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The thermodynamical theory of mixtures is applied to the process of heat conduction 
associated with the flow of fluids through isotropic, rigid, porous medi?. A simplified 
model for conduction is proposed and the restrictions imposed by the second law of 
thermodynamics are analyzed. Using this model, the heat flux is given by h = - K grad 0, 
where K = ko [ao(llqll)l + &(l/qll)q @q] is a tensor valued function of the perco- 
lation velocity q. The experimental data available permits the determination of the 
functions ao and pl over a limited range of velocities. 

A teoria termodinâmica de misturas é aplicada ao processo da condução de calor as- 
sociado ao escoamento de fluídos através de meios porosos, isotrópicos e rígidos. Um 
modelo simplificado para a condução é proposto e as restrições impostas pela segunda 
lei da termodinâmica são analisadas. Partindo desse modelo, resulta que o fluxo de 
calor é dado por h = - K grad 0, onde K = ko [ao(ll q ll)l + Pi (11 q ll)q Q q] é uma 
função tensorial da velocidade de percolação q. Os dados experimentais disponíveis 
permitem a determinação das funções a, e P1, em uma faixa limitada de velocidades. 

1. Introduction 

The basic conservation laws, which describe the theory of fluxes in 
mixtures, were established by Truesdell' in relation to continuum 
mechanics and, later, generalized by Kelly2, Eringen and Ingram394, 
Green and Naghdi596*7*8, Bowen

g
, Bowen and Wiesel0 and by Gurtin". 

This theory can be readily applied to the study of flows, through porous 
media, as has been shown by Crochet and Naghdi12, who investigated 
the restrictions imposed by the second law of thermodynamics upon 
a certain class of non linear constitutive equations. Their results are 
perfectly capable of explaining the majority of mechanical phenomena 
observed in porous media, including, as special cases, Darcy's law and 
a11 of its generalizations. However, their treatment of heat conduction 
is not complete and the linearized equation employed is too special 
and not able to explain the difference in conductivity, in directions 

*Postal address: Caixa Postal 1191, 20000 - Rio de Janeiro GB. 
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normal to and parallel to the velocity of the fluid, which has been 
explained experimentally. 

In this work, we follow the above mentioned authors very closely and 
apply similar methods to the study of the interaction of the fluid flow 
with the mechanism of heat conduction in a rigid, isotropic, porous 
medium. In particular, we examine the restrictions imposed by the 
second law upon the constitutive class proposed, and obtain the re- 
duced dissipation inequality which is needed to restrict the coefficients 
of a simple model for heat conduction. The main result are repre- 
sented by equations (5-21) and equation (6-10) with the acompanying 
restrictions (5- 1 1 )  and (5- 13). 

2. Basic Laws 

To formulate the basic field equations, we consider the flow of a fluid, 
with mass density pf flowing with velocity vl  through a porous medium 
of porosity E and velocity v,. The medium is made of particles with 
mass density p,. In addition, 

P l  = EPf, P 2  = ( 1  -h P = P1 + P 2 ,  PW = P 1  V 1  + p2 V 2 ,  (2-1) 

where p is the global density of the mixture and w is the velocity of 
the center of mass. 

~ i v e n  a scalar field, f ,  we define the material time derivative, f, by the 
expression 

af f = ,+ (grad f ) . w .  

With the help of these definitions, the basic conservation laws are 
mass balance for each constituent, 

api - + div (pi vi)  = O, 
at 

momentum balance for each constituent, 

+ (grad vi) vi = div T i  + pi li + pi bi, I 



energy balance for the mixture, 

growth of entropy for the mixture, 

ps 2 - div (h/O) + r/O. (2-6) 

In these relations, i = 1 applies to the fluid and i = 2 to the solid mesh. 

In Eq. (2-4), Ti is the stress tensor for each phase and li the diffusive 
force, representing the total force exerted by one phase upon the other, 
per unit mass of phase i. The body forces, or externa1 actions, act 
through the field forces bi. 

The expression for the energy balance, given by equation (2-5), expresses 
the growth of interna1 energy e of the mixture due to: heat conduction 
represented by the heat flux h; the irreversible working due to the 
surface and diffusive forces; the heat r supplied from the environment. 

Equation (2-6) represents the second law of thermodynamics and is 
called the Gibbs-Duhem inequality. 

Compatibility of equations (2-4), with the expression for the momentum 
balance of the mixture, implies a balance of diffusive forces: 

Then, letting 
m = Pl 11 

and substituting this in equations (2-4) and (2-5), and eliminating pr 
in equation (2-6), using equation (2-5), the following equivalent forms, 
for expressions (2-4), (2-5) and (2-6), are obtained: 

pe = - div h + tr {T 1 grad v, + T grad v,) - 
- m . (v1 - v,) + pr, (2- 1 1) 
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p($ + se) - tr {T ir grad v, + T 2 grad v2) + m . (vl - v2) + 
1 +-  8 h.grad8 s 0. (2-12) 

The last relation is the reduced dissipation inequality, where $ is the 
Helmholtz free energy, 

$ - e  - 0 s .  (2- 13) 

This inequality plays a central role in modern thermodynamics of 
continua, since it limits the possible forms for the constitutive equati~ons. 

DBerent representations of Eqs. (2-1) to (2-13) are presented in all 
references cited at the introduction. Bowen and Wieselo give an excel- 
lent survey and comparison of the various f o m  proposed. 

For the study of heat conduction it will be convenient to restrict attention 
to rigid porous media. In this case, the velocity v, can be set equal to 
zero the choice of a suitable frame of reference. Also, the porosity E 

is independent of time. Equations (2-3) and (2-9) to (2-12), consequently, 
assume a simplified form: 

aPf 
E - + div (pf q) = 0, at (2- 14) 

div T2 - m + pz b2 = 0, (2- 16) 

pi = - div h + tr (2- 17) 

where q, the percolation velocity, is defined by 

q =  E V ~ .  (2- 19) 

3. Formulation of Constitutive Equations 

To study those aspects of heat conduction not inyolving problems of 
compressibility or heat transfer between phases, we shall assume the 

- 
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system to be described by a single temperature 8 and, additionally, that 
the constitutive equations are independent of the density of the fluid. 

We now make the assumption that, for a11 processes, the free energy, 
the entropy, the diffusive force, the stress on the fluid and the heat flux 
are determineá by the temperature, the percolation velocity and the 
temperature gradient : 

where g is the temperature gradient vector 

g = grad 8 . (3-2) 

Crochet and Naghdi12 include, in the constitutive equations, the defor- 
mation gradients and the material time derivatives of the deformation 
gradients for both phases. For rigid media, the deformation gradient 
of the solid mesh can be set equal to 1 and consequently it need not 
appear explicitly in equations (3-1). If the material flowing through 
the porous medium is indeed a fluid in the sense of Noll13, dependence 
on these variables must reduce to a dependence upon the symmetric 
part of the velocity gradient. Such dependence apparently has never 
been experimentally detected. 

Gurtini' assumes a constitutive dass similar to Eqs. (3-1). He includes 
dependence on partia1 densities pi and on their gradients. To be con- 
sistent with his assumptions, the gradient of porosity should be included. 
We believe this to be an important variable in the case of non-homoge- 
neous media, but we neglect such a dependence in this work. In fact, 
attention will be exclusively confined to media of constant porosity. 

Defining the pressure p by the relations 

then we can write 

tr (TI grad VI) = tr ((TI + ~p 1) (grad vl)), (3-4) 
since for incompressible fluids, in a constant porosity medium, Eq. 
(2-3) implies div vl = 0. 



Taking the time derivative of I/J and substituting it into the dissipation 
inequality, (2- 18), gives : 

Gurtinl' has demonstrated a lemma for the independence of 6, grad v', 
q, and g on the values of the state variables. This theorem states that, 
for a given point in the flow field and for a11 values of O,, q,, g,, there 
exists processes for which, at x = xo and t = to, 

@(x,, t o )  = @o, qbo, t o )  = qo, &O, to) = gO, (3-6) 
with arbitrarily choken values for the derivatives 8, grad v,, q, and g. 
From this fact, it follows immediately that the inequality (3-5) is satis- 
fied in a11 these processes if, and only if, the coefficients of those varia- 
bles are a11 zero. Consequently, 

and in a11 processes the inequality 

must be satisfíed. 

The free energy and the entropy assume their equilibrium value ir- 
respectively of the values of velocity and temperature gradient. This 
fact might be interpreted as a local equilibrium hypothesis. Also, the 
stress field always reduces to a hydrostatic pressure fíeld. This result 
is a consequence of the simple form postulated for the second law which 
neglects the entropy flux due to mixing. In more general theories, the 
stress may be non-isotropic. 

The simplified form of the reduced dissipation inequality includes, as 
special cases when q = 0, the Fourier inequality and, when g = 0, 

6(q, O) = m . q 2 O . (3-9) 

254 



If the diffusive force m is indeed a function of the temperature gradient, 
then inequality (3-9) does not necessarily hold. On the other hand, 
inequality (3-8) must be true for a11 processes in rigid and homogeneous 
porous media for which the constitutive equations (3-1) are a model. 

4. Isotropy and Frame Indifference ' 

The restrictions on the functions m and h imposed by the second law, 
Eq. (3-8), are not the only ones that need be considered. Material 
symrnetries and material frame indifference play also extremely impor- 
tant roles. The conjugation of symmetry properties with frame in- 
difference implies that for a11 orthogonal tensors Q which belong to the 
symmetry group of the porous media13, the following conditions hold: 

For isotropic materials, Eqs. (4-1) must be satisfied for a11 orthogonal 
tensors. Functions of this type, called isotropic functions, have been 
intensively studied. Recently, Wang14,15 and Smith16 arrived at a 
general representation theorem for them. In our special case, i.e., 
for vector valued isotropic functions of two vectors, this theorem reads: 

where Z,, Z,, q,, cp, are scalar valued functions of the arguments shown. 
-. We notice that, although the materials considered are isotropic, the 

diffusive force is not parallel to the percolation velocity q, unless 2, = 
= O or g = O. In the same way, the heat flux is not parallel to the 
temperature gradient, unless q, = O or q =-O. 

The substitution of formulae (4-2) into Eq. (3-8) yields: 

This inequality places important restrictions on the functions Zq, Z,, 
q,, q, but it is mu'ch too general to permit a concfusive analysis. 



5. Simple Model for Heat Conduction 

The principal aim of this research is to establish the simplest model 
for heat conduction in a porous media which is compatible with frame 
indifference and with the dissipation inequality, but still able to explain 
some, if not all, of the experimental evidence. Of central importance 
is the fact that the heat flux depends on the relative orientation of the 
velocity and temperature gradient vectors. 

It would be tempting to write, as a first approximation, 

where K is a tensor valued function of the absolute value of q. In fact, 
this appears to be the normal practice17,18,19. It will be shown that, 
for isotropic materials, in the very special case where such a tensor 
function exists, it cannot be a function of the absolute value of the 
percolation velocity only. 

To arrive at a simple model for heat copduction, we notice by consi- 
dering the representation theorem, Eqs. (4-2), that dependence of heat 
flux on the relative orientation of the two vectors q and g must arise 
from the dependence on the scalar product (q - g). Such dependence 
was considered by Lagarde20 who wrongly concluded that the dis- 
sipation inequality ruled it out. The simple model to be analysed in 
detail assumes that the diffusive for-ge is not altered by the temperature 
gradient, and that cp, and cp, in Eq. (4-2) are linear in the scalar product 
(q . g), and independent of llgll : 

The temperature 8 occurs in these functions as a parameter which 
is irrelevant to the arguments that follow. It can, therefore, be omitted 
in the variable list, while still allowing explicit dependence on the tem- 
perature of the functions in Eqs. (5-2). In the expression for the dif- 
fusive force m, R is the resistivity of the porous media and its inverse 
is the permeability. If Q is equal to unity, this expression reduces to 
Darcy's law. In the formula for the heat flux h, k, is the thermal con- 
ductivity of the mixture at stagnation. In -fact, we have: 



Consequently, 

WO) = 1, u0(O) = 1. 

This inequality must be satisfied for 
ting q = O and, subsequently, g = 0, 
ivell known results 

R 2 0, fxllall) 2 

a11 values of q and g. Thus, let- 
it is a simple matter to show the 

Note that for a fmed value of q, Eq. (5-5) is of the general form 

a + b(ci-e,) II g II + [c + d(q II g 1 1 2  +f ((i - es) II g 11 2, (5-7) 

where a, b, c and f are functions of Ilqll only, and eg is the unit vector 
in the direction of the temperature gradient. If f is negative, then let 
e, be such that q .  e, is positive. For suficiently large values of llgll, 
the cubic t e m  would dominate the expression and the dissipation 
would be negative. 

Conversely, were f positive, the same reasoning could be applied with 
the choice of e, such that q - e, is negative. Consequently, f must be 
zero and this implies that 

adllqll) = 0. (5-8) 

With this result, inequality (5-5) assumes the form: 



If we the percolation velocity and the temperature gradient be ortho- 
gonal, there rmults : 

From this expression, we conclude that 

which is compatible with the previously established value for ao at 
the origin. 

Introducing e, e, = 1 and e, - e, = - 1 into Eq. (5-9) and adding 
the two resulting inequalities : 

implying that 

ao(llsll) + fii(ll~I1) 119112 2 o- (5- 13) 

This inequality cannot be reduced further unless some other hypo- 
theses are made about the functions ao and pl. For instance, if ao and 
pl -are constants, then they are necessarily non-negative. However, 
this hypothesis will not be made. 

We can write inequality (5-9) in the form: 

6 = a + b llg1I2 + C ]lglI 2 0, 

where 

We shall now establish the conditions under which the dissipation 
has a minimum and when this minimum is positive, i.e. 

Since b is non-negative, then, if 6 has an extremum, it is necessarily 
a minimum and will occur at l]g] = - (cj2b), if c I O and b # O. 
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Equations (5-18) and (5-19) are statements that a heat flux can exist 
even when grad 8 = 0, but such a flux must be small in the sense that 

The linear form of this result, that is, a statement equivalent to Eq. 
(5-19), was derived by Crochet and Naghdi12. If this effect can be 
neglected, i.e., if po can be set equal to zero, then Eq. (5-2) reduces to 
h = - Kg, where 

The temor-valued function K is symmetric, with eigenvalues h: 

The characteristic spaces of Ki consist of a line in the direction of q 
and a plane normal to q. 

Note that with this simple model. 

h(-% g) = h(% g), h(q9 -g) = - h(% g). (5-23) 

Equations (5-21) and (5-23) can be easily tested. The experimental 
evidence available at the moment is inconclusive with respect to the 
result (5-23). If future investigations disprove this result, then t e m  
in higher powers of (q. g) must be added to Eq. (5-2). 



Equation (5-21) can be written in the following equivalent form: 

K = ko [ao(/lql/) 1 + BdbdI) llq112 eq @ 4 ,  (5-24) 

where e, is the unit vector in the direction of the percolation velocity. 
This formula is more convenient for comparison with experimental 
data. 

Under suitable hypotheses, this analysis can be made applicable to 
mass transfer in the fluid phase. In that case, Eq. (5-21) would read 

j = - D grad C, 

D = Do [~o(llqll) 1 + ~i(ll411) 11q112 eq @ eq], (5-25) 

where j is the mass flux of a component dissolved in the fluid with 
concentration C. 

6. Analysis of Experimental Data : 

Experimental results relating to heat conduction in porous media 
refer to the following situations: conduction with stagnant fluid, con- 
duction in the direction normal to the fluid velocity, and conduction 
in a diregtion parallel to the fluid velocity. It is shown in what follows 
that these observations qualitatively agree with the theoretical con- 
clusions of last item, and are also suficient for the determination of 
the parameters in the tensor function K of Eq. (5-24). 

For the stagnant fluid, the equation assumes the form: 

where ko depends on the porous media-fluid system. Theoretical or 
partially theoretical results, and experimental values as well, resulted 
in various e x p r e s ~ i o n s ~ ' , ~ ~ , ~ ~ , ~ ~  which allow an estimate of ko with 
appreciable accuracy. The expression proposed by Kunii and Smith2' is 

where kf and k, are, respectively, the thermal conductivity of the fluid 
and of the solid, making up the porous material; 4 is a function of 
the porosity and of the ratio kf/ks. 



For thermal wnduction normal to the percolation velocity, equation 
(5-24) reduces to: 

h = ko ao(llqllk, ao(0) = 1. (6-4) 

Experimental results obtained by various i n v e s t i g a t ~ r s ~ ~ * ' ~ ~ ~ ~  lead 
to the conclusion that 

kf ao(llqll) = 1 + cl - Re Pr. 
ko (6-5) 

The Reynolds and Prandtl numbers, involving the physical properties 
of the fluid, are defíned by: 

where d p  is a characteristic dimension of the solid particles. In Eq. 
(6-5), the coefíicient cl depends upon geometric factors of the porous 
media and apparently also upon thermal conductivity. According 
to the experimental measurements cl varies from 0.1 to 0.3. 

For parallel conduction, Eq. (5-24) assumes the form: 

Experimental- data for this situation are extremely scarce. They a11 
refer to very low velocities and are restricted to the case in which the 
heat flux opposes the velocity. With the help of the data taken by 
Kunii and c ~ l l a b o r a t o r s ~ ~ ~ ~ ~ ,  and with the help of equation (6-5) it 
is possible to obtain 

where the coefíicient c2 is of the order of 0.6 for the very few systems 
investigated. 

In accordance with the experimental evidence, we arrive at the fol- 
lowing form for Eq. (5-24): 



It is interesting to note that data taken on diffusion in porous ma- 
t e r i a l ~ ~ ~  assume a form analogous to Eq. (6-9). This fact substantiates 
our comments at the end of last section. 

1. C. Truesdell, Rend. Accad:Lincei 22, 33 and 158 (1957). 
2. P. D. Kelly, Int. J. Engin. Sci 2, 129 (1964). 
3. A. C. Eringen and J. D. Ingram, Int. J. Engin. Sci. 3, 197 (1965). 
4. J. D. Ingram and A. C. Eringen, Int. J. Engin. Sci. 5, 289 (1967). 
5. A. E. Green and P. M. Naghdi, Int. J. Engin. Sci. 3, 231 (1965). 
6. A. E. Green and P. M. Naghdi, Arch. Rational Mech. Anal. 24, 243 (1967). 
7. A. E. Green and P. M. Naghdi, Int. J. Engin. Sci. 6, 631 (1968). 
8. A. E. Green and P. M. Naghdi, Quart. J. Mech. Appl. Math. 22, 427 (1969). 
9. R. M. Bowen, Arch. Rational Mech. Anal. 24, 370 (1967). 
10. R. M. Bowen and J. C. Wiese, Int. J. Engin. Sci. 7, 689 (1969). 
11. M. E. Gurtin, Arch. Rational Mech. Anal. 43, 198 (1971). 
12. M. J. Crochet and P. M. Naghdi, Int. J. Engin. Sci. 4, 383 (1966). 
13. W. Noll, Arch. Rational Mech. Anal. 2, 197 (1958). 
14. C. C. Wang, Arch. Rational Mech. Anal. 36, 166 (1970). 
15. C. C. Wang, Arch. Rational Mecli. Anal. 36, 198 (1970). 
16. G. F. Smith, Int. J. Engin. Sci. 9, 899 (1971). 
17. R. F. Baddour and C. Y. Yoon, Chem. Engin. Progress Symposium Series 57,35 (1961). 
18. S. Yagi, D. Kunii and N. Wakao, Proceedings of the 1961-62 Heat Transfer Con- 
ference of the ASME, 742 (1961). 
19. J. B. Agnew and 0. E. Potter, Trans. Instn. Chem. Engrs. 48, 115 (1970). 
20. A. Lagarde, Revue de I' Institut Français de Pétrole XX, 383 (1965). 
21. D. Kunii and J. M. Smith, A. I. Ch. E. J. 6, 71 (1960). 
22. G. P. Willhite, D. Kunii and J. M. Smith, A. I. Ch. E. J. 8, 340 (1962). 
23. A. V. Luikov, A. G. Shashkov, L. L. Vasilev and Y. E. Fraiman, Int. J. Heat Mass 
Transfer 11, 117 (1968). 
24. S. C. Cheng and R. I. Vachon, Int. J. Heat Mass Transfer 12, 1201 (1969). 
25. S. Yagi, D. Kunii and K. Endo, Int. J. Heat Mass Transfer 7, 333 (1964). 
26. S. Yagi, D. Kunii and N. Wakao, A. I. Ch. E. J. 6, 543 (1960). 
27. D.'Kunii and J. M. Smith, A. I. Ch. E. J. 7, 29 (1961). 
28. J. J. Fried and M. A. Combarnous, Advances in Hydroscience (Ven Te Chow, ed.), 
Vol. 7, 228, Academic Press 1971. 


