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An approximate solution of Einstein-Maxwell equations is obtained for cylindrically symme- 
tric fields due to oppositely charged clusters of particles moving in circles in opposite directions. 
The solution eorresponds to a distribution of weakly charged particles in a iimited region 
around the axis of symmetry. 

Uma solução aproximada das equações de Einstein-Maxwell é obtida para campos, com 
simetria cilíndrica, devidos a aglomerados de partículas de cargas opostas, movendo-se em 
círculos em direções opostas. A solução corresponde a uma distribuição de particulas fra- 
camente carregadas, em uma região limitada ao redor do eixo de simetria 

1. Introduction 

After Melvinl discovered his magnetic universe as a singularity-free solu- 
tion to the Einstein-Maxwell equations in general relativity, Thorne2 has 
considered the physical structure of such a universe having no matter 
anywhere. He showed that the Melvin universe is absolutely stable under 
radial perturbation. Som3 has obtained explicit solutions where matter 
coexists with a cylindrically symmetric axial magnetic field. Buth the mag- 
tic field is source-free in this case too. Later, Banerji4 introducd a source 
in the form of a conduction current in the azimuthal direction inside a 
perfectly conducting dust. Though the solution can be matched with an 
outside magnetic field solution due to Bonnor5, the Melvin magnetic 
universe cannot be fitted with a dust distribution in this way. 

In the present paper, we propose to study the case where the cylindrically 
symmetric axial magnetic field arises solely due to a steady motion of 
charged particles. By cylindrically symmetric system we understand here 

*Postal address: Av. Wenceslau Braz, 71, 20000 - Rio de Janeiro GB. 



(the usual definition) that the system 1s invariant both under rotations 
about an axis (rotationally symmetric) ancl translations parallel to this 
axis. The distribution considere. here is iri the form of two clusters of 
oppositely charged particles moving in circles in opposite directions, so 
that the net angular momentum is zero and the system as a whole is elec- 
trically neutral. In view of the difficulty in finding an exact solution, we 
have looked for an approximate one. For ;i particular choice of the azi- 
muthal current, the approximate solution describes a cylindrically symme- 
tric axial magnetic field wholly within the: bounded distribution, while 
outside the solution is again that of Marder6. 

2. Basic Equations 

For regions in which there are both matter and an electromagnetic field, 
the Einstein-Maxwell equations are 

R: - 6: Ri2 - - 871 G(T: + E:)jc4, (2.1) 

with 

and 

where p,,, is the matter density of the i"' group of charged particles having 
velocity up,,, and p0 is the magnetic permeability. In the present case, there 
are only two groups of oppositely charged particles, so that i = 1, 2. The 
Maxwell equations are 

(J-4 Fh")A = p,c2 \l_g .r (2.4) 

where as usual 

Fpv = A",, - Ap ,, . 

For the cylindrically symmetric system, we number the coordinates ct, 

r, z, 4 as O, 1, 2, 3 respectively. So, for a purely axial magnetic field, the 
only surviving components of F,, are F,, = - F,, . Equation (2.5) is then 
automatically satisfied, since F,, is a function of the radial coordinate r 
only. Therefore, E: = - E ;  and T: = T; = O, so that we obtain 

R: + R; = 0, (2.6) 



and then the metric may be taken in Weyl's canonical form (Synge7) 

gav = diag (e2a, - e28-2a - e2B-2a , - r2e-2a), (2.7) 

where a and /3 are functions of r only. Let us define z.$, as 

ur1, = (uO, 0, 0, w/c), uY2) = (uO, 0, 0, - ~ j c ) ,  (2.8) 

with 

p(i, = p(2, = pj2 and F 3 ,  = - ~ B j r .  (2.9) 

Then, from Eqs. (2.2), (2.3), (2.8) and (2.9), one obtains 

T t  = diag[p(c2 + co2r2 ePza), 0, 0, - pco2r2 e-"] (2.10) 

and 

E: = ( 2 ~ ~ ) - '  e-2P B2 diag(1, - 1, 1, - 1). (2.11) 

where the subscript 1 means dldr. Since the axial magnetic field is consi- 
dered to be only due to the circular motions of oppositely charged particles 
in opposite directions, the azimuthal current j3 must satisfy the condition 

j3 = Y ~ P / C ,  (2.13) 

where y = qjm is the specific charge of each particle. 

3. Solutions of the Field Equations 
From Eqs. (2.1), (2.7), (2.10) and (2.11) one can write the fieid equations 
explicitly as 

(- a: + Pl /r) e2a-28 = [87cG/(2poc
4)] B2 e-'@, 

(a: + ~ l , ) e 2 a - 2 B  = 8 r ~ G [ p w ~ r ~ e - ~ ~  + B2e-28j(2po)]/~4 

(-2aIl + aS-2cr1/r + p11)e2a-2P 
= - 87cG[pe2 + + B2e-2B,i(2po)]/~4; 

and, from (2.12) and (2.13), we write 

ywp = -e2a-2fi  B i( r 1 ,  Po 1. 

Combining (3.1) and (3.3), one gets 

p = (47cGjc2)-' (a,, -a: + al,ir - /I1 ,) e2a-2fl, 



and, from (3.2), 

B2 = pOc4(- a: + PIIIrl e2"j(4nG). (3.6) 

Now eliminating p and f i  from the set (3.1) to (3.4), one obtains 

[e2"(all  + a l j r )  - IB2][a,(e2" + 2m2r2/c2)- .  w2r/c2 - ywBr/c2] = O (3.7) 

and 

yor[e2"(a, , + a ,  jr) - 3,B2] = - ?k2(e2" + 2w2r2!c2) B1 , (3.8) 

where Â = 4nGi ( /i0c4). 

The system of Eqs. (3.7) - (3.8) gives rise to i:wo possible cases: the fírst one, 

e2"(all + a l / r )  - ÂB2 = 0, 
B ,  = 0, 

gives, on integration, 

B = const, 

e2" = ( Â ~ ' / 4 ) ( r / L ) ~ [ ( r / r ~ ) ~  + (r l :r )L]2 ,  

and, from (3.6) and ( 3 . 9 ,  we get 

e2b = (rjr2)2'i +"') [(rjr1;tL + ( r l / r )L]4  

and 

in these expressions r, L and r, are constants of integration. The solution 
corresponds to the exterior field previously obtained by Ghosh and 
Sengupta8. 

4. Approximate Solution with Source 

In the present section, we shall construcf the solution which represents 
the axial magnetic field due to the distribution we are considering. In 
this case, our system of equations is 



Now for o = const, this system reduces to 

where ic= y2i(Ác2) is a dimensionless constant. 

In view of difficulty in finding an exact solution, we try an approximate 
solution in powers of roic 6 1, which implies that r = r, defines the 
range of the distribution in such a way that p(r > r,) = O. Let us put 
v = 02r2jc2. Then (4.1) reduces to 

where ths subscript 1 denotes differentiation with respect to v. Now, let 
us suppose 

2a = av + bv2 + @(v3); (4.3) 

an additive constant t e m  is unnecessary since for 5 = const we find that 
te2" is also a solution of (4.2) if we substitute v by z = t v  and reinterpret 
the subscript 1 as djdz. 

Substituting (4.3) in (4.1) and collecting terms independent of v, one obtains 
for o = const 

Thus the equation for B reduces to 

B = u [ a  - 1 + .v(a2 + 2a + 2b)Iiy + @(v2). (4.5) 

Since our solution should correspond to a solution B = O when y = 0, 
i.e, when the particles are uncharged, we put 

a - 1  = eic + 0.(ic2) (4.6) 

and 
a2 + 2a + ab = gic + @(ic2), 

where e and g are constants independent of u. Then (4.5) reduces to 

B = yp, c20(e + gv)i(4nG) + @(v2) + O(y3). 

Now from (3.1) one gets 

d/?/dv = e21ci2 + (1 + 2 e ~ ) v i 2  + @(v2) + @(u2), 



which on integration gives 

= h[ l  + v2/2  + tiev(e + v)] + O(v3) + 0(ti2); (4.9) 

we take constant h of integration as 1 in order to have g , ,  = - 1 on the axis. 

An expression for p is obtained by adding (3.2) and (3.3), namely 

p = 0 2 [ 1  - 7v + ti ( e  + 2gv)]/(2nG) + 0 (v 2)  + 0(lc2). 

For r -+ r. , one must have 

B -+ poypwro(ro - r) E ypoc2w(r~~w2ic2 - r2o2!cZ)i(4zG), 

so by comparison with (4.8), we deduce 

e=r&02,ic2 and g = - 1 ;  

the corresponding values of a and b satitify (4.4). 

The expressions for goo , g,,  , p and B corrixt up to the order of ro/c  which 
appears in the lowest order in ti, are thus 

For y = 0, the solution goes over to that of Teixeira and Som9 for un- 
charged distributions. 
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