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In this paper, we discuss some physical properties of three structureless alpha p&ticles in- 
teracting through two-body potentials and compare those properties with the wrresponding 
experimental observations for the ''C nucleus. The wave function is expanded in terms of 
translationally invariant harmonic-osciilator states, the coefficients of the expansion being 
taken as variational parameters. 

Discutem-se, neste trabalho, algumas propriedades físicas de três partículas alfas sem estru- 
tura interagindo através de potênciais de dois corpos. Faz-se a comparação com as observa- 
ções experimentais correspondentes no caso do núcleo "C. A função de onda é expandida 
em termos de estados de osciladores harmônicos translacionalmente invariantes. Os coefi- 
cientes da expansão são tratados como parâmetros variacionais. 

1. Introduction 

A representation for the interna1 structure of light doubly even nuclei 
with A = 22 ,  in terms of alpha clusters, grounds mainly on the fact that 
the alpha particle is the most stable nuclear system. To separate a proton 
from this nucleus, the extremely large energy of 19.8 MeV is necessary 
and there is no excited state of the nucleus below this energyl. A number 
of attempts, using mainly variational methods and the Faddeev equations, 
have been made recently to use this model in calculating properties of 
the '*C nucleus2- ". The alpha particles are assumed to be structureless 
rigid entities and it is postulated that inside the nucleus these particles 
interact with each other via a two-body potential which fits the experi- 
mental phase shifts in the alpha-alpha scattering. 

The rather incomplete and contradictory results obtained up to now 
leave the question, whether the three-body model can account for the 

ground state of ''C, still as an open problem. 
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In this paper we address ourselves to this question using a variational 
method with a translationally invariant harmonic-oscillator basis. It 
will be possible to estimate the trend of the error by truncating the basic 
space in subspaces corresponding to differmt number of osciilator quanta 
in the approximation. 

Some phenomenological cr-ct potentials with 1-dependence wili be taken 
from the literature. So, we abandon the sissumption. common to almost 
a11 previous calculations, of the negligibility of the a-a potential in the 
higher angular-momentum channels. 

The boson character of the particles in taken into account and, with the 
variational function so obtained, we shall discuss the form factors of the 
''C nucleus. A rough estimate of the Couiomb energy is made. 

2. The Trial Function 

We shall try to describe the system of threí: alpha particles by a trial wave 
function $ expanded in terms of translationally invariant harmonic- 
oscillator states cp,. i. e.. 

$ = Cavcpv. (2.1) 

The coefficients a, are to be treated as linear variational parameters. 

The function cp, describes the state v of a sjrstem of three harmonic oscilla- 
tors. To satisfy the conditions to be imposed. for physical reasons. on the 
three-alpha particie states. the three harmonic oscillators will be coupled 
to a zero total orbital angular momentuni (L = J = 0) and will be in a 
symmetric configuration state. The chara~zter of translational invariance 
can easily be obtained through the use 01' the Jacobi coordinates 



The construction of the functions cp, with the mentioned required pro- 
perties was discussed and carried out explicitly by Moshinsky and collabo- 
r a t o r ~ ' ~ . ' ~ .  From their work. we see that the states cp, are given by 

where I nu 21,. n, 21,. 00) are states of three harmonic osciliators in the 
coordinates (2.2) coupled to L = O and with zero quantum energy in 
x, (the center of mass coordinate). 

These states carry the irreducible representation f = j3)  of the group 
S(3) of permutation of three objects. As the coefficients a, are parameters 
to be determined via a variational analysis, the function 4 preserves the 
mentioned characteristics of (2.3). 

The number of terms summed up in (2.1) will define our approxirnation. 
Obviously. the function I+!I should be exactly defined by (2.1) if we could 
take ali the infinite terms of the sum. 

The needed cut-off in the sum will restrict the approximation to a maximum 
number N of quanta. In other words. the sum will be restricted to those 
values of v such that 

since the total number of quanta is given by 

In the 10-quantum approximation, there are 16 values of v, i.e., 16 values 
for the set (n,n21) such that (2.4) is satisfied. So, in the approximation 
of 10 quanta, we are trying to describe the system of three alphas in a 
space of dimensionality 16. In our case, the dimension d of the space 
defined by the approximation of N quanta is given by 

1 " 
d = (q + 1) (3q + r) + 1 (No - 6x1 (No - 6x - 11, (2.6) 

A = O 

where No = N; q and r are. respectively, the quocient and the residue 
of the division of No + 1 bv 6: and x is such that there is no negative 
contribution to the sum. 



Finally, a last few words about the state, (2.3). The triple sum. in na, nb 
and I ,  ,can be reduced to sums over only two of these indices if we take 
jnto account the "energy condition" that must be satisfied by the Mos- 
hinsky coefficients14 (nulo, n,lb, L I nll,, i~,i,, L), i. e., 

2n, + I, + 2n, + 1, = 2n1 + I, + 2n2 + 1,. (2.7) 

which, in our case. can be expressed as 

These states are orthonormai as can be easily seen using the sum rules 
for the Moshinsky coefficients derived by Aguilera-Navarro et d e .  

3. Matrix Elements of H 

The Hamiltonian for a system of three alpha particies of mass m interac- 
ting only tbrough two-body forces is given by 

where V(s .  t )  may depend on the relatite coordinates and momenta of 
particles s and t. Taking usual dimensionless coordinates x, and momenta 
p, defined by 

p: = ,/h= p,. s  = 1 .  2. 3 (3.2b) 

where o is the common oscillator frequency. we can put the intrinsic 
Hamiltonian 8 under the form 

where p,. p, and p, are momenta associated to the Jacobi coordinates 
defined in (2.2). 

In this way. the matrix elements of JY" between the states (2.3) are given by 

(v' / A? I v) = ( N  + 3)ho6,., + 3(v1 ( U(1 .2 )  / 1)). (3.4) 

where again v stands for the set (nln,l). N is given by (2.5) and 



Notice that we were allowed to sum over the pairs of particles. so getting 
our matrix elements in terms of U(1.2) only. due to the definite permuta- 
tional symmetry of (2.3). 

The matrix elements of U(1,2)  are given by 

The Moshinsky coefficients were calculated with the nice closed formula 
derived by Trlifaj16, and the last "reduced matrix elements are easily 
obtained by means of a ~ s u a - 1 ' ~ ~ ' "  expansion in terms of Talmi integrals. i.e. 

(n'l' 11 U 11 nl)  = 1 B(n'lf, nl, p)I,(U). (3.7) 
P 

where p runs over the set of integer values 

the Talmi integrais being defined by 

and we give in Table 1 the relevant Talmi integrals for our present calcula- 
tions. In this way. we have obtained all the matrix elements in terms of 
Moshinsky coefficients. Talmi integrals and the coefficients B defined 
by (3.7). These coefficients were calculated by means of the expression 
contained in Ref. 14. 

AI1 we need now is to discuss the interaction. 

Table 1 - The relevant Talmi integrals 



4. The Variational Energy 

The potential V(1,2) is the superposition of the nuclear a-a potential K, 
and the Coulomb potential 

where 

= mc2m,c2:h2c2. 

and m,c2 is an arbitrary mass which we ci-iose to be the electron rest mass 
(moc2 = 0.5 1 1  MeV).  

While this part of the interaction is well tlefined. the same is not true for 
the nuclear part which will be taken from t he phenomenology of a-a scatte- 
ring. 

We considered two kinds of a-cc potentizls. The first is due to Ali and 
Bodmer" who obtained phenomenological a-a potentials for 1 = 0.2 
and 4 that fit the relevant phase shifts for C M  energies up to 12MeV. Thty 
ured Gaussians to shape the repulsive and attractive interactions. 

The other potential was obtained by Bem and ScharfIs by means of the 
Gelfand-Levitan solution of the inverse problem in scattering theory. 
The potential is also 1-dependent and is defined point-to-point. There 
are hard cores located at r ,  = 1.2037 fm. r ,  = 1.4307 fm and r ,  = 1.6049 fm 
where the index of r refers to the particular 1 considered. This potential 
reproduces exactly the experimental phase shifts. 

With such potentials. we diagonalize the: Hamiltonian using the Jacobi 
procedure thus obtaining its eigenvalue:, and corresponding eigenfunc- 
tions. The diagonalization of (3.4) is made for different values of the oscil- 
lator parameter (4.3). 

In the case of the Benn-Scharf potentia,. we arbitrarily substituted tbe 
hard core by a term varying as the inverse: of the relative distance between 
two alphas. We used this trick to avoid a more complex and sophisticated 
treatment due to the fact that the oscill;3tor functions do not vanish at 
the core radii. 

In Figures 1-4. we show the behavior of the lowest eigenvalue when we 
vary the value of i:. The curves associated to N = 8 do not cross those 
corresponding to N = 10. 



Fig. 1 - Variational energy as a function of the oscillator parameter :: for the 0.2.4.6.8 and 
10-quanta approxirnation. Potential Ali-Bodmer e ,  + e, + e,. 

Fig. 2 - Same as Fig. 1 for Ali-Bodmer dó + d, + (1,. 
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Fig. 3 - Same as Fig. 1 for Ali-Bodmer dó 
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Fig. 4 - Same as Fig. 1 for the Benn-Scharf potential 



In Fig. 1. we see the results for the potential e, + e, + e, of Ali-Bodmer". 
The best energy of -- 1.24MeV was obtained for c = 16. Figure 2 refers 
to the potential (16 + d; + rl,. The best result E = - 1.61 MeV was for 
i ;  = 15. Now. using only do as a common potential for all 1-states. we get 
an almost unbound state with E = --0.6 MeV for I: = 13 as shown in 
Fig. 3. This result is in agreement with the fact that the a-a potential is 
strongly I-dependent. 

In Fig. 4. we have the results obtained using the Benn-ScharfI8 potential. 
This potential gave the best energy in the approximation of 10 quanta. 
For r: = 12. we have E = -3.19 MeV. For cornparison. we collect in 
Table 2 some results obtained by various authors. 

Author Ref. E(M eV) 

Daurriulat 
Harrington 
Duck 
Fulco & Wong 
Hebach & Henneberg 
Leung & Park 
Abdul-Magd 
Lim 
Noble 
Visschers & Wageningen 

--------------- 

Experimental 

- - - - - - - - - - 
+ 1.4 

7.36 
unbound 

2.79 
1.48 
7.36 
1.0 
1.1 

- 1.4 
2.20 

- - - - - - - - -- 
- 7.274 

Table 2 - Ground state energy of 12C obtained bv var iou~ authors 

By taking N = 0,2,4,.  . . successively, we define spaces of increasing 
dimension d = 1,2,4,. . . (see Eq. (2.6)). The successive diagonalizations 
in such spaces allow us to estimate the trend of the error. 

In Fig. 5. we plotted the binding energy versus the number of quanta 
N in the approximation. We see that the Benn-Scharf potential gives a 
three-alpha bound state from the very starting point, i.e, at the zero- 
quantum approximation, while fbr binding the system we need at ieast 
4 quanta for the used Ali-Bodmer potentials. On the other hand. Fig. 5 
suggests that a further approximation (N greater than 10) will favor the 
Ali-Bodmer potential since it seems that the Benn-Scharf potential is 
going to define an inconvenient plateau in the plotting. 



Fig. 5 - The behavior of the binding energy with increasing number of quanta for the discus- 
sed potentials. 

As there are indications that the model must work better for excited states. 
where the particles have greater oportunity of individualization. calcula- 
tions are in progress to try to describe the l o w  lying O+ and 2' levels of ''C. 

5. Coulomb Energy 

The Coulomb energy was calculated in the zero-quantum approximation. 
The best value of c in this approximation using the Benn-Scharf potential 
was i: = 3. We obtained for the Coulomb energy the value E, = 5.28MeV 
which is in accordance with the previous value estimated by Harrington3 

of 5.44MeV. 

6. Form Factors 

Although the a-model does not produce a s,atisfactory ground-state energy 
for the I2C. the calculated charge form factor fits ver- well the experi- 
mental resuits2'. 

The charge form factor of a system of particles of total charge Z is 
given by 



where hq is the momentum transfer and p(x) is the charge density referred 
to the center of mass. 

If we want to get a more explicit expression for F(q)  when using the re- 
presentation (2.1)  for a system of n alphas. we start by constructing an 
operator which gives the probability density of finding an a-particle a t  
some arbitrary pointz. Such operator is obviously given by 

where xs is the position of the particle S. 

As we are interested in the density referred to the center-of-mass, we write 
(6.2)  in the form. 

with 

and 

X = z  - XCM. 

If we indicate by n , (x )  the expectation value of fi,(x) with respect to the 
ground state. and take into account the size of the particles. we find that 
the charge densitll will be given by 

p(x) = p ,h  - Y) m Y )  dY S (6.6)  

where p,(x) is the charge distribution in the a-particle. With this p in 
(6.1). we have 

where 

is the body-form factor of the system and 



is the charge form-factor of the a-particlr:. 

Turning back to the three-body case and using the expansions (2.1) and 
(2.3). we have, after an I-expansion for the exponential. that F B  can be 
written as 

with 

The matrix elements of j, in the base (2.3) can be calculated in the same 
way as we did for the Hamiltonian in Sec. 7,. The final result for F ,  is then 
given by 

1 (n,21,,. nb21L,. O ( n ;  I'. nkl'. L)) (n,21G,. nb21,,. O1 n,l .  n21. O) x 
llonb 
11bL 

where,F, is a confluent hypergeometric f~inction and q2 is taken in units 
of 2pi3r;. 

Now we have a definite wav to compute and plot the charge form factor 
(6.1) of the ground state of a three-M systc:m. The coefficients a, are the 
components of the variational wavefunctilnn (2.1) in the harmonic-oscil- 
lator basis and are determined by the diagonalization of the Hamiltonian 
within a certain space whose dimension is determined by the quantum 
number N, as discussed in Sec. 3. The correction f, is taken from expe- 
rimentZ0. 

In Figures 6 and 7, we present the body and charge form-factors compared 
to the experimental result2'. We have taken for i :  the value that gives 
the best energy in the 10-quantum approximation. 



Fig 6 - Charge and body form factors of ',C compared to the Fig 7 - Same as Fig. 6 using the Benn-Scharf potential. - - experiment. Ground state defined by the Ali-Bodmer poten- 
9 tia1 e, + e ,  + e,. 



The first diffraction minimum is in a very good agreement with the experi- 
mental result, mainly in the case of the Benn-Scharf potential. The cor- 
rection due to the finiteness of the a-partide produces another mjnimum 
at q2 u 10 fm-2 whose experimental determination is still too hard to 
be carried out2'. However, calculations that do not make use of the 3-a 
model also produce such m i n i m ~ m ~ " ~ .  A conclusive analysis is only 
possible on the ground of complementary experimental data. With the 
help of correlated harmonic-oscillator furictions, Atti23 obtained results 
that are qualitatively similar to ours with the Benn-Scharf potential. 
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