian function" G(z) as z tends to the real axis from above. 

The analytical properties of C(z, k ,  a )  are more involved. From Eq. 
(2-15), we can write 

C(z, k, a) = C(3 , k, a), (3-1 1) 

where Eq. (3-7) has been used. The analytical properties of Ç are then 
determined by the properties of Go(z). When a continuous'spectrum is 
used, we may write a dispersion relation for C(z, k ,  a). It is only necessary 
to remember that, due to Eq. (2-15), there is always a real constant part 
in C(z, k ,  a). 
Once G(z) is known, ihe density of states can be calculated using the 
formula 1 

p(E) = - - Im Tr G(z = E + iO). (3-12) . 
ll 

But, as 

( a k  I Giz) I a k )  = (ak  I ( z  - H. -H' ) -  I a k )  = ( a k  I ( z  - H. - C(z))-' I ak ) ,  
(3- 13) 

an electron in a system having the diagonal Hamiltonian H. +C(z) has 
the same density of states as one in the system whose Hamiltonian is 
is H,+ H'. However, C(z)  is, in general, a complex function of z, 

C(z, k ,  a )  = Re C(z, k ,  a )  -f- i Im C(z, k ,  a) (3-14) 



and, for a band a, Eq. (3-12) can be written as 

1 Im C (E, k, a) 
p(E, a) = - - C 

n k  [E - ~ , k  - Re C(E, k, a)I2 + [Im Z(z, k, a)I2 
, (3-15) 

which seems to imply that p = O when Im C = 0, but this is not true. 
Indeed, as in this case 

C(Z, k, a) = Re C ( z ,  k, a), (3- 16) 

Eq. (3-12) gives 

where the integral is performed on the surface of constant energy 

E = + Re C (z, k, a). (3- 18) 

We come now to a very important point. The alloy has been consi- 
dered as a periodic lattice containing N equivalent sites occupied 
in a random way by two kinds of constituents, A and B, with concentra- 
tions m~ and m ~ .  These conditions define a whole ensemble of possible 
arrays. Without knowing the configuration resulting from the process 
of alloy formation, we transfer our attention to the physical charac- 
teristics of the alloy averaged over the ensemble of a11 possible con- 
figurations. The averaged quantities are denoted by a bracket. Then, 
(G(z)) means the ensemble average of the resolvent operator. 

(G(z)), Ref. 11, determines a11 interesting macroscopic quantities. 
It obviously has the full symmetry of the empty lattice, while G has not. 
An effective Hamiltonian characterizing'the average crystal can then 
be defined as 

where H, like (G(z)), has the full symmetry of the empty lattice and 
is non-Hermitian and energy dependent. Obviously, is diagonal 
in the Bloch representation. 

An equation forfi (z) can be easily derived taking the ensemble average 
of Eq. (2-16) and remembering that 

C(z, k, a) = (ak 1 li' J ak) + (ak I H' 1 a'k') G&, k, a)(alk' 1 H' 1 ak) + . . . , 
k ' f k  



it follows that 

(a'k'l I? (ak)= daadkkf H(z, k, a), (3-20) 

where 

R(z, k, a) = <ak I H. 1 ak) + <ak I H ' ]  ak)) 
1 +. ((ak 1 H' I a'k') (a'k' ] H' I ak)) --- 

Z - E,.k. 
+ ... (3-21) 

k ' # k  

or, equivalently, 
* 

H(z, k, ( I )  = c<,k + 2 ( z ,  k. ( I ) .  (3-22) 

with 
C(z,  k, a) r (C(z, k, a)). (3-23) 

The explicit calculation of the ensemble average depends on the model 
used. A11 that can be said, at this point, is that normally it is a very 
difficult task. In the next Section, it is shown how the ensemble avera- 
ging procedure can be avoided by imposing self-consistent require- 
ments in the theory. 

4. Choice of the Hamiltonian and the Coherent Potential Approximation12 

Up to this goint, H. and H' have been left unspecified in the calcula- 
tions. Let us now study what conditions H. and H' must satisfy in 
order to have a reasonable theory for a disordered alloy. 

In view of the results of Section 2 [Eq. (3-13)], the density of states 
can be written as 

for a given configuration of the alloy, which shows explicitly the fun- 
damental role played the diagonal matrix elements of the operator 
H'. If, for example, 

(ak I H' I ak) = O, (4-2) 

then the density of states vanishes outside the band defined by Ho. Cle- 
arly, perturbation theory tells that there is a shift in the energy bands of 
Ho,  but this does nothing to p(E). Thus, if Eq. (4-2) holds, one has a 



theory like the rigid band model of Jones and Mott (remember that, 
by construction, a11 properties due to alloying are contained in H'). 

Now it is shown that, if H .  is chosen as the Virtual Crystal Hamiltonian, 
then condition (4-2) is satisfied. Indeed, if 

P" H0 = -- + V,, 2m (4-3) 

is the virtual or average potential, then 

where V a( r- R , )  is the real potential centered in the lattice point 
defined by R, and can be V?) or Vg) ,  depending on the type of atom 
existing in R,. With this choice for Ho, then { I  a k ) )  = ( 1  nk) ) ,  where 
I nk) is an eigenstate of H ,  with energy cnk, i.e. 

H O  ( nk)  = E,, ( nk), (4-6) 

n being the band index and k a vector in the first Brillouin zone. The 
state I nk) satisfies the Bloch condition and the corresponding wave 
function can be written as 

where unk(r) has the periodicity of the lattice. The matrix elements 
of (nk I H' I n'k') can now be determined. We have 

1 
(nk H' ( n'k') = - unk(r) e P i k .  r {Va(r - R,) - [mAVA)(r - R,) N i: a 

+ mBVB(a)(r - R, ) ] )  ~ , ' ~ ' ( n )  eik' . r '  dr 

= (m,/N) C exp [- i(k - kl)R,] V,$ - 
a 

- (mA/N) exp [- i(k - k') . R,] V${:, 
b 

(4-8) 



Remembering that 

C exP [ - i(k - k') . R,] + 1 exp [i(k - k') . R,] = Bk - kr,O, (4- 1 O) 
a b 

then (nk 1 H' I n'k') is zero for Ink) = I n'k') and equals 

This last equation shows that if H, is chosen as the Virtual Crystal 
Hamiltonian, then p(E) vanishes outside the band defined by H,. But 
this is valid for any alloy configuration; thus, it must be true for (p(E)), 
the ensemble average of p(E), a result which has some non trivial con- 
sequences. For example, in general if (ak I H' I ak) = 0, then 

Im C(z, k, a) = O. (4- 12) 

This can be easily obtained if we consider the series expansion of C(z, k, a) 
(Eq. (2-15)). 

Due to Eqs. (4-1) and (3-18), the following equality must hold: 

or, equivalently, 

which means that 

Vk Re C(E, k, a) = O 

and the self-energy operator is k - independent. 

The above results, obtained by choosing H ,  as the Virtual 'Crystal 
Hamiltonian, are very important for the following reasons: (i) Since 
p(E) vanishes outside the band'defined by H,, it is not correct to use, 
for (p(E)), the formula 

with 
(p(E, n)) = (4n3 V)- ' j&, 

E = Enk + 1 ( I (nk I H' ( n'k') I 2 )  
> 

n'k' &nk - Enfk' 



as done in Stern's paper13. (ii) The main reason for using the self- 
energy operator (Dyson equation) is that it produces reasonable appro- 
ximations when finite order pertubation theory is inadequate and 
this is precisely the case we are studying. The resolvent method has 
put us on the right direction. 

We have shown that the density of states, obtained with H. as the 
Virtual Crystal Hamiltonian, is the same as the density of states ob- 
tained with H ,  + H'. This is a surprising result, because a11 effects 
of alloying are contained in H', the nonperiodic part of the Hamil- 
tonian. So, if non trivial results for the average density of states are 
to be obtained, then H. has to be different from the Virtual Crystal 
Hamiltonian. 

In the work of Yonezawa and Matsubara14, H. is chosen as 

where the sum is taken over a11 lattice sites. On the other hand, the 
pertubation caused by the potential V,(") (r - R,), of the B constituents 
of the alloy, is 

H' = [V,'") (r -R,) - h(") (k- R,)] = V(r -R2), (4-18) 
(1 1 (1 1 

where the notation ( I )  means that the sum goes only over the lattice sites 
occupied 'by the B constituents. 

In this case (nk 1 H' I nk) # O and non trivial results are obtained. 
Using the methods outlined in Section 2, the ensemble average of 
the Greenian operator is written as 

+ Ggz, k) M2&-k ,  k-k" -kl) Vg:: G ~ Z ,  k") V;::;: G$(z, k) + . . . , 
n",k" 

where 
(4- 19) 

unk (r) V(r) unfk, (r) exp ( - i(k - k'). r) dr, (4-20) 
R 

and the moments Mi are defined as 



They are calculated replacing the sum over impurity sites by one over 
a11 lattices points, multiplied by the concentration of the impurity 
atoms, i. e., 

This is equivalent to assume a random distribution of impurities. 
The authors solved Eq. (4-19) introducing the cumulant average pro- 
cedure of Kubo15. Then they developed a perturbative treatment 
for the self-energy operator by summing selected classes of Feynman- 
like diagrams. ' 

It is, however, interesting to avoid the ensemble average procedure. 
This can be done as follows. The Virtual Crystal Hamiltonian H. 
is replaced by H. + W where Wshould be self-consistently determined 
and the starting approximation, for the confígurationally averaged 
alloy Greenian operator, should be chosen in such a way that, to a 
desired order in the approximation, the perturbative corrections 
vanish, i. e., the pertubation is referred to the self-determined effective 
alloy medium. Let us show how Wcan be chosen through a t-matrix 
formulation16. 

Let Go be the Green function for a lattice of potentials V. = Kirtual + ii: 
In this case, 

where Go is the free particle propagator. Go determines the propaga- 
tion through the not yet determined medium. Relative to it, the actual 
system consists of perturbing potentials VA - V. and VB - Vo; V 
denotes either VA or VB. The t-matrix describing the scattering of an. 
electron propagating according to Go, when it reaches the perturbing 
potential - V,, is given by 

ti = (I/;. - V,) + (I/;. - V,) Go ti. (4-23) 

For the alloy's Green function G, one can write 

Now, if V. is defined requiring that on the average there is no further 
scattering from the perturbing potentials, i. e. 

mAtA + mBtB = O, (4-25) 



then, the average of bq. (4-24) is given by 

which shows that the first correction to Go is consequently of the fourth 
order in the t-matrix. The corresponding equation for V. is obtained 
inserting Eq. (4-25) into Eq. (4-23): 

' 

Finally, as the corrections to Go are of fourth order in the t-matrix, 
one concludes that 

( G )  - Go (4-28) 
which' is the Coherent Potential Approximation (C. P. A.). 

S. Clusters and Localized States 

In the preceeding section, we have seen how the various approximations 
differ in the way the ensemble average procedure is introduced into 
the theory. 

Concerning now the problem of localized states, we know that they 
exist when a impurity is introduced in a perfect crystal. In disordered 
systems, we may expect localized states associated with the fluctuations 
of the potential from site to site. Their existence can be inferred from 
the arguments of Lifshitz, Kaue, Halperin and Lax, Zittartz and Longer, 
and particularly of Ziman in the context of classical percolation theory17. 

The methods presented in the preceeding sections, however, cannot 
take localized states into account. This is due to the fact18 that the 
ensemble averaging procedure destroys a11 information about localized 
states, although such a state exists in every member of the ensemble. 
As (G(z)) has the full symmetry of the empty lattice then, in the averaged 
system, a11 points are equivalent and localized states cannot occur. 
In order to obtain them, in the translationally invariant averaged 
system, the symmetry must be broken. This can be done, for example, 
with the introduction of phenomenological short range order para- 
meters, as done in the work of Pant and Joshi19. Another possibility 
is the introduction of an a priori fixed cluster in the system and con- 
sidering the average only for the rest of the system. 



In the C. P. A., for example, the average is carried out in such a way 
that the effective potential experimented by an electron is the same 
on each site, i. e., the C. P. A. considers the response of an electron 
to the potential at a single site. A simple improvement in the method 
would be to consider the response of the electron to the potential of 
two sites. This, in turn, suggests the possibility of considering the 
response of the --- electron -- to a cluster of n constituents of fíxed com' 
position and/or position, treatGg the rest of the material in an average 
way. This idea is the CPn approximation of Freed and Cohen20. This 
method defines a hierarchy of approximations containing the usual 
C. P. A. as its lowest order. We do not go into the details here but refer 
the reader to the bibliography. AI1 we can say is that this and other 
methods2', developed to get beyond the C. P. A., suffer from enormous 
diffículties when practical calculations are performed. 

Appendix : Dispersion Relations 

Consider a function h(z) which is analytic in the entire complex plane 
except for a cut along the real axis (from xo to x,). It is assumed that 
h(z) is real on the remaining part of the real axis and that I h(z) I goes 
to zero faster than l/z as ( z ( goes to co. 

For a point outside the real axis, one has 

i .  2 - Contour iised to derive the dispersion relation. 



where C is the contour shown in Fig. 2. The contribution to Eq. (A-1), 
from the large circle r, tends to zero as its radius tends to infinity. Then, 

x' - z+ ie  dx' h(x' - is) 
x f - Z - i ~  dx'] 

can be neglected in the denominators as E -* O. The quantity (f is) 
of Eq. (A-2) and, for z not on the realãxis, 

x 1 

k(r) = lim h(xf +i&) - h(xf -i&) dx ,  . 
2.i x o & - ' O +  X' - z 

(A-3) 

The numerator of the integrand in Eq. (A-3) is the discontinuity of h(z) 
across the cut and can be evaluated observing that h(z) satisfies: 

h ( z )  = h(?).  (A-4) 

Eq. (A-4) is a consequence of Schwarz reflection principle. Hence, 

lim [h(x + i&) - h(x - i&)] = lim [h(x + is) - h (x  + is)] 
&-+O+ &- 'O+ 

= iim 2i Im h(x + ie) = 2i Im h(x + i0) 
& + O  + 

Inserting Eq. (A-5) into Eq. (A-3), one obtains, in the limit when E 4 O + ,  , 

which is the dispersion relation satisfied by h@). Suppose now that 
there are two functions h(z) and f ( z )  satisfying 

f ( z )  = c + h(z) (A-7) 

where c is a real constant. Then, the dispersion relation for f (2)  becomes 
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