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In this paper, we discuss some physical properties of three structureless alpha particles in-
teracting through two-body potentials and compare those properties with the wrresponding
experimental observations for the *2C nucleus. The wave function is expanded in terms of
trandationally invariant harmonic-osciilator states, the coefficients o the expansion being
taken as variational parameters.

Discutem-se, neste trabalho, algumas propriedades fisicas de trés particulas afas sem estru-

tura interagindo através de poténciais de dois corpos. Faz-se a comparagdo com as observa-

¢Oes experimentais correspondentes no caso do nicleo!2C. A fungdo de onda é expandida
em termos de estados de osciladores harmdnicos translacionalmente invariantes. Os coefi-

cientes da expansdo sdo tratados como parémetros variacionais.

1 Introduction

A representation for the internal structure of light doubly even nuclei
with A =22, in terms of alpha clusters, grounds mainly on the fact that
the al pha particle is the most stable nuclear system. To separate a proton
from this nucleus, the extremely large energy of 19.8 MeV is necessary
and there is no excited state of the nucleus below this energy'. A number
of attempts, using mainly variational methods and the Faddeev equations,
have been made recently to use this model in calculating properties of
the 12C nucleus®~!!. The alpha particles are assumed to be structureless
rigid entities and it is postulated that inside the nucleus these particles
interact with each other via a two-body potential which fits the experi-
mental phase shifts in the alpha-alpha scattering.

The rather incomplete and contradictory results obtained up to now
leave the question, whether the three-body model can account for the
ground state of !2C, still as an open problem.
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In this paper we address ourselves to this question using a variational
method with a translationally invariant harmonic-oscillator basis. It
will be possible to estimate the trend of the error by truncating the basic
space in subspaces corresponding to different number of osciilator quanta
in the approximation.

Some phenomenological a-a potentials with I-dependence will be taken
from the literature. So, we abandon the sissumption. common to almost
all previous calculations, of the negligibility of the «-o potential in the
higher angular-momentum channels.

The boson character of the particles in taken into account and, with the
variational function so obtained, we shall discuss the form factors of the
I2C nucleus. A rough estimate of the Couiomb energy is made.

2. The Trial Function

We shall try to describe the system of threi: alpha particles by a trial wave
function ¥ expanded in terms of translationally invariant harmonic-
oscillator states ¢, i. e..

l// = zav(pv' (21)
The coefficients a, are to be treated as linear variational parameters.

Thefunction ¢, describes the state v of a system of three harmonic oscilla-
tors. To satisfy the conditions to be imposed. for physica reasons. on the
three-alpha particie states. the three harmonic oscillators will be coupled
to a zero total orbital angular momentuni (L = J = 0) and will be in a
symmetric configuration state. The character of translational invariance
can easily be obtained through the use of the Jacobi coordinates

X, = \/% (x; - X2), (2.2a)
1

X, = \/? (x; +x, - 2%3), (2.2b)
1

X, = \/? (x; +x, + X3). (2.2¢)
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The construction of the functions ¢, with the mentioned required pro-

perties was discussed and carried out explicitly by Moshinsky and collabo-

rators'2'13. From their work. we see that the states ¢, are given by
vy = mmyly = [2/1 4 6,,,)]'% Y (-1yeth

Hatipla

(n, 21, ,m, 2L, ,0| n 0, n,1,0) | n, 21, , 1, 21,,00), (2.3)

where |n, 21, n, 21. 00) are states of three harmonic oscillators in the
coordinates (2.2) coupled to L =0 and with zero quantum energy in
x. (the center of mass coordinate).

These states carry the irreducible representation f = {3} of the group
S(3) of permutation of three objects. As the coefficientsa, are parameters
to be determined via a variational analysis, the function ¢ preservesthe
mentioned characteristics of (2.3).

The number of terms summed up in (2.1) will define our approxirnation.
Obviously. the function ¥ should be exactly defined by (2.1)if we could
take ali the infinite terms of the sum.

The needed cut-off in the sum will restrict the approximation to a maximum
number N of quanta. In other words. the sum will be restricted to those
values of v such that

0£n1+n2+l$;—N, (2.4)

since the total number of quanta is given by

N =2n +1+2n,+1 (2.5)

in the 10-quantum approximation, there are 16 values of v, i.e., 16 values
for the set (nyn,l) such that (2.4) is satisfied. So, in the approximation
of 10 quanta, we are trying to describe the system of three alphas in a
space of dimensionality 16. In our case, the dimension d of the space
defined by the approximation of N quanta is given by

d=@+1)@q+rn+ % Z (No — 6x)(N, -6x - 1), (26)
x=0

where N, = $N; g and r are. respectively, the quocient and the residue
of the division of N, t 1 by 6. and % is such that there is no negative
contribution to the sum.
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Finally, a last few words about the states (2.3). The triple sum. in n,, n,
and [, ,can be reduced to sums over only two of these indices if we take
into account the "energy condition” that must be satisfied by the Mos-
hinsky coefficients'* (n.l,, ml,, L|nly, n,l,, L), i.e,

on, vl ¥ on, Yl =2n +1,F 20, +1, 2.7
which, in our case. can be expressed as
n,+n, + 2, =n +n, +1 (2.8)

These states are orthonormai as can be easily seen using the sum rules
for the Moshinsky coefficients derived by Aguilera-Navarro et al' .

3. Matrix Elements of H

The Hamiltonian for a system of three alpha particies of mass m interac-
ting only tkrough two-body forces is given by

1 3 . 3
H= o s; pr+ Y Vis1) 3.1)

s<t

where V(s.t) may depend on the relative coordinates and momenta of
particles s and t. Taking usual dimensionless coordinatesx, and momenta

p. defined by
X; = /himw X, (3.2a)

p. = J/hmo p, s=1 2. 3 (3.2b)
where O is the common osciilator frequency., we can put the intrinsic
Hamiltonian s under the form

1 3
H =H - —; hwp? == ho (92 + pf) + Y Vis.0), (3.3)

where p. p, and p. are momenta associated to the Jacobi coordinates
defined in (2.2).

In this way. the matrix elements of # between the states (2.3)are given by

(' [ #1) = (Nt Hhws,, T3 U1.2)]v). (3.4)
where again v stands for the set (n;n,{). N is given by (2.5) and
1 2

U2y = v({.2) - hw x;. (3.5}

3
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Notice that we were allowed to sum over the pairs of particles. so getting
our matrix elements in terms of U(1.2) only. due to the definite permuta-
tional symmetry of (2.3).

The matrix elements of U(1,2) are given by
U 1Y)y = (mynyl | U(L2) [y, D)y =
[2/1 + 8,)])" 2 [241 + 6,,,)]Y% %
Y (= yetradn2l, m2l,. 0| nyl. nyl,"0) x

nghy
nplg

(n2,. m2l,. 0L nyl, 0y (21, | U(L2) || n,2L,). (3.6)

The Moshinsky coefficients were calculated with the nice closed formula
derived by Trlifaj*é, and the last "reduced matrix elements are easily
obtained by means of a usuai®3-'* expansion in terms of Talmi integrals. i.e.

|| U | nl) =Y, Bl nl, pl (U), (3.7
P
where p runs over the set of integer values
%(l’+l)£p_<_%(l'+l)+n’+n.
the Tami integrais being defined by

L(f(r) = f(—p;z—;;) J:r“” e f()dr (38)

and we givein Table 1 the relevant Talmi integrals for our present calcula-
tions. In this way. we have obtained all the matrix elements in terms of
Moshinsky coefficients. Talmi integrals and the coefficients B defined
by (3.7). These coefficients were calculated by means of the expression
contained in Ref. 14.

All we need now is to discuss the interaction.

S I(f(r)
rt I'p + 42+ 32)/T(p + 372)
e—ur2 a+ a)—p—3./2

Table 1 — The relevant Talmi integrals
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4. The Variational Energy

The potential V(1,2) is the superposition o the nuclear a-a potential V,,
and the Coulomb potential

Vi1,2) =4 /1x) - Xy | = /8B e?/x,, @4.1)

where
B = mc*mgc® /W2 c?, (4.2)
& = hw/myc?, 4.3)

and mc® isan arbitrary mass which we chose to be the electron rest mass
(moc® = 0.511 MeV).

While this part of the interaction is well tlefined. the same is not true for
the nuclear part which wili be taken from t he phenomenology of a-a scatte-
ring.

We considered two kinds of a-o potenticls. The first is due to Ali and
Bodmer*® who obtained phenomenological a-a potentials for [ =0.2
and 4 that fit the relevant phase shifts for CM energies up to 12MeV. Théy
ured Gaussians to shape the repulsive and attractive interactions.

The other potential was obtained by Benn and Scharf’® by means of the
Gelfand-Levitan solution of the inverse problem in scattering theory.
The potential is also [-dependent and is defined point-to-point. There
arehard coreslocated at r, = 1.2037 fm.r, = 14307 fmandr, = 1.6049fm
where the index of r refersto the particular 1 considered. This potential
reproduces exactly the experimental phase shifts.

With such potentials. we diagonalize the: Hamiltonian using the Jacobi
procedure thus obtaining its eigenvalues and corresponding eigenfunc-
tions. Thediagonalization of (3.4)is made for different values of the oscil-
lator parameter (4.3).

In the case dof the Benn-Scharf potentia,. we arbitrarily substituted the
hard core by a term varying as the inverse: of the relative distance between
two aphas. We used this trick to avoid a more complex and sophisticated
treatment due to the fact that the oscillator functions do not vanish at
the core radii.

In Figures 1-4. we show the behavior of the lowest eigenvalue when we
vary the value of i. The curves associated to N = 8 do not cross those
corresponding to N = 10.
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Fig. 1 - Variational energy as a function of the oscillator parameter « for the 0.2.4.6.8 and
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Fig. 2 - Same as Fig. 1 for Ali-Bodmer dy + d, T d,.
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In Fig. 1. we see the results for the potential e, + e + ¢ of Ali-Bodmer®*.
The best energy of --1.24MeV was obtained for ¢ = 16. Figure 2 refers
to the potential df + d; + d,. The best result E = -1.61 MeV was for
+ = 15. Now. using only d; as a common potential for all I-states. we get
an almost unbound state with E = --0.6 MeV for ¢ = 13 as shown in
Fig. 3. This result is in agreement with the fact that the a-a potential is
strongly I-dependent.

In Fig. 4. we have the results obtained using the Benn-Scharf'® potential.
This potential gave the best energy in the approximation of 10 quanta.
For s = 12. we have E = —3.19 MeV. For cornparison. we collect m
Table 2 some results obtained by various authors.

Author Ref. E(MeV)
Daurriulat 2 +14
Harrington 3 7.36
Duck 4 unbound
Fulco & Wong 5 2.79
Hebach & Henneberg 6 148
Leung & Park 7 7.36
Abdul-Magd 8 10
Lim 9 11
Noble 10 -14
Visschers & Wageningen 11 2.20
Experimental 19 -7.274

Table2 — Ground state energy of *2C obtained by variou-authors

By taking N =0,2,4,... successively, we define spaces of increasing
dimension 4 =1,2,4,... (see Eqg. (2.6)). The successive diagonalizations
in such spaces alow us to estimate the trend of the error.

In Fig. 5 we plotted the binding energy versus the number of quanta
N in the approximation. We see that the Benn-Scharf potential gives a
three-alpha bound state from the very starting point, ie, at the zero-
guantum approximation, while for binding the system we need at least
4 quanta for the used Ali-Bodmer potentials. On the other hand. Fig. 5
suggests that a further approximation (N greater than 10) wilt favor the
Ali-Bodmer potential since it seems that the Benn-Scharf potential is
going to define an inconvenient plateau in the plotting.
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Fig. 5- The behavior of the binding energy with increasing number of quanta for the discus-
sed potentials.

As there areindications that the model must work better for excited states.
where the particles have greater oportunity of individualization. calcula-
tionsarein progress to try to describe the low lying 0% and 2* levels of *2C.

5. Coulomb Energy

The Coulomb energy was calculated in the zero-quantum approximation.
The best value of ¢ in this approximation using the Benn-Scharf potential
was ¢ = 3. We obtained for the Coulomb energy the value E, = 5.28MeV
which is in accordance with the previous value estimated by Harrington?
of 5.44MeV.

6. Form Factors

Although the a-model does not produce a satisfactory ground-state energy
for the !2C. the calculated charge form factor fits verv well the experi-
mental results?”.

The charge form factor of a system of particles of total charge Z is
given by
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F(q) = % f exp(iq . x) p(x) dx (6.1)

where kq is the momentum transfer and p(x) is the charge density referred
to the center of mass.

If we want to get a more explicit expression for F(q) when using the re-
presentation (2.1)for a system of n alphas. we start by constructing an

operator which gives the probability density of finding an a-particle at
some arbitrary pointz. Such operator is obviously given by

M(z) = Y 6z -x) 6.2)
s=1
where x, is the position of the particle s.

Aswe are interested in the density referred to thecenter-of-mass, we write
(6.2)in the form.

MZ) = Y 6[x - (% - Xea)] (6.3)
s=1
with ey = 3 %o (6.4)
s=1
and
X =2 -Xea (6.5)

If we indicate by IT(x) the expectation value of I1,(x) with respect to the
ground state. and take into account the size of the particles. we find that
the charge densitv wiil be given by

o(x) = Jpﬁ(x -y I (y) dy (6.6)

where p(x) is the charge distribution in the aparticle. With this p in
(6.1). we have

Fl@) = Fg(g) £4Q). (6.7)
where

Fola) = o j expli . X) T1,(x) dx (6.8)

is the body-form factor of the system and
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1 . :
fQ) =5 jexmlq-xma(x} dx (6.9)
is the charge form-factor of the a-particle.

Turning back to the three-body case and using the expansions (2.1) and
(2.3). we have, after an I-expansion for the exponential. that Fz can be
written as

Fp =3 aca,{v | olgn | v). (6.10)

with

The matrix elements of j, in the base (2.3) can be calculated in the same
way as wedid for the Hamiltonian in Sec. 2. Thefina result for Fy is then

given by
Fyq) = Fglq®) = exp(--g*4) [241 + 5,,,,)]'"? %
[2/1 + 6,012 a,a, x

Y n 20, m2L,. 01ni I nyl 0) {(n,21,. n,21,.0ln,l.nyl.0) x
i

2, +npt+tm
> B2l m2l,.p) Fi -p.32; ¢*4). {6.12)
p=2l,
where, F, is a confluent hypergeometric function and g2 is taken in units
of 2873

Now we have a definite way to compute and plot the charge form factor
(6.1) of the ground state of a three-a system. The coefficientsa, are the
components of the variational wavefunction (2.1) in the harmonic-oscil-
lator basis and are determined by the diagonalization of the Hamiltonian
within a certain space whose dimension is determined by the quantum
number N, as discussed in Sec. 3. The correction £, is taken from expe-
riment2°.

In Figures 6 and 7, we present the body and charge form-factors compared
to the experimental resuit?’. We have taken for « the value that gives
the best energy in the 10-quantum approximation.
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Thefirst diffraction minimum is in a very good agreement with the experi-
mental result, mainly in the case of the Benn-Scharf potential. The cor-
rection due to the finiteness of the a-partide produces another minimum
at g°> ~ 10 fm~2 whose experimental determination is still too hard to
be carried out?!. However, calculations that do not make use of the 3-a
model aso produce such minimum?%#2%, A conclusive analysis is only
possible on the ground of complementary experimental data. With the
help of correlated harmonic-oscillator furictions, Atti** obtained results
that are qualitatively similar to ours with the Benn-Scharf potential.

Two of uswould like to express their gratitude to the Conselho Nacional de Pesquisas (O.P.)
and to the Fundag&o de Amparo a Pesquisa do Estads de S&o Paulo (R.Y.) for financialsup-
port. Thanks are also due to the Setor de Matematica Aplicada — IFUSP, for the facilities
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