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An approximate solution of Einstein-Maxwell equations is obtained for cylindrically symme-
tric fields dueto oppositely charged clustersof particles movingin circlesin opposite directions.
The solution eorresponds to a distribution of weakly charged particles in a limited region
around the axis of symmetry.

Uma solucdo aproximada das equacOes de Einstein-Maxwell é obtida para campos, com
simetria cilindrica, devidos a aglomerados de particulas de cargas opostas, movendo-se em
circulos em diregGes opostas. A solugdo corresponde a uma distribuicdo de particulas fra-
camente carregadas, em uma regido limitada ao redor do eixo de simetria

1. Introduction

After Melvin' discovered his magnetic universe as a singularity-freesolu-
tion to the Einstein-Maxwell equations in genera relativity, Thorne? has
considered the physica structure of such a universe having no matter
anywhere. He showed that the Melvin universe is absolutely stable under
radial perturbation. Som® has obtained explicit solutions where matter
coexists with a cylindrically symmetric axial magneticfield. Buth the mag-
tic field is source-freein this case too. Later, Banerji* introduceg asource
in the form of a conduction current in the azimuthal direction inside a
perfectly conducting dust. Though the solution can be matched with an
outside magnetic fidd solution due to Bonnor®, the Mevin magnetic
universe cannot be fitted with a dust distribution in this way.

In the present paper, we propose to study the case where the cylindrically

symmetric axial magnetic fidd arises solely due to a steady motion of
charged particles. By cylindricaly symmetric system we understand here

*Postal address: Av. Wenceslau Braz, 71, 20000 - Rio de Janeiro GB.
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(the usual definition) that the system s invariant both under rotations
about an axis (rotationally symmetric) and translations parallel to this
axis. The distribution considere. here is in the form of two clusters of
oppositely charged particles moving in circles in opposite directions, so
that the net angular momentum is zero and the system as a whole is elec-
trically neutral. In view of the difficulty in finding an exact solution, we
have looked for an approximate one. For a particular choice of the azi-
muthal current, the approximate solution describes a cylindrically symme-
tric axial magnetic field wholly within the bounded distribution, while
outside the solution is again that of Marder®.

2. Basic Equations

For regions in which there are both matter and an electromagnetic field,
the Einstein-Maxwell equations are

RS Ri2 = _8n G(T* + E¥/c?, 21

with
T = ¢? Z Py Uy Ul (2.2

and
Eé = (Fla Fav _53 Faﬁ Fﬁa/4)/(1u0c2)a (23)

where p,,, is the matter density o the i* group of charged particles having
velocity «*;, and , is the magnetic permeability. In the present case, there
are only two groups of oppositely charged particles, so that i =1, 2. The
Maxwell equations are

=g F™) . = o /=g 7" 2.4

and

F 0; (2.5)

uvipl =
where as usud
F

For the cylindrically symmetric system, we number the coordinates ct,
r,z, ¢ as 0 1, 2, 3 respectively. So, for a purely axial magnetic field, the
only surviving components of F,, are F;;, = - F,;. Equation (2.5)is then
automatically satisfied, since F,, is a function of the radial coordinate r
only. Therefore, E} =-E2 and T! = T3 =0, so that we obtain

RS+ R} =0, (2.6)

A

w = v —

A

TR
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and then the metric may be taken in Weyl's canonica form (Synge’)

g, = diag(e?, — 28727 _ 28722, _rle” %), 2.7
where a and # are functions of r only. Let us define uf;, as
uty, =@, 0,0,w/c),  uhy, = (20,0, -w/o), (2.8)
with
Oy =Py =Pj2 and  F3 =-cBjr (2.9)
Then, from Egs. (2.2), (2.3), (2.8) and (2.9), one obtains
T+ = diag[p(c® T w?r? e 2%, 0, 0, - pw?r® e~ 2% (2.10)
and
E* = (2uo)~' e ?# B? diag(l, -1, 1, -1). (2.11)

From (2.4), one obtains
= —(cpy)~ ' e** 2P B, /r, (2.12)

where the subscript 1 means d/dr. Since the axia magnetic field is consi-
dered to beonly dueto the circular motions of oppositely charged particles
in opposite directions, the azimuthal current j* must satisfy the condition

7 =yop/ec, (2.13)
where y = g/m is the specific charge of each particle.

3. Solutions of the Fidd Equations
From Egs. (2.1), (2.7), (2.10) and (2.11) one can write the field equations
explicitly as
af + By /r)e** 28 = [87cG/(2pc?)] B2 e %, (3.1
+ r1) €% = 8nGlpw?r?e > + BPe™/2u)l/ct  (3.2)
(=204 + 0‘1—2“1/’ + Biye*
= -87cG[pe t pwrle™2* + B2e~2)2u,)]/ct;  (3.3)

and, from (2.12) and (2.13), we write
ywp = —e** 72 B, f(uor). (34)
Combining (3.1) and (3.3), one gets
p =(@4nG/c) 1t (a, o T o, jr—fy,) e 28, (3.5)
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and, from (3.2),
B? = poc*(-o} T B./r) e**{(4nG). (3.6)
Now eliminating p and B from the set (3.1)to (3.4), one obtains
[e*%(0;, T oy /r) - AB*Y[24(e** T 20%% jc?) - wr/c? —ywBr/c*] =0 (3.7)
and
yor[ o, T a,/r)- AB?] = - 2X(e** + 20%r?/c*) B, , (3.8)
where A = 4rG/ ( fpc?).
The system of Egs. (3.7)- (3.8) givesrise to two possiblecases: the first one,
{ez" (ay t oy /r)- AB? =0,
B, =0,
gives, on integration,
{B = const,
&' = (ABXA)r/LY[(r/r)t + (ry/r) ],
and, from (3.6)and (3.5), we get
& = (r/r, P [rfr ) T ()T
and
p=0;

in these expressionsr, L and r, are constants o integration. The solution
corresponds to the exterior fidd previously obtained by Ghosh and
Sengupta®.

4, Approximate Selution with Source

In the present section, we shall construci the solution which represents
the axial magnetic fieddd due to the distribution we are considering. In
this case, our system o equations is

{051( 2a + 2w2r2/C2) er/CZ_war/CZ — 0
yor[e* (o, + a/r)— AB*] = Ac}(e* + 2w?r?/c*)B,
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Now for w = congt, this system reduces to

( 2a + 2(1)27‘2 /02)[(82‘1 + 2(02 2 2 0‘1/"]1 _r[wz/cz ( 2a + 20)2 2 2 /r]Z
= —Kkw(roag; + o;)e*¥/c?, (4.1)

where k= y*{(Ac?) is a dimensionless constant.

In view of difficulty in finding an exact solution, we try an approximate

solution in powers o rw/c < 1, which implies that r =r, defines the

range of the distribution in such a way that p{r > r) = 0. Let us put
v = w?r?/c%. Then (4.1) reduces to

2027 + 2v)[20,(e®* + 2v)]; —[1 - 2a4(e** + 2v)]* +
+ 2K 20, + 200,v) €2 = 0, 4.2)

where ths subscript 1 denotes differentiation with respect to v. Now, let
us suppose

2¢ = avt bv2 T 0(%); @4.3)

an additive constant term is unnecessary since for & = const we find that
£e®* is also a solution of (4.2)if we substitute v by z = £v and reinterpret
the subscript 1 as d/dz.

Substituting (4.3)in (4.1)and collecting terms independent of v, one obtains
for o = const

ala + 6 + 2x) + 4b = 1. 4.4)

Thus the equation for B reduces to
B=ow[a-1% va®* 24+ 2b)]/y + 002 (4.5)

Since our solution should correspond to a solution B =0 when y =0,
i.e, when the particles are uncharged, we put

a-1= ext O (4.6)

and
a2 + 24t ab = gc+ 0(x?), 4.7

where e and g are constants independent of k. Then (4.5) reduces to
B = yuo (e T g)i4nG) T 0(v?) T 0»%).
Now from (3.1) one gets
dpjdv = e*xj2 T (11 2ex)v2 + 0(v*) + 0(x?),
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which on integration gives
e = h[1+ v22 + kevle T V)] + 00 + 0(x?); (4.9)

wetake constant h of integration as 1in order to haveg,, = - 1 ontheaxis.

An expression for p is obtained by adding (3.2)and (3.3), namely
p = w*[1-Tv ti(e+ 29v)]/2nG) + 0(v?)+ O(x?). (4.10)
For r - r,, One must have
B - uoypwrolre — 1) ~ yugcw(rim?ic* —r*w?/c*){(4nG),  (4.11)
so by comparison with (4.8), we deduce
e =riw?ic® and g=-1; (4.12)
the corresponding values of a and b satisfy (4.4).

Theexpressionsfor g4, 9., , o @nd B correct up to the order of rw/c which
appears in the lowest order in ti, are thus

doo = 1 + (rw/c)? ~(rorfc)* + kr*(rd —r*2)(w/c)*, (4.13)
g1 = —1 + (ro/c)* = S5(rwjc)* /2 + kr¥(rd —r?2)(w/c)*, (4.14)
p = [1-Trwjc)? + k(rd—2r')w/c)*] w*(2rG), (4.15)

B = yuow(ry — r*)/(4nG). (4.16)

For y = 0, the solution goes over to that of Teixeira and Som® for un-
charged distributions.

The authors wish to expresstheir appreciation to Idel Wolk for helpful discussionsand thank
the Conselho Nacional de Pesquisas for a grant awarded. They further thank the referee for
suggestions.
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