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The thermodynamical theory of mixtures is applied to the process of heat conduction
associated with the flow of fluids through isotropic, rigid, porous medi?. A simplified
model for conduction is proposed and the restrictions imposed by the second law of
thermodynamicsareanalyzed. Usingthismodel, theheat fluxisgivenby h = — K grad 0,
where K = ko [oo(| )1 + B1(|al)q ® q] is a tensor valued function of the perco-
lation velocity g. The experimental data available permits the determination of the
functions «, and B, over a limited range of velocities.

A teoria termodinamica de misturas ¢ aplicada ao processo da condugéo de calor as-
sociado ao escoamento de fluidos através de meios porosos, isotrépicos e rigidos. Um
modelo simplificado para a conducdo é proposto e as restri¢oes impostas pela segunda
lei da termodinamica sdo analisadas. Partindo desse modelo, resulta que o fluxo de
calor é dado por h= — K grad 0, onde K = ko [ao(|ql)1 T+ 8:(lal)a ® q] ¢ uma
funcdo tensorial da velocidade de percolagdo g. Os dados experimentais disponiveis
permitem a determinacgdo das fungles a, e f;, em uma faixa limitada de velocidades.

1. Introduction

The basic conservation laws, which describe the theory of fluxes in
mixtures, were established by Truesdell' in relation to continuum
mechanics and, later, generalized by Kelly? Eringen and Ingram®*#,
Green and Naghdi®®7-%, Bowen, Bowen and Wiese!® and by Gurtin™" .

This theory can be readily applied to the study of flows, through porous
media, as has been shown by Crochet and Naghdi'?, who investigated
the restrictions imposed by the second law of thermodynamics upon
a certain class of non linear constitutive equations. Their results are
perfectly capable of explaining the majority of mechanical phenomena
observed in porous media, including, as specia cases, Darcy’s law and
all o its generalizations. However, their treatment of heat conduction
is not complete and the linearized equation employed is too specia
and not able to explain the difference in conductivity, in directions
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normal to and paralel to the velocity of the fluid, which has been
explained experimentally.

In this work, we follow the above mentioned authors very closdly and
apply similar methods to the study of the interaction of the fluid flow
with the mechanism of heat conduction in a rigid, isotropic, porous
medium. In particular, we examine the restrictions imposed by the
second law upon the constitutive class proposed, and obtain the re-
duced dissipation inequality which is needed to restrict the coefficients
o a smple model for heat conduction. The main result are repre-
sented by equations (5-21)and equation (6-10) with the acompanying
restrictions (5-11) and (5-13).

2. Basic Laws

To formulatethe basic field equations, we consider the flow o a fluid,
with massdensity p¢ flowing with velocity v, through a porous medium
of porosity ¢ and velocity v,. The medium is made of particles with
mass density ps. In addition,

pr=¢p, pa=(—8p, p=p1+pr2 pw=piv, + RV (2-1)
where p is the global density of the mixture and w is the velocity of
the center of mass.

Given a scalar field, f, we define the material time derivative, , by the
expression

~ Tt (grad f)w. 2-2)

With the help o these definitions, the basic conservation laws are
mass baancefor each constituent,

% + div (p; v) = O, (2-3)

momentum balancefor each constituent,

ov; ! :
pi( 0‘; + (grad v) v{ =div T; + pil; + pi b, (2-4)
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energy balance for the mixture,

2 2
pe = —divh+tr{z T,-Tgradv,}— Y pili-i—w + pr, (2-5)
i=1 i=1

growth of entropy for the mixture,
ps > — div (h/6) T+ r/6. (2-6)

In theserelations, i = 1 appliesto the fluid and i = 2 to the solid mesh.

In Eq. (2-4), T; is the stress tensor for each phase and I; the diffusive
force, representing the total force exerted by one phase upon the other,
per unit mass of phase i. The body forces, or external actions, act
through the field forces b;.

Theexpression for the energy balance, given by equation (2-5),expresses
the growth of internal energy e of the mixture due to: heat conduction
represented by the heat flux h; the irreversible working due to the
surface and diffusiveforces; the heat r supplied from the environment.

Equation (2-6) represents the second law of thermodynamics and is
caled the Gibbs-Duhem inequality.

Compatibility of equations (2-4), with the expression for the momentum
balance of the mixture, implies a balance of diffusve forces:

pili + paly = 0. (2-7)
Then, letting

m = p; 11 (2-8)

and substituting this in equations (2-4) and (2-5), and eliminating
in equation (2-6), using equation (2-5), the following equivalent forms,
for expressions (2-4), (2-5) and (2-6), are obtained:

01 [% + (grad -vy) vi‘ =divT; +m+ p by, 2-9)
ravz .
P2 LW + (grad v,)v, |=div T, —m + p, b,, (2-10)

pe=—divht tr{TTgradv, + TIgradv) -
-m.(vy —v) topr (2-11)
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pW + s —tr{TTgradv, + Tigradv,} T m.(v; —v,) +
+ '&' h.grad 0 < 0. (212

The last relation is the reduced dissipation inequality, where y is the
Helmholtz free energy,

¥ =e— Os. (2-13)

This inequality plays a central role in modern thermodynamics of
continua, since it limits the possibleformsfor theconstitutive equations.

Different representations of Eqgs. (2-1) to (2-13) are presented in all
references Cited at the introduction. Bowen and Wiese!® give an excel-
lent survey and comparison o the various forms proposed.

For thestudy o heat conductionit will beconvenient to restrict attention
to rigid porous media In this case, the velocity v, can be set equal to
zero the choice of a suitable frame of reference. Also, the porosity e
is independent o time. Equations(2-3) and (2-9)to (2-12), consequently,
assume a simplified form:

e 20+ dv (o @) = 0, (2-14)
or {g_‘tl + [grad '(q/g)] q} =divT; + m + epchy, (2-15)
div T, —m¥ p,b, =0, (2-16)

pé = —divhttr {TIT grad (q/a)} — % m.q + pr, (2-17)

p(fr + s0) — tr {TIT grad (q/e)} + —i—m .q +719—h .grad 8 <0, (2-18)
where g, the percolation velocity, is defined by

qg==¢vy. (2-19
3. Formulation of Constitative Equations

To study those aspects o heat conduction not inyolving problems o
compressibility or heat transfer between phases, we shall assume the
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systemto be described by a single temperature 8 and, additionally, that
the constitutive equations are independent of the density of the fluid.

We now make the assumption that, for all processes, the free energy,
the entropy, the diffusive force, the stresson the fluid and the heat flux
are determined by the temperature, the percolation velocity and the
temperature gradient:

¥ =190, 998, s=s50,qg m=moq g,

Tl = Tl (9’ q, g)’ h=h (9, q, g)7 B (3—1)
where g is the temperature gradient vector

Crochet and Naghdi'? include, in the constitutive equations, the defor-
mation gradients and the material time derivatives of the deformation
gradients for both phases. For rigid media, the deformation gradient
of the solid mesh can be set equal to 1 and consequently it need not
appear explicitly in equations (3-1). If the material flowing through
the porous medium isindeed a fluid in the sense of Noli!?3, dependence
on these variables must reduce to a dependence upon the symmetric
part of the velocity gradient. Such dependence apparently has never
been experimentally detected.

Gurtin'' assumesa constitutive class similar to Egs. (3-1). Heincludes
dependenceon partial densitiesp; and on their gradients. To be con-
sistent with hisassumptions, thegradient of porosity should beincluded.
We believethisto be an important variablein the case of non-homoge-
neous media, but we neglect such a dependencein this work. In fact,
attention will be exclusvely confined to media of constant porosity.

Defining the pressure p by the relations
gp = — —31“ tr Ty, (3-3)

then we can write
tr {T; grad v,} = tr {(T, + ¢p 1) (grad v1)}, (3-4)

since for incompressible fluids, in a constant porosity medium, EQ.
(2-3) implies div v; = 0.
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Taking the time derivative of ¥ and substituting it into the dissipation
inequality, (2-18), gives:

0 . v

p <%+s>0——tr {Tf + ep1)(grad vi)} + p _a_‘g_.q_,_
. | 1 -
P gt mat phe<0 (9

Gurtin'! has demonstrated alemmafor the independence of 6, grad vy,
g, and g on the values of the state variables. This theorem states that,
for a given point in the flow field and for all values of 6,, g, g,, there
exists processes for which, at x = x, and t = t,,

g(xo: to) = Gm ‘I(Xa, to) == qaa g(xm to) == go’ (3'6)
with arbitrarily chosen values for the derivatives 8, grad v,, g, and g.
From this fact, it follows immediately that the inequality (3-5) is satis-
fied in all these processesif, and only if, the coefficients of those varia-
bles are all zero. Consequently,

s= - %% o= Y(0), s =50, T, = —ep 1, (3-7)

and in all processes the inequality

1 1
5(q,g)5—?m'q-?h-g20 (3-8)

must be satisfied.

The free energy and the entropy assume their equilibrium value ir-
respectively of the values of velocity and temperature gradient. This
fact might be interpreted as a local equilibrium hypothesis. Also, the
stress field aways reduces to a hydrostatic pressure field. This result
isa consequenced the simpleform postulated for the second law which
neglects the entropy flux due to mixing. In more general theories, the
stress may be non-isotropic.

The smplified form of the reduced dissipation inequality includes, as
specid cases when g = 0, the Fourier inequality and, when g = 0,

5(q ) =m.q=0. (3-9)
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If thediffusveforcem isindeed a function o the temperature gradient,
then inequality (3-9) does not necessarily hold. On the other hand,
inequality (3-8) must betruefor all processesin rigid and homogeneous
porous media for which the constitutive equations (3-1) are a model.

4. Tsotropy and Frame Indifference '

The restrictions on the functionsm and h imposed by the second law,
Eq. (3-8), are not the only ones that need be consdered. Materia
symrnetries and material frameindifference play aso extremely impor-
tant roles. The conjugation of symmetry properties with frame in-
differenceimpliesthat for all orthogonal tensorsQ which belong to the
symmetry group o the porousmedia'?, the following conditions hold:

m(0, Qq, Qg) = Qm(9, q, g),
h(0, Qq, Qg) = Q h(, q, g). 4-1)

For isotropic materials, Eqgs. (4-1) must be satisfied for all orthogonal
tensors. Functions o this type, called isotropic functions, have been
intensively studied. Recently, Wang!#**® and Smith*¢ arrived at a
genera representation theorem for them. In our special casg, ie.,
for vector valued isotropicfunctionsd two vectors, this theorem reads:

m(0, g, g) = Z,0, Hqu Ng’{ q-8)q + Z,0, Iq(l, \Ig\l, q-g)g

o, g, 2) = 0,0, 4], ], a-2)9 + ¢.,6, 4. |gl. 9-0)e ©@-2)
whereZ,, Z,, ¢,, ¢, arescalar valued functionsof theargumentsshown.
We notice that, although the materials consdered are isotropic, the
diffusveforceis not parallel to the percolation velocity g, unless Z, =
= 0 or g =0 In the same way, the hesat flux is not parald to the
temperature gradient, unless ¢, = 0 or q =0.

The substitution of formulae (4-2) into Eq. (3-8) yidds

so 0=~ 12,0l - o, bl - (% Gz @

This inequality places important restrictions on the functions Z,, Z,,
@4 @, but it is much too genera to permit a concfusive andyss.
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5. Simple Model for Heat Conduction

The principal a@am of this research is to establish the simplest model
for heat conduction in a porous media which is compatible with frame
indifference and with the dissipation inequality, but still able to explain
some, if not al, of the experimental evidence. Of central importance
is thefact that the heat flux depends on the relative orientation of the
velocity and temperature gradient vectors.

It would be tempting to write, as a first approximation,

h = —K(lale, (5-1)

whereK is a tensor valued function of the absolute valued g. In fact,
this appears to be the normal practice'”-'%1°, It will be shown that,
for isotropic materids, in the very special case where such a tensor
function exigts, it cannot be a function o the absolute value of the
percolation velocity only.

To arrive at a Smple modd for heat copduction, we notice by consi-
dering the representation theorem, Egs. (4-2), that dependence of heat
flux on the relative orientation of the two vectorsq and g must arise
from the dependence on the scalar product (q- g). Such dependence
was considered by Lagarde?® who wrongly concluded that the dis-
sipation inequdlity ruled it out. The Smple modd to be analysed in
detail assumesthat the diffusiveforce is not altered by the temperature
gradient, and that ¢, and ¢, in Eq. (4-2) arelinear in the scalar product
@.9. and Independent o [gf:

m = — R0, ”
h= -k {[ao(ﬂ a)) + a1(0 la) @ -gle
llq||)+ﬁ1(0 lal) (@ 2] a}- (5-2)

The temperature 6 occurs in these functions as a parameter which
isirrelevant to the argumentsthat follow. It can, therefore, be omitted
in the variable list, while still alowing explicit dependence on the tem-
perature of the functionsin Egs (5-2). In the expression for the dif-
fusve forcem, R is the resgtivity of the porous media and its inverse
is the permeability. If Q is equal to unity, this expression reduces to
Darcy's law. In the formulafor the heat flux h, &, is the thermal con-
ductivity of the mixture at stagnation. In fact, we have:

Jm

—— = — R1,
oq 4=0
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AL I § (5-3)
q

Consequently,
Q0) =1, ay0) =1 w54

Upon substitution of Egs. (5-2) into the dissipation inequality (4-3),
we obtain: S

50,9 = L R(lal) [al? + L ko aallal) el” + 2 a.(lalia 9 lel?

+ 5 g lab @ o + 0 plal @27 = 0. (55)

This inequality must be satisfied for all vadues of q and g Thus, let-
ting g = 0 and, subsequently,g = O, it is a smple matter to show the
well known results
R>0, Qd])=0 ko =0. (5-6)
Note that for a fixed vaue o g, Eq. (5-5) is of the generd form
a+bge)|gl+[ct+dae)]el* +f@e)lgl* =0  (7)

where a, b, c andf are functions of ||q| only, and e, is the unit vector
in the direction of the temperature gradient. If f is negative, then let
e be such that q-e is postive. For sufficiently large values of |g|,
the cubic term would dominate the expresson and the dissipation
would be negative.

Conversdly, weref postive, the same reasoning could be applied with
the choice of ¢ such that q-e is negative. Consequently,f must be
zero and this implies that

% (|qf) = 0. (5-8)
With this result, inequality (5-5) assumes the form:

s, © = ROal) Jal> + 2 wo(lal) ] +
+ % golal) lal el @~ &) + 52 B (lal) [al? el e 2 0. ()
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If we the percolation velocity and the temperature gradient be ortho-
gonal, there results:

1 ) 1
2 Rl [a]l* + 5 ko 2o(lal) g]* = ©. (5-10)
From this expression, we conclude that
a%(]qf) = 0, (5-11
which is compatible with the previoudy established value for «, at
the origin.

Introducinge, ‘e =1 and e ‘e = — 1 into Eq. (59) and adding
the two resulting inequalities

LRodlal) lal? + %o fooal) + B(lal) a1 el = 0. (512

implying that

ao(lal) + B:(lal) la]* = 0. (513
This inequaity cannot be reduced further unless some other hypo-
thesesare made about thefunctionsa, and 8. For instance, if o« and
B are constants, then they are necessarily non-negative. However,
this hypothesis will not be made.
We can write inequdity (5-9) in the form:

d=a+blg|*+clgl =0 (5-14)
where

R
a

leg" Q;l{?" o™ l

Alal) |a]* = o,
Leo(lal) + B1(la]®) lla]*(eq - €] 2 O,

ﬁo(”qu) ”qn (eq - €).

1l

c

We shall now establish the conditions under which the dissipation
has a minimum and when this minimum is positive, i.e.

00 0%6
o] = 2 Il + < el 19
Since b is non-negative, then, if 6 has an extremum, it IS necessarily
a minimum and will occur at ||g]] = — (¢/2b), if c< 0 and b % Q
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Then,
€50 (5-16)

and

Fallal) - e)” < T ol [zolal) + Buclal) lale e)?). (5-17)

The last equation holds if and only if

0< 3 (fal) < %D paqja)) + it a1 19

In particular,
| Bo(0) | < (46R/eko)"". (5-19)

Equations (5-18) and (5-19) are statements that a heat flux can exist
even when grad 6 = 0, but such a flux must be small in the sense that

) < LR Logja + putjad tal? [Flal. - 20

ek

The linear form o this result, that is, a statement equivalent to Eq.
(5-19), was derived by Crochet and Naghdi'2. If this effect can be
neglected, ie., if Bo can be set equal to zero, then Eq. (5-2) reduces to
h = — Kg, where

K = ko[o([q) 1 + B1(lq]) ¢ ® q] - (5-21) -
The tensor-valued function K is symmetric, with eigenvalues 4;:
A = ko [o(la]) + Bi(lla]) [al*]. (5-22)

Ay = A3 = ko 20(jjql})-
The characteristic spaces of K; consist of alinein the direction of q
and a plane normal to g.

Note that with this smple modd.

h(—q, g) = h(g, g), hig, —g) = — hiq, g). (5-23

Equations (5-21) and (5-23) can be eadly tested. The experimental
evidence available at the moment is inconclusive with respect to the
result (5-23). If future investigationsdisprove this result, then terms
in higher powers of (q-g) must be added to Eq. (5-2).
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Equation (5-21) can be written in the following equivalent form:

K = ko [ao(lgl) 1 + Bu(lal) |a]* e, ® €], (5-24)

where g isthe unit vector in the direction of the percolation velocity.
This formula is more convenient for comparison with experimental
data.

Under suitable hypotheses, this analysis can be made applicable to
mass transfer in the fluid phase. In that case, Eqg. (5-21) would read

j= — D grad C
D = Do [7o(lq) 1 + y1(|al)) [a]* s ® €], (5-2)

where j is the mass flux of a component dissolved in the fluid with
concentration C.

6 Analysis of Experimentd Data |

Experimental results relating to heat conduction in porous media
refer to the following situations: conduction with stagnant fluid, con-
duction in the direction normal to the fluid velocity, and conduction
in a direction parallel to thefluid velocity. It is shown in what follows
that these observations qualitatively agree with the theoretical con-
clusons of last item, and are aso sufficient for the determination of
the parameters in the tensor function K o Eq. (5-24).

For the stagnant fluid, the equation assumes the form:
h=kog, 61

where k, depends on the porous media-fluid sysem. Theoretical or
partialy theoretical results, and experimental values as well, resulted
in various expressions?!-22-23:24 which dlow an estimate of ko, with
appreciableaccuracy. Theexpressionproposed by Kunii and Smith??! is

I_ck% N 0.92(1-3) ,
¢ + 5 (ki/ky)
where k; and k, are, respectively, the thermal conductivity of the fluid

and of the solid, making up the porous material; ¢ is a function of
the porosity and of the ratio k/k,.
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For therma wnduction normal to the percolation velocity, equation
(5-24) reduces to:

h = ko cxo(llqll)g, ao(0) = L. (6-4)
Experimental results obtained by various investigators!®19-25 lead
to the conclusion that
woflal) = 1+ ¢ 1 Re Pr. ©5)
0

The Reynolds and Prandtl numbers, involving the physical properties
o the fluid, are defined by:

Re = Mﬁ”;q”, (6-6)
Pr = £ E, (6-7)

where d, is a characteristic dimension of the solid particles. In Eq.
(6-5), the coefiicient ¢; depends upon geometric factors of the porous
media and apparently also upon thermal conductivity. According
to the experimental measurements ¢; varies from 0.1 to 0.3.

For parald conduction, Eq. (5-24) assumes the form:

h = ko [oo(flq]) + Bi(lal) laf*T e (69

Experimental- data for this situation are extremely scarce. They all
refer to very low velocities and are restricted to the case in which the
heat flux opposes the velocity. With the help o the data taken by
Kunii and collaborators?%-27, and with the help of equation (6-5) it
is possible to obtain

pulla) lal* = 2 FERePr, ©9)

where the coefiicient ¢, is of the order of 0.6 for the very few systems
investigated.

In accordance with the experimental evidence, we arrive at the fol-
lowing form for Eq. (5-24):

k = ko [1 + kﬁ Re P,r(l +§—Zeq®eq)] (6-10)
0 - 1 C o
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It is interesting to note that data taken on diffusion in porous ma-
terial assume a form analogous to Eq. (6-9). This fact substantiates
our comments at the end of last section.
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